On the Spectral Characterization of \mathbf{H}-Shape Trees

Shengbiao Hu
Department of Mathematics, Qinghai Nationalities University, Xining, China
Email: shengbiaohu@aliyun.com

Received 6 March 2014; revised 7 April 2014; accepted 14 April 2014
Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A graph G is said to be determined by its spectrum if any graph having the same spectrum as G is isomorphic to G. An H-shape is a tree with exactly two of its vertices having maximal degree 3 . In this paper, a formula of counting the number of closed 6 -walks is given on a graph, and some necessary conditions of a graph Γ cospectral to an H-shape are given.

Keywords

Spectra of Graphs, Cospectral Graphs, Spectra Radius, \boldsymbol{H}-Shape Trees, Determined by Its Spectrum

1. Introduction

Let $G=(V, E)$ be a simple undirected graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set E. Let $A(G)$ be the adjacency matrix of G. Since $A(G)$ is a real symmetric matrix, its eigenvalues must be real, and may be ordered as $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$. The sequence of n eigenvalues is called the spectrum of G, the largest eigenvalue $\lambda_{1}(G)$ is often called the spectral radius of G. The characteristic polynomial of $A(G)$ is called the characteristic polynomial of the graph G and is denoted by $\varphi(G, \lambda)$.

Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by its spetrum (DS for short) if for any graph $H, \varphi(H, \lambda)=\varphi(G, \lambda)$ implies that H is isomorphic to G.

Determining what kinds of graphs are DS is an old problem, yet far from resolved, in the theory of graph spectra. Numerous examples of cospectral but non-isomorphic graphs are reported in literature [1]. However, there are few results known about DS graphs. For the background and some recent surveys of the known results about this problem and related topics, we refer the reader to [2]-[6] and references therein.

Because the kind of problems above are generally very hard to deal with, some more modest ones suggested by van Dam and Haemers [2], say, "Which trees are DS?", this problem is also very hard to deal with, because we know a famous result of Schwenk [7], which says that almost all trees have non-isomorphic cospectral

[^0]mates.
A T-shape $T\left(l_{1}, l_{2}, l_{3}\right)$ is a tree with exactly one of its vertices having maximal degree 3 such that $T\left(l_{1}, l_{2}, l_{3}\right)-v=p_{l_{1}} \cup p_{l_{2}} \cup p_{l_{3}}$, where $p_{l_{i}}$ is the path on $l_{i}(i=1,2,3)$ vertices, and v is the vertex of degree 3 . More recently, Wang proved that T-shape tree $T\left(l_{1}, l_{2}, l_{3}\right)$ is DS; Wang and $\mathrm{Xu}[6]$ proved that T-shape tree $T\left(l_{1}, l_{2}, l_{3}\right)\left(l_{1} \leq l_{2} \leq l_{3}\right)$ is DS iff $\left(l_{1}, l_{2}, l_{3}\right) \neq(l, l, 2 l-2)$ for any positive integer $l \geq 2$.
An H-shape is a tree with exactly two of its vertices having maximal degree 3 . We denote by $H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)\left(l_{1} \geq 0, l_{i} \geq 1, i=2,3,4,5\right)$ is an H-shape tree such that
$H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)-u-v=p_{l_{1}} \cup p_{l_{2}} \cup p_{l_{3}} \cup p_{l_{4}} \cup p_{l_{5}}$, and $H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)-u=T\left(l_{1}, l_{4}, l_{5}\right)$, $H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)-v=T\left(l_{1}, l_{2}, l_{3}\right) \cup p_{l_{4}} \cup p_{l_{5}}$, where u and v are the vertices of degree 3 .
In this paper, we give a formula of counting the number of closed 6-walks on a graph, and give some necessary conditions of a graph Γ cospectral to an H-shape.

2. Some Lemmas

In the section, we will present some lemmas which are required in the proof of the main result.
Lemma 2.1 [8] The characteristic polynomial of a graph satisfies the following identities:

1) $\varphi\left(G_{1} \cup G_{2}, \lambda\right)=\varphi\left(G_{1}, \lambda\right) \varphi\left(G_{2}, \lambda\right)$,
2) $\varphi(G, \lambda)=\varphi(G-e, \lambda)-\varphi\left(G-v_{1} v_{2}, \lambda\right)$ if $e=v_{1} v_{2}$ is a cut-edge of G.
where $G-e$ denotes the graph obtained from G by deleting the edge e and $G-v_{1} v_{2}$ denotes the graph obtained from G by deleting the vertices v_{1}, v_{2} and the edges incident to it.

Lemma 2.2 [1] Let C_{n}, P_{n} denote the cycle and the path on n vertices respectively. Then

$$
\begin{aligned}
& \varphi\left(C_{n}, \lambda\right)=\prod_{j=1}^{n}\left(\lambda-2 \cos \frac{2 \pi j}{n}\right)=2 \cos (n \arccos \lambda / 2)-2 \\
& \varphi\left(P_{n}, \lambda\right)=\prod_{j=1}^{n}\left(\lambda-2 \cos \frac{\pi j}{n+1}\right)=\frac{\sin ((n+1) \arccos \lambda / 2)}{\sin (\arccos \lambda / 2)}
\end{aligned}
$$

Let $\lambda=2 \cos \theta$, set $t^{1 / 2}=\mathrm{e}^{\mathrm{i} \theta}$, we get $\lambda=t^{1 / 2}+t^{-1 / 2}$, it is can be write the characteristic polynomial of C_{n}, P_{n} in the following form [6]:

$$
\begin{gather*}
\varphi\left(C_{n}, t^{1 / 2}+t^{-1 / 2}\right)=t^{n / 2}+t^{-n / 2}-2=t^{-n / 2}\left(t^{n / 2}-1\right)^{2} \tag{1}\\
\varphi\left(P_{n}, t^{1 / 2}+t^{-1 / 2}\right)=t^{-n / 2}\left(t^{n+1}-1\right) /(t-1) \tag{2}
\end{gather*}
$$

Lemma 2.3[4] [9] Let $\varphi(G, x)=\sum_{i=0}^{n} a_{i} \lambda^{n-i}$ be the characteristic polynomial of graph G with n vertices, then the coefficient of λ^{n-i} is

$$
\begin{equation*}
a_{i}=\sum_{\gamma}(-1)^{\operatorname{comp}(\gamma)} 2^{\operatorname{cyc}(\gamma)} \tag{3}
\end{equation*}
$$

where $a_{0}=1$ and the sum is over all subgraphs γ of G consisting of disjoint edges and cycles, and having i vertices. If γ is such a subgraph then comp (γ) is the number of components in it and $\operatorname{cyc}(\gamma)$ is the number of cycles.

Lemma 2.4 [2] [10] Let G be a graph. For the adjacency matrix, the following can be obtained from the spectrum.

1) The number of vertices.
2) The number of edges.
3) Whether G is regular.
4) Whether G is regular with any fixed girth.
5) The number of closed walk of any length.
6) Whether G is bipartite.

3. Main Results

The total number of closed k-walks in a graph G, denoted by $\left|w_{k}(G)\right|$.
Lemma 3.1 ([6] p. 657) Let G be a graph with e edges, x_{i} vertices of degree i, and $y 4$-cycles. Then

$$
\begin{equation*}
\left|w_{4}(G)\right|=2 e+4 \sum_{i}\binom{i}{2} x_{i}+8 y \tag{4}
\end{equation*}
$$

Lemma 3.2 Let Γ be a graph with n vertices. If Γ cospectral to an H-shape and $\Gamma \neq W_{n}$, then

1) Γ have the same degree sequences as the H-shape tree or Γ have the degree sequences $(3,2,2, \cdots, 2,1,0)$.
2) Γ contains no 4-cycles.

Proof. Let Γ be a graph with e edges, x_{i} vertices of degree i, and $y 4$-cycles. By lemma 2.4 we known that cospectral graphs have the same number of edges and closed 4 -walks, respectively. Since Γ is cospectral to an H-shape tree, hence by (4) we have

$$
2 e+4 \sum_{i}\binom{i}{2} x_{i}+8 y=6 n-2
$$

namely

$$
\begin{equation*}
\sum_{i}\binom{i}{2} x_{i}+2 y=n=\sum_{i \geq 0} x_{i} \tag{5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{i \geq 2}(i-1) x_{i}=\sum_{i \geq 2} i x_{i}-\sum_{i \geq 2} x_{i}=\left(2 e-x_{1}\right)-\left(n-x_{0}-x_{1}\right)=2 e-n+x_{0}=n-2+x_{0}, \tag{6}
\end{equation*}
$$

from (5), we have

$$
\begin{equation*}
\sum_{i \geq 2}\binom{i-1}{2} x_{i}+2 y=n-\sum_{i \geq 2}(i-1)=2-x_{0} \tag{7}
\end{equation*}
$$

the (7) imply to $y=1$ or 0 .
Case 1. $y=1$. by (7) we get $x_{0}=0$ and $x_{3}=x_{4}=\cdots=0$, by (5) we get $x_{2}=n-2$ and $x_{1}=2$, then $\Gamma=C_{4} \cup P_{n-2}$.
We known that "the spectrum of graph W_{n} is the union of the spectra of the circuit C_{4} and the path P_{n-4} " [1], that is

$$
\varphi\left(W_{n}, \lambda\right)=\varphi\left(C_{4} \cup C_{4} \cup P_{n-4}, \lambda\right)
$$

Case 2. $y=0$. By (7) we have $x_{0} \leq 2$.
If $x_{0}=0$, then $x_{3}=2, x_{4}=x_{5}=\cdots=0$, by (5) we get $x_{2}=n-6$ and $x_{1}=4$. Thus Γ have the same degree sequences as the H-shape tree.

If $x_{0}=1$, then $x_{3}=1, x_{4}=x_{5}=\cdots=0, x_{2}=n-3$ and $x_{1}=1$. The degree sequences of Γ is $(3,2,2, \cdots, 2,1,0)$.
If $x_{0}=2$, then $x_{3}=x_{4}=\cdots=0, x_{2}=n,|V(\Gamma)| \geq n+2$, a contradiction.
Lemma 3.3 Let G be a graph with e edges, x_{i} vertices of degree i, and $z 6$-cycles. Then

$$
\begin{equation*}
\left|w_{6}(G)\right|=2 e+12 \sum_{i}\binom{i}{2} x_{i}+6 p_{4}+12 k_{1,3}+12 z \tag{8}
\end{equation*}
$$

where p_{4} is the number of induced paths of length three and $k_{1,3}$ is the number of induced star $K_{1,3}$.
Proof. A close walk of length 6 can be produced from in the following five classes graphs, they are P_{2}, P_{3}, P_{4}, $K_{1,3}$ and C_{6}. For an edge and a 6 -cycle, it is easy to see that the number of close 6 -walks equals 2 and 12 , respectively. For a P_{3}, the number of close 6 -walks of a 1-degree vertex is 3 and the number of close 6 -walks of the 2-degree vertex is 6 , since the number of induced paths of length two is $\sum_{i}\binom{i}{2} x_{i}$, hence for all induced paths P_{3}, the number of close 6-walks is $12 \sum_{i}\binom{i}{2} x_{i}$. For a P_{4}, since the number of close 6-walks of a 1-degree ver-
tex is 1 and the number of close 6-walks of a 2-degree vertex is 2 , hence for all induced paths P_{4}, the number of close 6 -walks is $6 p_{4}$. Similarly, for a $K_{1,3}$, the number of close 6 -walks of a 1 -degree vertex is 2 and the number of close 6 -walks of the 3 -degree vertex is 6 , thus for all induced stars $K_{1,3}$, the number of close 6 -walks is $12 k_{1,3}$.

Corollary 3.4 Let $H=H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)$, then

$$
\left|w_{6}(H)\right|=\left\{\begin{array}{l}
20 n+28-6 k\left(l_{1} \geq 1 \text { and have } k \text { elements are } 1 \text { in }\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}\right) \tag{9}\\
20 n+34-6 k\left(l_{1}=0 \text { and have } k \text { elements are } 1 \text { in }\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}\right)
\end{array}\right.
$$

where $0 \leq k \leq 4$.
Proof. Case 1. $l_{1} \geq 1$.

1) If $k=0$, that is $l_{i} \geq 2(i=2,3,4,5)$, then

$$
\left|w_{6}(H)\right|=2(n-1)+12[(n-6)+3 \times 2]+6\left[\left(l_{2}+l_{3}-2\right)+\left(l_{4}+l_{5}-2\right)+\left(l_{1}-1\right)+8\right]+12 \times 2=20 n+28
$$

where $\left(l_{2}+l_{3}-2\right),\left(l_{4}+l_{5}-2\right)$ and $\left(l_{1}-1\right)$ are the number of induced paths P_{4} in $p_{l_{2}+l_{3}+1} \cdot p_{l_{4}+l_{5}+1}$ and $p_{l_{1}+2}$, respectively. The $8(=4+4)$ is the number of induced paths of through a 3-degree vertex u (or v). If P_{4} is such a induced path, then u is an internal vertex in the P_{4} and have at least a vertex in the $p_{l_{1}}$ (or $p_{l_{2}}$).
2) If $k \neq 0$, then

$$
\left|w_{6}(H)\right|=2(n-1)+12[(n-6)+3 \times 2]+6\left[\left(l_{2}+l_{3}-2\right)+\left(l_{4}+l_{5}-2\right)+\left(l_{1}-1\right)+(8-k)\right]+12 \times 2=20 n+28-6 k
$$

Case 2. $l_{1}=0$.

1) If $k \neq 0$, then

$$
\left|w_{6}(H)\right|=2(n-1)+12[(n-6)+3 \times 2]+6\left[\left(l_{2}+l_{3}-2\right)+\left(l_{4}+l_{5}-2\right)+8\right]+12 \times 2=20 n+34
$$

2) If $k=0$, similarly, we have $\left|w_{6}(H)\right|=20 n+34-6 k$.

Example 1. Let $H_{1}=H(0,1,1,1,1)$, by (9) we have

$$
\left|w_{6}\left(H_{1}\right)\right|=20 \times n+34-6 k=20 \times 6+34-6 \times 4=130,
$$

if we give to a suitable label for the H_{1}, by a simple calculation we can get the diagonal matrix of $A^{6}\left(H_{1}\right)$, that is

$$
\operatorname{diag}\left(A^{6}\left(H_{1}\right)\right)=[11,11,43,43,11,11]
$$

clearly, the sum of the elements in the diagonal matrix equals $4 \times 11+2 \times 43=130$.
Example 2. Let $H_{2}=H(2,2,2,2,2)$, by (9) we have $\left|w_{6}\left(H_{2}\right)\right|=20 \times 12+28=268$, similarly, if we give to a suitable label for the H_{2}, then we can get the diagonal matrix of $A^{6}\left(H_{2}\right)$, that is

$$
\operatorname{diag}\left(A^{6}\left(H_{2}\right)\right)=[6,6,6,6,22,22,22,22,29,29,49,49]
$$

clearly, the sum of the elements in the diagonal matrix equals $4 \times 6+4 \times 22+2 \times 29+2 \times 49=268$.
Lemma 3.5 Let Γ be a graph with n vertices, e edges, x_{i} vertices of degree i, and $z 6$-cycles. If Γ cospectral to $H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)$ and $\Gamma \neq W_{\mathrm{n}}$, then

$$
2 \sum_{i \geq 2}\binom{i-1}{2} x_{i}+p_{4}+2 k_{1,3}+2 z=\left\{\begin{array}{l}
n+9-k-2 x_{0}\left(l_{1} \geq 1 \text { and have } k \text { elements are } 1 \text { in }\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}\right) \tag{10}\\
n+10-k-2 x_{0}\left(l_{1}=0 \text { and have } k \text { elements are } 1 \text { in }\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}\right)
\end{array}\right.
$$

where $k(0 \leq k \leq 4)$ is the number of elements of equals 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$ and p_{4} is the number of induced paths of length three and $k_{1,3}$ is the number of induced star $K_{1,3}$ in Γ.

Proof. If $l_{1} \geq 1$, by Lemma 3.3 we have

$$
\begin{aligned}
& 2 e+12 \sum_{i}\binom{i}{2} x_{i}+6 p_{4}+12 k_{1,3}+12 z=20 n+28-6 k, \quad 2 \sum_{i}\binom{i}{2} x_{i}+p_{4}+2 k_{1,3}+2 z=3 n+5-k, \\
& 2 \sum_{i \geq 2}\binom{i-1}{2} x_{i}+p_{4}+2 k_{1,3}+2 z=3 n+5-2 \sum_{i \geq 2}(i-1) x_{i}=3 n+5-k-2\left(n-2+x_{0}\right)=n+9-k-2 x_{0} .
\end{aligned}
$$

Similarly, when $l_{1}=0$ the (10) hold.
Definition 1. Let U be a graph obtained from a cycle $C_{\mathrm{g}}\left(\mathrm{g}\right.$ is even and $\left.6 \leq \mathrm{g} \leq n_{1}-2\right)$ and a path $P_{n_{1}-g}$, such that identifying an end vertex in the path and any one vertex in the cycle, and uniting an isolated vertex K_{1}.

If a graph have the degree sequences $(3,2,2, \cdots, 2,1,0)$, then the graph is U uniting some cycle.
Lemma 3.6 Let U^{\prime} be a graph with degree sequences $(3,2,2, \cdots, 2,1,0)$. If U^{\prime} cospectral to an H-shape, then U^{\prime} and H satisfying one of the following conditions.

1) There are one 6-cycle in U^{\prime} and $l_{1} \geq 1, l_{2}, l_{3}, l_{4}, l_{5} \geq 2$.
2) There are one 6-cycle in U^{\prime} and $l_{1}=0$, have an element is 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$.
3) No 6-cycle in U^{\prime} and $l_{1} \geq 1$, have two elements are 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$.
4) No 6-cycle in U^{\prime} and $l_{1}=0$, have three elements are 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$.

Proof. Without loss of generality, Let $U^{\prime}=U \bigcup C_{n_{2}}$, where $n_{2}(\geq 6)$ is even and $n_{1}+n_{2}=n$. Let U^{\prime} have e edges, x_{i} vertices of degree i, and $z 6$-cycles.

Case 1. $l_{1} \geq 1$. By Lemma 3.5 we have $2 \times 1+\left[g+\left(n_{1}-g-3\right)+4+n_{2}\right]+2 \times 1+2 z=n+9-k-2,2 z=2-k$, get $k=0, z=1$ or $k=2, z=0$.

Case 2. $l_{1}=0$, we have $2 \times 1+\left[g+\left(n_{1}-g-3\right)+4+n_{2}\right]+2 \times 1+2 z=n+10-k-2,2 z=3-k$, get $k=1, z=$ 1 or $k=3, z=0$.

Lemma 3.7 Let $\lambda=t^{1 / 2}+t^{-1 / 2}$, then

$$
\begin{align*}
& \varphi\left(H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right), t^{1 / 2}+t^{-1 / 2}\right) \\
& =\frac{t^{-n / 2}}{(t-1)^{5}}\left[(t-1)^{2}\left(t^{l_{1}+1}-1\right)\left(t^{l_{2}+l_{3}+2}-1\right)\left(t^{l_{4}+l_{5}+2}-1\right)-t(t-1)\left(t^{l_{1}}-1\right)\left(t^{l_{2}+l_{3}+2}-1\right)\left(t^{l_{4}+1}-1\right)\left(t^{l_{5}+1}-1\right)\right. \tag{11}\\
& \left.\quad-t(t-1)\left(t^{l_{1}}-1\right)\left(t^{l_{2}+1}-1\right)\left(t^{l_{3}+1}-1\right)\left(t^{l_{4}+l_{5}+2}-1\right)+t^{2}\left(t^{l_{1}-1}-1\right)\left(t^{l_{2}+1}-1\right)\left(t^{l_{3}+1}-1\right)\left(t^{l_{4}+1}-1\right)\left(t^{l_{5}+1}-1\right)\right]
\end{align*}
$$

Proof. By Lemma 2.1 (b) and Lemma 2.2 we have

$$
\begin{align*}
& \varphi\left(H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right), \lambda\right) \\
&= \varphi\left(P_{l_{2}+l_{3}+1}, \lambda\right) \varphi\left(T\left(l_{1}, l_{4}, l_{5}\right), \lambda\right)-\varphi\left(P_{l_{2}}, \lambda\right) \varphi\left(P_{l_{3}}, \lambda\right) \varphi\left(T\left(l_{1}-1, l_{2}, l_{3}\right), \lambda\right) \\
&= \varphi\left(P_{l_{2}+l_{3}+1}, \lambda\right) \varphi\left(P_{l_{1}}, \lambda\right) \varphi\left(P_{l_{4}+l_{5}+1}, \lambda\right)-\varphi\left(P_{l_{2}+l_{3}+1}, \lambda\right) \varphi\left(P_{l_{1}-1}, \lambda\right) \varphi\left(P_{l_{4}}, \lambda\right) \varphi\left(P_{l_{5}}, \lambda\right) \tag{12}\\
&-\varphi\left(P_{l_{1}-1}, \lambda\right) \varphi\left(P_{l_{2}}, \lambda\right) \varphi\left(P_{l_{3}}, \lambda\right) \varphi\left(P_{l_{4}+l_{5}+1}, \lambda\right)+\varphi\left(P_{l_{1}-2}, \lambda\right) \varphi\left(P_{l_{2}}, \lambda\right) \varphi\left(P_{l_{3}}, \lambda\right) \varphi\left(P_{l_{4}}, \lambda\right) \varphi\left(P_{l_{5}}, \lambda\right) \\
& \varphi\left(H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right), t^{1 / 2}+t^{-1 / 2}\right) \\
&= \frac{t^{-n / 2}}{(t-1)^{5}}\left[(t-1)^{2}\left(t^{l_{1}+1}-1\right)\left(t^{t_{2}+l_{3}+2}-1\right)\left(t^{l_{4}+l_{5}+2}-1\right)-t(t-1)\left(t^{1_{1}}-1\right)\left(t^{l_{2}+l_{3}+2}-1\right)\left(t^{t_{4}+1}-1\right)\left(t^{t_{5}+1}-1\right)\right. \\
&\left.\quad-t(t-1)\left(t^{l_{1}}-1\right)\left(t^{t_{2}+1}-1\right)\left(t^{l_{3}+1}-1\right)\left(t^{l_{4}+l_{5}+2}-1\right)+t^{2}\left(t^{t_{1}-1}-1\right)\left(t^{l_{2}+1}-1\right)\left(t^{l_{3}+1}-1\right)\left(t^{l_{4}+1}-1\right)\left(t^{t_{5}+1}-1\right)\right]
\end{align*}
$$

If a graph has the same degree sequences as the H-shape, then Γ is one of the following graphs $G_{1}, G_{2}, G_{3}, G_{4}$, G_{5} in figure or it is an H-shape.

Lemma 3.8 If Γ is cospectral to an H-shape tree, then Γ contains no $P_{n_{1}} \cup P_{n_{2}}\left(n_{1}, n_{2}<n\right)$ as two connected component.

Proof. Assume that Γ contains a $P_{n_{1}}$ as a connected component, by (11) some $l i$ is equal, without loss of generality, let $l_{1}=l_{2}=l_{4}=n_{1}$, then

$$
\begin{aligned}
& \varphi\left(H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right), \lambda\right) \\
& =\varphi\left(P_{l_{1}+l_{3}+1}, \lambda\right) \varphi\left(P_{l_{1}+l_{5}+1}, \lambda\right)-\varphi\left(P_{l_{1}+l_{3}+1}, \lambda\right) \varphi\left(P_{l_{1}-1}, \lambda\right) \varphi\left(P_{l_{5}}, \lambda\right) \\
& \quad-\varphi\left(P_{l_{1}-1}, \lambda\right) \varphi\left(P_{l_{3}}, \lambda\right) \varphi\left(P_{l_{1}+l_{5}+1}, \lambda\right)+\varphi\left(P_{l_{1}-2}, \lambda\right) \varphi\left(P_{l_{3}}, \lambda\right) \varphi\left(P_{l_{1}}, \lambda\right) \varphi\left(P_{l_{5}}, \lambda\right) \varphi\left(P_{l_{1}}, \lambda\right)
\end{aligned}
$$

If Γ contains a $P_{n_{2}}$ as a connected component, then $l_{3}=l_{5}$ and $l_{1}+l_{3}+1=l_{1}$, a contradiction.
Thus, if a graph $\Gamma\left(\Gamma \neq W_{n}\right)$ cospectral to an H-shape and have the same degree sequences as the H-shape, then Γ is one of the following graphs G_{3}, G_{4}, G_{5} (Fig.) uniting some even cycle, respectively, or it is an H-shape.

Lemma 3.9 If $H_{1}=H\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right)$ and $H=H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)$ are cospectral, then $H\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right) \cong H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)$
Proof. By (11) we have

$$
\begin{align*}
& \varphi(\left.H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right), t^{1 / 2}+t^{-1 / 2}\right) t^{n / 2}(t-1)^{5} \\
&=(t-1)^{2}\left(t^{l_{1}+1}-1\right)\left(t^{l_{2}+l_{3}+2}-1\right)\left(t^{l_{4}+l_{5}+2}-1\right)-t(t-1)\left(t^{l_{1}}-1\right)\left(t^{l_{2}+l_{3}+2}-1\right)\left(t^{l_{4}+1}-1\right) \tag{13}\\
&\left(t^{l_{5}+1}-1\right)-t(t-1)\left(t^{l_{1}}-1\right)\left(t^{l_{2}+1}-1\right)\left(t^{l_{3}+1}-1\right)\left(t^{l_{4}+l_{5}+2}-1\right)+t^{2}\left(t^{l_{1}-1}-1\right)\left(t^{l_{2}+1}-1\right)\left(t^{l_{3}+1}-1\right)\left(t^{l_{4}+1}-1\right)\left(t^{l_{5}+1}-1\right) \\
&= t^{\mathrm{n}+5}-4 t^{\mathrm{n}+4}+4 t^{\mathrm{n}+3}+t^{l_{1}+l_{2}+l_{3}+l_{4}+5}+t^{l_{1}+l_{2}+l_{3}+l_{5}+5}+t^{l_{1}+l_{2}+l_{4}+l_{5}+5}+t^{l_{1}+l_{3}+l_{4}+l_{5}+5}-2 t^{l_{1}+l_{2}+l_{3}+l_{4}+4} \\
&-2 t^{l_{1}+l_{2}+l_{3}+l_{5}+4}-2 t^{l_{1}+l_{2}+l_{4}+l_{5}+4}-2 t^{l_{1}+l_{3}+l_{4}+l_{5}+4}-t^{l_{2}+l_{3}+l_{4}+l_{5}+4}-t^{l_{1}+l_{2}+l_{3}+5}-t^{l_{1}+l_{4}+l_{5}+5}+2 t^{l_{1}+l_{2}+l_{3}+4} \\
&+2 t^{l_{1} l_{4}+l_{5}+4}+t^{l_{2}+l_{3}+l_{4}+4}+t^{l_{2}+l_{3}+l_{5}+4}+t^{l_{2}+l_{4}+l_{5}+4}+t_{3}^{l_{3}+l_{4}+l_{5}+4}+t^{l_{1}+l_{2}+l_{4}+3}+t^{l_{1}+l_{2}+l_{5}+3}+t_{1}^{l_{1}+l_{3}+l_{4}+3} \\
&+t^{l_{1}+l_{3}+l_{5}+3}-t^{l_{2}+l_{4}+4}-t^{l_{2}+l_{5}+4}-t^{l_{3}+l_{4}+4}-t^{l_{3}+l_{5}+4}-2 t^{l_{2}+l_{3}+3}-2 t^{l_{4}+l_{5}+3}-t^{l_{1}+l_{2}+3}-t^{l_{1}+l_{3}+3}-t^{l_{1}+l_{4}+3} \tag{14}\\
&-t^{l_{1}+l_{5}+3}+t^{l_{2}+l_{3}+2}+t^{l_{4}+l_{5}+2}+t^{l_{1}+3}+2 t^{l_{2}+3}+2 t^{l_{3}+3}+2 t^{l_{4}+3}+2 t^{l_{5}+3}-t^{l_{2}+2}-t^{l_{3}+2}-t^{l_{4}+2}-t^{l_{5}+2}-4 t^{2}+4 t-1 \\
&= \psi_{\mathrm{H}}(t),
\end{align*}
$$

where $l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+2=n$. By (14) we have

$$
\begin{aligned}
\varphi & \left(H\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right), t^{1 / 2}+t^{-1 / 2}\right) t^{n / 2}(t-1)^{5} \\
= & t^{n+5}-4 t^{n+4}+4 t^{n+3}+t^{m_{1}+m_{2}+m_{3}+m_{4}+5}+t^{m_{1}+m_{2}+m_{3}+m_{5}+5}+t^{m_{1}+m_{2}+m_{4}+m_{5}+5}+t^{m_{1}+m_{3}+m_{4}+m_{5}+5} \\
& -2 t^{m_{1}+m_{2}+m_{3}+m_{4}+4}-2 t^{m_{1}+m_{2}+m_{3}+m_{5}+4}-2 t^{m_{1}+m_{2}+m_{4}+m_{5}+4}-2 t^{m_{1}+m_{3}+m_{4}+m_{5}+4}-t^{m_{2}+m_{3}+m_{4}+m_{5}+4} \\
& -t^{m_{1}+m_{2}+m_{3}+5}-t^{m_{1}+m_{4}+m_{5}+5}+2 t^{m_{1}+m_{2}+m_{3}+4}+2 t^{m_{1}+m_{4}+m_{5}+4}+t^{m_{2}+m_{3}+m_{4}+4}+t^{m_{2}+m_{3}+m_{5}+4} \\
& +t^{m_{2}+m_{4}+m_{5}+4}+t^{m_{3}+m_{4}+m_{5}+4}+t^{m_{1}+m_{2}+m_{4}+3}+t^{m_{1}+m_{2}+m_{5}+3}+t^{m_{1}+m_{3}+m_{4}+3}+t^{m_{1}+m_{3}+m_{5}+3}-t^{m_{2}+m_{4}+4} \\
& -t^{m_{2}+m_{5}+4}-t^{m_{3}+m_{4}+4}-t^{m_{3}+m_{5}+4}-2 t^{m_{2}+m_{3}+3}-2 t^{m_{4}+m_{5}+3}-t^{m_{1}+m_{2}+3}-t^{m_{1}+m_{3}+3}-t^{m_{1}+m_{4}+3} \\
& -t^{m_{1}+m_{5}+3}+t^{m_{2}+m_{3}+2}+t^{m_{4}+m_{5}+2}+t^{m_{1}+3}+2 t^{m_{2}+3}+2 t^{m_{3}+3}+2 t^{m_{4}+3}+2 t^{m_{5}+3}-t^{m_{2}+2}-t^{m_{3}+2} \\
& -t^{m_{4}+2}-t^{m_{5}+2}-4 t^{2}+4 t-1 \\
= & \psi_{H 1}(t)
\end{aligned}
$$

Let $H_{1}(t)=H(t)$, without loss of generality, we assume that $l_{2} \geq l_{3} \geq l_{4} \geq l_{5}$ and $m_{2} \geq m_{3} \geq m_{4} \geq m_{5}$. Comparing the $4^{\text {th }}$ lowest term of $H(t)$ and $H_{1}(t)$, we get $m_{5}=l_{5}$. Similarly, we comparing the $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ lowest term of $H(t)$ and $H_{1}(t)$, respectively, we get $m_{4}=l_{4}, m_{3}=l_{3}$ and $m_{2}=l_{2}$. By
$m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+2=l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+2=n$, we get $m_{1}=l_{1}$, thus $H\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right) \cong H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right)$.

Lemma 3.10 Let G_{5} be a graph in Figure, then G_{5} and H-shape are not cospectral.
Proof. Let $G_{5}-u-v=P_{m_{1}} \cup P_{m_{2}} \cup P_{m_{3}} \cup P_{m_{4}} \cup P_{m_{5}-1}=1 \quad\left(m_{i} \geq 1, i=1,2,3,4 . m_{5} \geq 4\right)$, that is
$m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+1=n$. Denote the first component by $G_{5,1}$ and the second component by $G_{5,2}$. By Lemma 2.1 and Lemma 2.3 we have

$$
\begin{aligned}
& \varphi\left(G_{5,1}, \lambda\right)=\varphi\left(C_{m_{5}}, \lambda\right) \varphi\left(P_{m_{4}}, \lambda\right)-\varphi\left(P_{m_{5}-1}, \lambda\right) \varphi\left(P_{m_{4}-1}, \lambda\right) \\
& \varphi\left(G_{5,1}, t^{1 / 2}+t^{-1 / 2}\right) \\
& =t^{-m_{5} / 2}\left(t^{m_{5} / 2}-1\right)^{2} \frac{t^{-m_{4} / 2}}{t-1}\left(t^{m_{4}+1}-1\right)-\frac{t^{-\left(m_{4}-1\right) / 2}}{t-1}\left(t^{m_{4}}-1\right) \frac{t^{-\left(m_{5}-1\right) / 2}}{t-1}\left(t^{m_{5}}-1\right) \\
& =\frac{t^{-\left(m_{4}+m_{5}\right) / 2}}{(t-1)^{2}}\left[(t-1)\left(t^{m_{5} / 2}-1\right)^{2}\left(t^{m_{4}+1}-1\right)-t\left(t^{m_{4}}-1\right)\left(t^{m_{5}}-1\right)\right], \\
& \varphi\left(G_{5,2}, \lambda\right)=\varphi\left(P_{m_{1}}, \lambda\right) \varphi\left(P_{m_{2}+m_{3}+1}, \lambda\right)-\varphi\left(P_{m_{1}-1}, \lambda\right)\left(P_{m_{2}}, \lambda\right)\left(P_{m_{3}}, \lambda\right) \\
& \varphi\left(G_{5,2}, t^{1 / 2}+t^{-1 / 2}\right) \\
& =\frac{t^{-m_{1} / 2}}{t-1}\left(t^{m_{1}+1}-1\right) \frac{t^{-\left(m_{2}+m_{3}+1\right) / 2}}{t-1}\left(t^{m_{2}+m_{3}+2}-1\right)-\frac{t^{-\left(m_{1}-1\right) / 2}}{t-1}\left(t^{m_{1}}-1\right) \frac{t^{-m_{2} / 2}}{t-1}\left(t^{m_{2}+1}-1\right) \frac{t^{-m_{3} / 2}}{t-1}\left(t^{m_{3}+1}-1\right) \\
& =\frac{t^{-\left(m_{1}+m_{2}+m_{3}+1\right) / 2}}{(t-1)^{2}}\left[\left(t^{m_{1}+1}-1\right)\left(t^{m_{2}+m_{3}+2}-1\right)-t\left(t^{m_{1}}-1\right)\left(t^{m_{2}+1}-1\right)\left(t^{m_{3}+1}-1\right)\right] .
\end{aligned}
$$

By Lemma 2.1 (a) we have

$$
\begin{align*}
& \varphi\left(G_{5}, t^{1 / 2}+t^{-1 / 2}\right) t^{n / 2}(t-1)^{5} \\
& =\left[(t-1)\left(t^{m_{5} / 2}-1\right)^{2}\left(t^{m_{4}+1}-1\right)-t\left(t^{m_{4}}-1\right)\left(t^{m_{5}}-1\right)\right] \times\left[\left(t^{m_{1}+1}-1\right)\left(t^{m_{2}+m_{3}+2}-1\right)-t\left(t^{m_{1}}-1\right)\left(t^{m_{2}+1}-1\right)\left(t^{m_{3}+1}-1\right)\right] \\
& =: \psi_{G 5}(t) \tag{15}
\end{align*}
$$

Comparing (14) and (15), since $\psi_{H}(0)=-1$ for any $l_{i}(i=1,2, \cdots, 5)$ and $\psi_{G 5}(0)=1$ for any $m_{i}(i=1,2, \cdots, 5)$, hence $\psi_{H}(t) \neq \psi_{G 5}(t) . G_{5}$ and H-shape are not cospectral.
Remark. If G_{5} uniting some $C_{n_{i}}$, without loss of generality, let $G_{5,1}=G_{5} \cup C_{n-n_{1}}$, where $m_{1}+m_{2}+m_{3}+m_{4}$ $+m_{5}+1=n_{1}$. Since $\varphi\left(C_{n-n_{1}} t^{1 / 2}+t^{-1 / 2}\right)=t^{-\left(n-n_{1}\right) / 2}\left(t^{\left(n-n_{1}\right) / 2}-1\right)^{2}$, we have $\psi_{G 5,1}(t)=\psi_{G 5}(t) \quad\left(t^{\left(n-n_{1}\right) / 2}-1\right)^{2}$, $\psi_{G 5,1}(0)=\psi_{G 5}(0)=1, \psi_{H}(t) \neq \psi_{G 5,1}(t)$. Thus, $G_{5,1}$ and H-shape are not cospectral.

Theorem 3.11 Let $H=H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right) \quad\left(l_{1} \geq 0, l_{i} \geq 1, i=2,3,4,5\right)$, if a graph $\Gamma\left(\Gamma \neq W_{\mathrm{n}}\right)$ cospectral to an H-shape, then either Γ is U (Definition 1) uniting some even cycles $C_{n_{i}}\left(n_{i} \geq 6\right)$, denoted by U^{\prime}, and U^{\prime}, H satisfying one of the following conditions.

1) There are one 6-cycle in U^{\prime} and $l_{1} \geq 1, l_{2}, l_{3}, l_{4}, l_{5} \geq 2$.
2) There are one 6-cycle in U^{\prime} and $l_{1}=0$, have 1 element is 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$.
3) No 6 -cycle in U^{\prime} and $l_{1} \geq 1$, have 2 elements are 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$.
4) No 6-cycle in U^{\prime} and $l_{1}=0$, have 3 elements are 1 in $\left\{l_{2}, l_{3}, l_{4}, l_{5}\right\}$, or Γ is the graph G_{3} and G_{4} in Figure uniting some even cycles $C_{n_{i}}\left(n_{i} \geq 6\right)$, respectively.

Proof. This result is contained from Lemma 3.2 up to Lemma 3.10.

Funding

This work is supported by the Natural Science Foundation of Qinghai Province (Grant No. 2011-Z-911).

References

[1] Cvetkovi'c, D., Doob, M. and Sachs, H. (1980) Spectra of Graphs-Theory and Application. Academic Press, New York.
[2] van Dam, E.R. and Haemers, W.H. (2003) Which Graph Are Determined by Their Spectrum? Linear Algebra and Its Applications, 373, 241-272. http://dx.doi.org/10.1016/S0024-3795(03)00483-X
[3] Doob, M. and Haemers, W.H. (2002) The Complement of the Path Is Determined by Its Spectrum. Linear Algebra and Its Applications, 356, 57-65. http://dx.doi.org/10.1016/S0024-3795(02)00323-3
[4] Noy, M. (2003) Graphs Determined by Polynomial Invariants. Theoretical Computer Science, 307, 365-384.
[5] Smith, J.H. (1970) Some Propertice of the Spectrum of Graph. In: Guy, R., et al., Eds., Combinatorial Structure and Their Applications, Gordon and Breach, New York, 403-406.
[6] Wang, W. and Xu, C.-X. (2006) On the Spactral Characterization of T-Shape Trees. Linear Algebra and Its Applications, 414, 492-501. http://dx.doi.org/10.1016/j.laa.2005.10.031
[7] Schwenk, A.J. (1973) Almost All Trees Are Cospectral. In: Harary, F., Ed., New Directions in the Theory of Graphs, Academic Press, New York, 275-307.
[8] Godsil, C.D. (1993) Algebraic Combinatorics. Chapman \& Hall, New York.
[9] Sachs, H. (1964) Beziehungen zwischen den in einem graphen enthaltenen kreisenund seinem charakteristischen polynom. Publicationes Mathematicae, 11, 119-134.
[10] Omidi, G.R. and Tajbakhsh, K. (2007) Starlike Trees Are Determined by Their Laplacian Spectrum. Linear Algebra and Its Applications, 422, 654-658. http://dx.doi.org/10.1016/j.laa.2006.11.028

[^0]: How to cite this paper: Hu, S.B. (2014) On the Spectral Characterization of H-Shape Trees. Advances in Linear Algebra \& Matrix Theory, 4, 79-86. http://dx.doi.org/10.4236/alamt.2014.42005

