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Abstract

A graph G is said to be determined by its spectrum if any graph having the same spectrum as G is
isomorphic to G. An H-shape is a tree with exactly two of its vertices having maximal degree 3. In
this paper, a formula of counting the number of closed 6-walks is given on a graph, and some ne-
cessary conditions of a graph I' cospectral to an H-shape are given.

Keywords

Spectra of Graphs, Cospectral Graphs, Spectra Radius, H-Shape Trees, Determined by Its Spectrum

1. Introduction

Let G=(V,E) be a simple undirected graph with vertex set V ={v;,v,,---,v,} and edge set E. Let A(G)
be the adjacency matrix of G. Since A G) is a real symmetric matrix, its eigenvalues must be real, and may be
ordered as 4 (G) 21, (G) 22 A (Gg . The sequence of n eigenvalues is called the spectrum of G, the largest
eigenvalue 4 (G) is often called the spectral radius of G. The characteristic polynomial of A(G) is called
the characteristic polynomial of the graph G and is denoted by go(G,/l) .

Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by its spetrum
(DS for short) if for any graph H, ¢(H,1)=¢(G,1) implies that H is isomorphic to G.

Determining what kinds of graphs are DS is an old problem, yet far from resolved, in the theory of graph
spectra. Numerous examples of cospectral but non-isomorphic graphs are reported in literature [1]. However,
there are few results known about DS graphs. For the background and some recent surveys of the known results
about this problem and related topics, we refer the reader to [2]-[6] and references therein.

Because the kind of problems above are generally very hard to deal with, some more modest ones suggested
by van Dam and Haemers [2], say, “Which trees are DS?”, this problem is also very hard to deal with, because
we know a famous result of Schwenk [7], which says that almost all trees have non-isomorphic cospectral

How to cite this paper: Hu, S.B. (2014) On the Spectral Characterization of H-Shape Trees. Advances in Linear Algebra &
Matrix Theory, 4, 79-86. http://dx.doi.org/10.4236/alamt.2014.42005



http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2014.42005
http://dx.doi.org/10.4236/alamt.2014.42005
http://www.scirp.org/
mailto:shengbiaohu@aliyun.com
http://creativecommons.org/licenses/by/4.0/

S.B.Hu

mates.
A T-shape T(Il,lz,l3) is a tree with exactly one of its vertices having maximal degree 3 such that

Tl 1, l)-v= p, Up, Up,, where p, isthepathon I, (i=1,2,3) vertices, and v is the vertex of degree 3.
More recently, Wang proved that T-shape tree T(Il,IZ,IS) is DS; Wang and Xu [6] proved that T-shape tree
T(L,1L L)1, <1, <ly) isDSiff (I,,1,,1;)=(1,1,21-2) for any positive integer 1>2.

An H-shape is a tree with exactly two of its vertices having maximal degree 3. We denote by
H (L1, 15,1,.06)(1, > 0,1, 1,i =2,3,4,5) is an H-shape tree such that
H(l, 1,00, )—u=v=p, Up Up, Up, Up, . and H(l,l11,l)-u=T(,l,l),
H (1,150,105 )=v=T(l,1,,15)U p, Up, , where u and v are the vertices of degree 3.

In this paper, we give a formula of counting the number of closed 6-walks on a graph, and give some neces-
sary conditions of a graph I' cospectral to an H-shape.

2. Some Lemmas

In the section, we will present some lemmas which are required in the proof of the main result.
Lemma 2.1 [8] The characteristic polynomial of a graph satisfies the following identities:

1) ¢(G,UG,,2)=9(G,2)p(G,, 1),

2) ¢(G,2)=p(G-e,2)-p(G-VV,,4) ife=vy,isacut-edge of G.
where G—e denotes the graph obtained from G by deleting the edge e and G -v,v, denotes the graph ob-
tained from G by deleting the vertices v;, v, and the edges incident to it.

Lemma 2.2 [1] Let C,,, P, denote the cycle and the path on n vertices respectively. Then

¢(C,. 1) :]1[[/1—20052—:]) =2cos(narccos 4/2)—2

j=1
n

(/J(Pn,/l):]_[(l—Zcos il j:

i1 n+1

sin((n+1)arccos 1/2)
sin(arccos 4/2)

Let A=2cos@, set t*2=e" we get A=t">+t¥? itis can be write the characteristic polynomial of C,,
P, in the following form [6]:

gD(Cn,tl/z +t71/2) V2 2 g g2 (tn/z _ 1)2 )

p(P 12+t =t (t”“—l)/(t—l) )

Lemma 2.3 [4] [9] Let ¢)(G, x) = Zaixl”’i be the characteristic polynomial of graph G with n vertices, then
i=0
the coefficient of A" is
8, = X (1) 2] ©)
e

where ay = 1 and the sum is over all subgraphs y of G consisting of disjoint edges and cycles, and having i ver-
tices. If y is such a subgraph then comp(y) is the number of components in it and cyc(y) is the number of cycles.

Lemma 2.4 [2] [10] Let G be a graph. For the adjacency matrix, the following can be obtained from the spec-
trum.

1) The number of vertices.

2) The number of edges.

3) Whether G is regular.

4) Whether G is regular with any fixed girth.

5) The number of closed walk of any length.

6) Whether G is bipartite.
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3. Main Results

The total number of closed k-walks in a graph G, denoted by |w, (G)|.
Lemma 3.1 ([6] p. 657) Let G be a graph with e edges, x; vertices of degree i, and y 4-cycles. Then

|W4(G)|=2e+42[;jxi +8y )

Lemma 3.2 Let 7" be a graph with n vertices. If I" cospectral to an H-shape and 7" # W,, then

1) I" have the same degree sequences as the H-shape tree or I” have the degree sequences (3,2,2,--,2,1,0).

2) I" contains no 4-cycles.

Proof. Let I"be a graph with e edges, x; vertices of degree i, and y 4-cycles. By lemma 2.4 we known that cos-
pectral graphs have the same number of edges and closed 4-walks, respectively. Since 7" is cospectral to an
H-shape tree, hence by (4) we have

2e+4zi:[i2jxi +8y=6n-2
namely
Z(izjx‘”yznzgx‘ ©
Since
2 (1=1)% = 2% = % = (28— )=(n—x =) = 26—+ X, =n =2+ X, (6)
from (5), we have

S 2y -n-gi-n-2-x 0

i>2 i>2
the (7) implytoy=1or0.
Case 1.y = 1. by (7) we get xo = 0 and x,=x,=---=0, by (5) we get x,=n-2 and x; = 2, then
r=c,up_,.
We known that “the spectrum of graph W, is the union of the spectra of the circuit C, and the path P,_4” [1],
that is
(D(Wn’j’) = (P(Ca uc,u Pn_4,l)

Case 2.y =0. By (7) we have x,< 2.

If X =0, then x,=2,X, =% =---=0, by (5) we get x, =n—6 and x,= 4. Thus I" have the same degree se-
quences as the H-shape tree.

Ifxo=1,then x,=1X, =X =--=0,X,=n—3 and x; = 1. The degree sequences of T'is (3,2,2,--+,2,1,0).

Ifxo=2,then x,=%,=---=0,X=n, |V (T') = n+2, acontradiction.

Lemma 3.3 Let G be a graph with e edges, x; vertices of degree i, and z 6-cycles. Then
i
|w, (G)| = 2e +122(2jxi +6p, +12k, , +122 (8)

where p, is the number of induced paths of length three and k; 3 is the number of induced star K 3.

Proof. A close walk of length 6 can be produced from in the following five classes graphs, they are P,, Ps, Py,
Kyzand Cg. For an edge and a 6-cycle, it is easy to see that the number of close 6-walks equals 2 and 12, respec-
tively. For a Ps, the number of close 6-walks of a 1-degree vertex is 3 and the number of close 6-walks of the

2-degree vertex is 6, since the number of induced paths of length two is Z'{IZJ X; , hence for all induced paths

P, the number of close 6-walks is 122{ in . For a P4, since the number of close 6-walks of a 1-degree ver-

i
2
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tex is 1 and the number of close 6-walks of a 2-degree vertex is 2, hence for all induced paths P,, the number of
close 6-walks is 6p,4. Similarly, for a Ky 3 the number of close 6-walks of a 1-degree vertex is 2 and the number
of close 6-walks of the 3-degree vertex is 6, thus for all induced stars K 3, the number of close 6-walks is 12k; 3.
0

Corollary 3.4 Let H =H(l,,1,,1,,1,,1;), then

(1) 20n+28-6k (I, >1 and have k elements are 1in {l,,1;,1,.1;})
W, =

° 20n+34 -6k (I, =0 and have k elements are 1in {l,,l;,1,,1})
where 0<k<4.

Proof. Case 1. |; >1.
1) Ifk=0, thatis I, >2(i=2,3,4,5), then

[ws (H)|=2(n=1)+12[ (n=6)+3x2]+6[ (I, +1; —2)+(I, +l; —=2)+(}, -1) +8]+12x2 = 20n + 28

©)

where (I, +1,-2),(l, +1,—2) and (l,-1) are the number of induced paths P4 in p, ., 1. P, and P, 5,
respectively. The 8(= 4 + 4) is the number of induced paths of through a 3-degree vertex u (or v). If P, is such a
induced path, then u is an internal vertex in the P, and have at least a vertex in the p,  (or p,) ).

2) If k#0, then

s (H)|=2(n-1)+12[ (n—6)+3x2]+6[ (I, +15—2)+ (I, +ls = 2) + (I}, ~1)+ (8- k) | +12x 2 = 20n + 28— 6k
Case 2.1, =0.
1) Ifk #0, then
s (H)|=2(n-1)+12[(n—6)+3x2]+6[ (I, +1;—2)+(I, +15 —2)+8]+12x2 = 20n +34.
2) Ik =0, similarly, we have |w; (H)| =20n+34—6k . [
Example 1. Let H, =H(0,1,1,11), by (9) we have
|ws (H, )| = 20xn+34 -6k =20x6+34—6x4 =130,

if we give to a suitable label for the Hy, by a simple calculation we can get the diagonal matrix of AG(Hl), that
is

diag(A® (H,)) =[11,11,43,43,11,11]

clearly, the sum of the elements in the diagonal matrix equals 4 x 11 + 2 x 43 = 130.
Example 2. Let H, =H(2,2,2,2,2), by (9) we have |w,(H,) =20x12+ 28 =268, similarly, if we give to
a suitable label for the H,, then we can get the diagonal matrix of A° (Hz), that is

diag(A° (H,)) =[6.6,6,6,22,22,22,22,29,29,49,49]

clearly, the sum of the elements in the diagonal matrix equals 4 x 6 + 4 x 22 + 2 x 29 + 2 x 49 = 268.
Lemma 3.5 Let 7" be a graph with n vertices, e edges, x; vertices of degree i, and z 6-cycles. If I" cospectral to
H(l,1,.15,1,.15) and I"# W, then
i—1 n+9-k—-2x,(l, >1 and have k elements are 1 in {l,,1,,1,,1
o R ol
2

(10)
i2 nN+10—k —2x, (I, =0 and have k elements are 1 in {I,,1;,1,.15})

where k(0<k<4) is the number of elements of equals 1 in {l,,1,,1,,1;} and p, is the number of induced
paths of length three and k; 5 is the number of induced star Ky 3 in I".
Proof. If I, > 1, by Lemma 3.3 we have

i i
2e+122(2j X +6p, +12k, ; +122 = 20n + 28— 6k, 22(2) X + Py + 2K 3 +22 =3n+5-Kk,
i i

i—-1
22(' , ]Xi + P, +2K 3 +22=3n+5-2> (I-1)x, =3n+5-k-2(n—2+X,) =n+9—k —2x,.

i>2 i>2
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Similarly, when I; = 0 the (10) hold. O

Definition 1. Let U be a graph obtained from a cycle Cy(g is even and 6 < g <n; — 2) and a path Py such
that identifying an end vertex in the path and any one vertex in the cycle, and uniting an isolated vertex K.

If a graph have the degree sequences (3, 2,2,--+,2,1, 0) , then the graph is U uniting some cycle.

Lemma 3.6 Let U’ be a graph with degree sequences (3,2,2,---,2,1,0). If U’ cospectral to an H-shape, then
U’ and H satisfying one of the following conditions.

1) There are one 6-cycle in U’ and 1, > 1, I, I3, I, Is > 2.

2) There are one 6-cycle in U’ and I; = 0, have an element is 1 in {l,,1,,1,,1;} .

3) No 6-cycle in U’ and I; > 1, have two elements are 1in {I,,1;,1,,15} .
4) No 6-cycle in U’ and I, = 0, have three elements are 1 in {l,,1;,1,,1;} .

Proof. Without loss of generality, Let U'=U UC , where n, (2 ) iseven and ny + n, = n. Let U’ have e
edges, x; vertices of degree i, and z 6-cycles.

Case 1. |; > 1. By Lemma 3.5 we have 2x1+[g+(n—g—3)+4+n, |+2x1+22=n+9-k-2,22 =2k,
getk=0,z=1ork=2,z=0.

Case 2.1, =0, we have 2x1+[g+(n —g—3)+4 +n, |+2x1+22=n+10-k-2, 22=3-k, getk=1,2=
lork=3,z=0.0
Lemma 3.7 Let 1=tY*+t™2, then

o(H (111, 1,,1) 2 +177)

(tt‘"l) [(t 1)2 (t'1+1 _1)(t|2+|3+2 _1)(tl4+I5+2 _1)_,[(,[ _1)(tll _1)(t|2+|3+2 —1)('['“+1 _1)(tls+l _1) (11)

—t(t=1)(t —1) (1ot 1) (15— (t 5~ (10 1) (1o -1 (0 )t 1) (e —1)}
Proof. By Lemma 2.1 (b) and Lemma 2.2 we have
o (H (I 115,15, 15), /1)
=0(RonA)o(T 2)=0(R,.2)o (R, 2) (T (h-11,.L:).2)
(|2+|3+M)¢( ) (|4+|5M) 2 (P 2)0(Ron2)o (R, 2)o(R, 2)
~0(Ra2)o(R,12)0 (R, 4)0 (R ) +0(R22)0 (R, 2) 0 (R, 2) 0 (R, )0 (R 4)

(H (| Ly ) V7 472
(t 1) [(t 1) ( thet _1)<t|2+|3+2 —1)(t'4*'5+2 —1)—t(t —1)(t'1 —1)<t'2*'3*2 —1)(t'4*1 —l)(t'S“ _1) .
—t(t —1)<t'1 —1)(t'2” _1) (t'3+1 —1)(t"‘*'5+2 —1)+t2 (tll—l —1)(t'2*1 _1) (t'3+1 —1)(t'4*1 —1>(t'5+1 _1)J

If a graph has the same degree sequences as the H-shape, then 7" is one of the following graphs G, G,, Gz, Gy,
Gs in figure or it is an H-shape.

OO 6 O O (O
Gl G, G3 G4 1 V<

Gs

(12)

Lemma 3.8 If I"is cospectral to an H-shape tree, then /" contains no P, UR, (n,,n, <n) as two connected
component.

Proof. Assume that I contains a P, as a connected component, by (11) some li is equal, without loss of gene-

rality, let I, = I, =1, = ny, then
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o(H (1 0.0,.15),2)
=0(R4) 2P ar )~ 2 (R )R 1 A) 0 (P, 2)

~o(R 1. 4)9(R,.4)2(Pas2)+ (R 2 A)0(R, A)e(R. 2) 0 (R, 2)0(R,. 4)

If I" contains a PnZ as a connected component, then I; = Is and I, + I3 + 1 = I;, a contradiction. [

Thus, if a graph F(F ;th) cospectral to an H-shape and have the same degree sequences as the H-shape,
then I" is one of the following graphs Gs, G4, Gs (Fig.) uniting some even cycle, respectively, or it is an H-shape.

Lemma39If H, =H(m,m, m,m,m) and H=H(l,,l,1,15) arecospectral, then
H(m,m,,my,m, mg)=H(l,1,11,1)
Proof. By (11) we have

o(H (I 11,0, 1) 27+ V202 (£-2)°
_ (t _1)2 (t'“l _1)(tlz+l3+2 _1)(t|4+|5+2 —l)—t(t _1)(t|1 _1)<t|2+|3+2 —1)(t'4+1 _1)
(t|5+1 —l)—t(t —1)(t|1 _1)(t|2+1 —l) (tl3+1 _l)(t|4+|5+2 —l)+t2 (tll—l _1)(t|2+1 _1)(tl3+1 _1)(tl4+1 —l) (t|5+1 _1)

_ tn+5 _4tn+4 +4tn+3 +tI1+I2+I3+I4+5 +tI1+I2+I3+I5+5 +tl1+lz+l4+I5+5 +tl1+l3+l4+I5+5 _2tll+lz+l3+l4+4

(13)

L +ly +l3+1s +4 L +ly +lg +15+4 L +l3+1+1lc+4 Iy +l3+1g +15+4 ly+ly +l3+5 L +1g +I5+5 L +ly+l3+4
—Qtitiatietlsth _ othtiatlatlsta _ othtlatlatlstA _thatlatlatls e _phthatiste _htlatlsty | oththth
+2tI1+IA+I5+4+tlz+l3+l4+4+tI2+I3+I5+4+tI2+I4+I5+4+t|3+l4+I5+4+tI1+I2+I4+3+tI1+I2+I5+3+tI1+I3+I4+3 ( )
14
+t|1+|3+|5+3 _tI2+I4+4 _tI2+I5+4 _tl3+l4+4 _tl3+l5+4 _ 2tI2+I3+3 _ 2tl4+l5+3 _tI1+I2+3 _tI1+I3+3 _tI1+I4+3
_tI1+I5+3 +tI2+I3+2 +tl4+I5+2 +tI1+3 +2tl2+3 + 2tl3+3 + Ztl4+3 +2tl5+3 _tI2+2 _tl3+2 _tl4+2 _tl5+2 —4t2 +4t -1
=y (1),
where | +1, +1,+1, +1. +2=n. By (14) we have
_ 5
o (H (m,m,, my,m,,mg )tV +t¥2)t72 (t-1)
:tn+5_4tn+4+4tn+3+tml+m2+m3+m4+5+tml+m2+m3+m5+5+tm1+mz+m4+m5+5+tml+m3+m4+m5+5
_ 2tml+m2+m3+m4+4 _ 2tml+m2+m3+m5+4 _ 2tn11+m2+m4+m5+4 _ 2tml+m3+m4+m5+4 _tm2+m3+m4+m5+4
_tm1+m2+m3+5_tn}l+m4+m5+5+2tml+m2+m3+4+2tml+m4+m5+4+tm2+m3+m4+4+tm2+m3+m5+4
+tm2+m4+m5+4+tm3+m4+m5+4+tml+m2+m4+3+tm1+m2+m5+3+tml+m3+m4+3+tml+m3+m5+3_tm2+m4+4
_tm2+m5+4 _tm3+m4+4 _tm3+m5+4 _2tm2+m3+3 _2tm4+m5+3 _trnl+m2+3 _t”h+m3+3 _tnll+m4+3
_tn11+m5+3+tm2+m3+2+tm4+m5+2+tm1+3+2tm2+3+2tm3+3+2tm4+3+2tm5+3_tm2+2 _tm3+2
—tMr g2 4t 4t -1
=¥ (t)

Let Hl(t) =H (t), without loss of generality, we assume that I, > I > 1, > Is and m, > mg > m, > ms. Com-
paring the 4™ lowest term of H(t) and H,(t), we get ms = ls. Similarly, we comparing the 5%, 6" and 7"
lowest term of H (t) and H,(t), respectively, we get m, = I, m3= Iy and m, = I,. By
m+m,+my+m,+m;+2=1L -+, +l,+1,+l; +2=n, we get m; = I;, thus
H(m,m,,mym,,mg)=H(I,1,,1,1,.15). O

Lemma 3.10 Let Gs be a graph in Figure, then G5 and H-shape are not cospectral.

Proof. Let G,-u-v=PR, UR, UP, UP, UPR, ;=1 (m >1i=1234m, >4), thatis
m, +m, +m; +m, +m, +1=n. Denote the first component by Gs,and the second component by Gs,. By Lem-

ma 2.1 and Lemma 2.3 we have



S.B.Hu

¢(G5vl’i):(p(cms’l) (P ﬂ“) (mS*l’/i)(o(Pmrl’ﬂ’)

¢(Gg 1V +177)

~ M2 o t*(mrl)/z N t 5-1)/2
=t (t "‘5/2—1)2 = —(t™ -1)- = (t™ -1) = (™ -1)
e (e e )]

¢(G5~2”1): (P }“) (m2+m3+1’/1)_¢(Pmr1’/1)(sz’/1)<Pm3’ﬂ')

q)(GS’Z,tJ/Z +t’”2)

t—ml/z (tmﬁl 1) t—(m2+m3+1)/2

R T S
t—(ml+m2+m3+l)/2

_ (t _1)2 |:(tm1+l _1)<tm2+m3+2 —l)—t(tml _1)<tm2+1 _1)(tm3+l _1)j|

By Lemma 2.1 (a) we have
9(Gq 12 + V)2 (t-1)°

- [(t—l)(tmf’/z 1) (et )t (1 1) (e —1)}[(@” 1) (e 1) (™ 1) (17 1) (1 1)

=es (1)

o _1)£(tmz+1_1)ﬁ

(1) t—1 t—1 t—1

(t mg+1 _1)

(15)
Comparing (14) and (15), since y, (0)=-1 forany I (i=12,--,5) and g, (0)=1 forany
m,(i=12,---,5), hence w, (t)#wes(t). Gsand H-shape are not cospectral.

Remark. If Gs uniting some Cn_ , without loss of generality, let Gg, =G Uc where m; + my + mg + My

n-n 1
+ms + 1= n Since p(C, 17+t = (/2 (t(”‘”l)/z—l)z, we have g, (t)=wes(t) (t(”‘”l)/z—l)z,

Wes1(0)=wgs(0)=1, w, (t)#wes, (t). Thus, G, and H-shape are not cospectral. [

Theorem 3.11 Let H =H(I,,1,.1,,1,,15) (1, >0,l, >1,i=2,3,4,5), if a graph I" (I" # W,) cospectral to an
H-shape, then either /" is U (Definition 1) uniting some even cycles C, (n; > 6), denoted by U’, and U’, H sa-
tisfying one of the following conditions.

1) There are one 6-cycle in U"and ;> 1, I, I3, I, Is > 2.

2) There are one 6-cycle in U’ and I; = 0, have 1 element is 1 in {Iz, } .

3) No 6-cycle in U’ and |, > 1, have 2 elements are Lin {l,,1,1,,15} .

4) No 6-cycle in U and I, = 0, have 3 elements are 1 in {l,,1;,1,,1;}, or I" is the graph G; and G, in Figure
uniting some even cycles C, (ni > 6), respectively.

Proof. This result is contained from Lemma 3.2 up to Lemma 3.10. [
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