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Abstract 
A graph G is said to be determined by its spectrum if any graph having the same spectrum as G is 
isomorphic to G. An H-shape is a tree with exactly two of its vertices having maximal degree 3. In 
this paper, a formula of counting the number of closed 6-walks is given on a graph, and some ne- 
cessary conditions of a graph Γ cospectral to an H-shape are given. 
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1. Introduction 
Let ( ),G V E=  be a simple undirected graph with vertex set { }1 2, , , nV v v v=   and edge set E. Let ( )A G  
be the adjacency matrix of G. Since ( )A G  is a real symmetric matrix, its eigenvalues must be real, and may be 
ordered as ( ) ( ) ( )1 2 nG G Gλ λ λ≥ ≥ ≥ . The sequence of n eigenvalues is called the spectrum of G, the largest 
eigenvalue ( )1 Gλ  is often called the spectral radius of G. The characteristic polynomial of ( )A G  is called 
the characteristic polynomial of the graph G and is denoted by ( ),Gϕ λ . 

Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by its spetrum 
(DS for short) if for any graph H, ( ) ( ), ,H Gϕ λ ϕ λ=  implies that H is isomorphic to G.  

Determining what kinds of graphs are DS is an old problem, yet far from resolved, in the theory of graph 
spectra. Numerous examples of cospectral but non-isomorphic graphs are reported in literature [1]. However, 
there are few results known about DS graphs. For the background and some recent surveys of the known results 
about this problem and related topics, we refer the reader to [2]-[6] and references therein. 

Because the kind of problems above are generally very hard to deal with, some more modest ones suggested 
by van Dam and Haemers [2], say, “Which trees are DS?”, this problem is also very hard to deal with, because 
we know a famous result of Schwenk [7], which says that almost all trees have non-isomorphic cospectral 
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mates. 
A T-shape ( )1 2 3, ,T l l l  is a tree with exactly one of its vertices having maximal degree 3 such that 

( )
1 2 31 2 3, , l l lT l l l v p p p− =   , where 

il
p

 
is the path on ( )1, 2,3il i =  vertices, and v is the vertex of degree 3. 

More recently, Wang proved that T-shape tree ( )1 2 3, ,T l l l  is DS; Wang and Xu [6] proved that T-shape tree 

( )( )1 2 3 1 2 3, ,T l l l l l l≤ ≤  is DS iff ( ) ( )1 2 3, , , , 2 2l l l l l l≠ −  for any positive integer 2l ≥ . 
An H-shape is a tree with exactly two of its vertices having maximal degree 3. We denote by 
( )( )1 2 3 4 5 1, , , , 0, 1, 2,3, 4,5iH l l l l l l l i≥ ≥ =  is an H-shape tree such that  

( )
1 2 3 4 51 2 3 4 5, , , , l l l l lH l l l l l u v p p p p p− − =     , and ( ) ( )1 2 3 4 5 1 4 5, , , , , , ,H l l l l l u T l l l− =   

( ) ( )
4 51 2 3 4 5 1 2 3, , , , , , l lH l l l l l v T l l l p p− =   , where u and v are the vertices of degree 3. 

In this paper, we give a formula of counting the number of closed 6-walks on a graph, and give some neces- 
sary conditions of a graph Γ cospectral to an H-shape. 

2. Some Lemmas 
In the section, we will present some lemmas which are required in the proof of the main result. 

Lemma 2.1 [8] The characteristic polynomial of a graph satisfies the following identities: 
1) ( ) ( ) ( )1 2 1 2, , ,G G G Gϕ λ ϕ λ ϕ λ= , 

2) ( ) ( ) ( )1 2, , ,G G e G v vϕ λ ϕ λ ϕ λ= − − −  if e = v1v2 is a cut-edge of G. 
where G e−  denotes the graph obtained from G by deleting the edge e and 1 2G v v−  denotes the graph ob- 
tained from G by deleting the vertices v1, v2 and the edges incident to it. 

Lemma 2.2 [1] Let Cn, Pn denote the cycle and the path on n vertices respectively. Then 

( ) ( )
1

2π, 2cos 2cos arccos 2 2
n

n
j

jC n
n

ϕ λ λ λ
=

 = − = − 
 

∏  

( )
( )( )
( )1

sin 1 arccos 2π, 2cos
1 sin arccos 2

n

n
j

njP
n

λ
ϕ λ λ

λ=

+ = − = + 
∏  

Let 2cosλ θ= , set 1 2 iet θ= , we get 1 2 1 2t tλ −= + , it is can be write the characteristic polynomial of Cn, 
Pn in the following form [6]: 

( ) ( )21 2 1/2 2 2 2 2,   2  1n n n n
nC t t t t t tϕ − − −+ = + − = −                       (1) 

( ) ( ) ( )1 2 1 2 2 1, 1 1n n
nP t t t t tϕ − − ++ = − −                            (2) 

Lemma 2.3 [4] [9] Let ( )
0

,
n

n i
i

i
G x aϕ λ −

=

= ∑  be the characteristic polynomial of graph G with n vertices, then 

the coefficient of λn−i is 

( ) ( ) ( )1 2comp cyc
ia γ γ

γ
= −∑                                 (3) 

where a0 = 1 and the sum is over all subgraphs γ of G consisting of disjoint edges and cycles, and having i ver- 
tices. If γ is such a subgraph then comp(γ) is the number of components in it and cyc(γ) is the number of cycles. 

Lemma 2.4 [2] [10] Let G be a graph. For the adjacency matrix, the following can be obtained from the spec- 
trum. 

1) The number of vertices. 
2) The number of edges. 
3) Whether G is regular. 
4) Whether G is regular with any fixed girth. 
5) The number of closed walk of any length. 
6) Whether G is bipartite. 
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3. Main Results 
The total number of closed k-walks in a graph G, denoted by ( )kw G . 

Lemma 3.1 ([6] p. 657) Let G be a graph with e edges, xi vertices of degree i, and y 4-cycles. Then 

( )4 2 4 8
2 i

i

i
w G e x y 

= + + 
 

∑                                 (4) 

Lemma 3.2 Let Γ be a graph with n vertices. If Γ cospectral to an H-shape and Γ ≠ Wn, then 
1) Γ have the same degree sequences as the H-shape tree or Γ have the degree sequences ( )3,2,2, , 2,1,0 . 
2) Γ contains no 4-cycles. 
Proof. Let Γ be a graph with e edges, xi vertices of degree i, and y 4-cycles. By lemma 2.4 we known that cos- 

pectral graphs have the same number of edges and closed 4-walks, respectively. Since Γ is cospectral to an 
H-shape tree, hence by (4) we have 

2 4 8 6 2
2 i

i

i
e x y n 
+ + = − 

 
∑  

namely 

0
2

2 i i
i i

i
x y n x

≥

 
+ = = 

 
∑ ∑                                (5) 

Since 

( ) ( ) ( )1 0 1 0 0
2 2 2

1 2 2 2 ,i i i
i i i

i x ix x e x n x x e n x n x
≥ ≥ ≥

− = − = − − − − = − + = − +∑ ∑ ∑             (6) 

from (5), we have 

( ) 0
2 2

1
2 1 2

2 i
i i

i
x y n i x

≥ ≥

− 
+ = − − = − 

 
∑ ∑                             (7) 

the (7) imply to y = 1 or 0. 
Case 1. y = 1. by (7) we get x0 = 0 and 3 4 0x x= = = , by (5) we get 2 2x n= −  and x1 = 2, then 

4 2nC P −Γ =  . 
We known that “the spectrum of graph Wn is the union of the spectra of the circuit C4 and the path Pn−4” [1], 

that is 

( ) ( )4 4 4, ,n nW C C Pϕ λ ϕ λ−=    

Case 2. y = 0. By (7) we have x0 ≤ 2. 
If x0 = 0, then 3 4 52, 0x x x= = = = , by (5) we get 2 6x n= −  and x1= 4. Thus Γ have the same degree se- 

quences as the H-shape tree. 
If x0 = 1, then 3 4 5 21, 0, 3x x x x n= = = = = −  and x1 = 1. The degree sequences of Γ is ( )3,2,2, , 2,1,0 . 
If x0 = 2, then 3 4 0x x= = = , x2 = n, ( ) 2V nΓ ≥ + , a contradiction. 󲐀 
Lemma 3.3 Let G be a graph with e edges, xi vertices of degree i, and z 6-cycles. Then 

( )6 4 1,32 12 6 12 12
2 i

i

i
w G e x p k z 

= + + + + 
 

∑                       (8) 

where p4 is the number of induced paths of length three and k1,3 is the number of induced star K1,3. 
Proof. A close walk of length 6 can be produced from in the following five classes graphs, they are P2, P3, P4, 

K1,3 and C6. For an edge and a 6-cycle, it is easy to see that the number of close 6-walks equals 2 and 12, respec- 
tively. For a P3, the number of close 6-walks of a 1-degree vertex is 3 and the number of close 6-walks of the  

2-degree vertex is 6, since the number of induced paths of length two is 
2 ii

i
x 

 
 

∑ , hence for all induced paths 

P3, the number of close 6-walks is 12
2 ii

i
x 

 
 

∑ . For a P4, since the number of close 6-walks of a 1-degree ver-  
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tex is 1 and the number of close 6-walks of a 2-degree vertex is 2, hence for all induced paths P4, the number of 
close 6-walks is 6p4. Similarly, for a K1,3, the number of close 6-walks of a 1-degree vertex is 2 and the number 
of close 6-walks of the 3-degree vertex is 6, thus for all induced stars K1,3, the number of close 6-walks is 12k1,3. 
󲐀 

Corollary 3.4 Let ( )1 2 3 4 5, , , ,H H l l l l l= , then 

( )
{ }( )
{ }( )

1 2 3 4 5
6

1 2 3 4 5

20 28 6 1 and have  elements are 1 in , , ,

20 34 6 0 and have  elements are 1 in , , ,

n k l k l l l l
w H

n k l k l l l l

 + − ≥= 
+ − =

              (9) 

where 0 4k≤ ≤ . 
Proof. Case 1. l1 ≥1. 
1) If k = 0, that is ( )2 2,3,4,5il i≥ = , then 

( ) ( ) ( ) ( ) ( ) ( )6 2 3 4 5 12 1 12 6 3 2 6 2 2 1 8 12 2 20 28w H n n l l l l l n = − + − + × + + − + + − + − + + × = +      

where ( ) ( )2 3 4 52 , 2l l l l+ − + −  and ( )1 1l −  are the number of induced paths P4 in 
2 3 1l lp + + .

4 5 1l lp + +  and 
1 2lp + , 

respectively. The 8(= 4 + 4) is the number of induced paths of through a 3-degree vertex u (or v). If P4 is such a 
induced path, then u is an internal vertex in the P4 and have at least a vertex in the

1l
p  (or

2l
p ). 

2) If k ≠ 0, then 

( ) ( ) ( ) ( ) ( ) ( ) ( )6 2 3 4 5 12 1 12 6 3 2 6 2 2 1 8 12 2 20 28 6w H n n l l l l l k n k = − + − + × + + − + + − + − + − + × = + −      

Case 2. l1 = 0. 
1) If k ≠ 0, then 

( ) ( ) ( ) ( ) ( )6 2 3 4 52 1 12 6 3 2 6 2 2 8 12 2 20 34.w H n n l l l l n = − + − + × + + − + + − + + × = +      

2) If k = 0, similarly, we have ( )6 20 34 6w H n k= + − . 󲐀 
Example 1. Let ( )1 0,1,1,1,1H H= , by (9) we have 

( )6 1 20 34 6 20 6 34 6 4 130w H n k= × + − = × + − × = , 

if we give to a suitable label for the H1, by a simple calculation we can get the diagonal matrix of ( )6
1A H , that 

is 
( )( ) [ ]6

1diag 11,11,43,43,11,11A H =  

clearly, the sum of the elements in the diagonal matrix equals 4 × 11 + 2 × 43 = 130. 
Example 2. Let ( )2 2, 2, 2, 2, 2H H= , by (9) we have ( )6 2 20 12 28 268w H = × + = , similarly, if we give to 

a suitable label for the H2, then we can get the diagonal matrix of ( )6
2A H , that is 

( )( ) [ ]6
2diag 6,6,6,6, 22, 22, 22, 22, 29, 29, 49, 49A H =  

clearly, the sum of the elements in the diagonal matrix equals 4 × 6 + 4 × 22 + 2 × 29 + 2 × 49 = 268. 
Lemma 3.5 Let Γ be a graph with n vertices, e edges, xi vertices of degree i, and z 6-cycles. If Γ cospectral to
( )1 2 3 4 5, , , ,H l l l l l  and Γ ≠ Wn, then 

{ }( )
{ }( )

0 1 2 3 4 5
4 1,3

2 0 1 2 3 4 5

9 2 1 and have k elements are 1 in , , ,1
2 2 2

2 10 2 0 and have k elements are 1 in , , ,
i

i

n k x l l l l li
x p k z

n k x l l l l l≥

 + − − ≥−  + + + =  
+ − − =  

∑      (10) 

where ( )0 4k k≤ ≤  is the number of elements of equals 1 in { }2 3 4 5, , ,l l l l  and p4 is the number of induced 
paths of length three and k1,3 is the number of induced star K1,3 in Γ. 

Proof. If l1 ≥ 1, by Lemma 3.3 we have 

( ) ( )

4 1,3 4 1,3

4 1,3 0 0
2 2

2 12 6 12 12 20 28 6 , 2 2 2 3 5 ,
2 2

1
2 2 2 3 5 2 1 3 5 2 2 9 2 .

2

i i
i i

i i
i i

i i
e x p k z n k x p k z n k

i
x p k z n i x n k n x n k x

≥ ≥

   
+ + + + = + − + + + = + −   

   
− 

+ + + = + − − = + − − − + = + − − 
 

∑ ∑

∑ ∑
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Similarly, when l1 = 0 the (10) hold. 󲐀 
Definition 1. Let U be a graph obtained from a cycle Cg (g is even and 6 ≤ g ≤ n1 − 2) and a path 

gnP −1
, such 

that identifying an end vertex in the path and any one vertex in the cycle, and uniting an isolated vertex K1.  
If a graph have the degree sequences ( )3,2,2, , 2,1,0 , then the graph is U uniting some cycle. 
Lemma 3.6 Let U′ be a graph with degree sequences ( )3,2,2, , 2,1,0 . If U′ cospectral to an H-shape, then 

U′ and H satisfying one of the following conditions. 
1) There are one 6-cycle in U′ and l1 ≥ 1, l2, l3, l4, l5 ≥ 2. 
2) There are one 6-cycle in U′ and l1 = 0, have an element is 1 in { }2 3 4 5, , ,l l l l . 
3) No 6-cycle in U′ and l1 ≥ 1, have two elements are 1 in { }2 3 4 5, , ,l l l l . 
4) No 6-cycle in U′ and l1 = 0, have three elements are 1 in { }2 3 4 5, , ,l l l l . 
Proof. Without loss of generality, Let 

2nU U C′ =  , where ( )2 6n ≥  is even and n1 + n2 = n. Let U′ have e 
edges, xi vertices of degree i, and z 6-cycles. 

Case 1. l1 ≥ 1. By Lemma 3.5 we have ( )1 22 1 3 4 2 1 2 9 2,2 2g n g n z n k z k× + + − − + + + × + = + − − = −   , 
get k = 0, z = 1 or k = 2, z = 0. 

Case 2. l1 = 0, we have ( )1 22 1 3 4 2 1 2 10 2,  2 3g n g n z n k z k× + + − − + + + × + = + − − = −   , get k = 1, z = 
1 or k = 3, z = 0. 󲐀 

Lemma 3.7 Let 1 2 1 2t tλ −= + , then 

( )( )

( )
( ) ( )( )( ) ( )( )( )( )( )

( )( )( )( )( ) ( )( )( )( )( )

2 3 4 5 2 3 51 1 4

3 4 5 3 51 2 1 2 4

1 2 1 2
1 2 3 4 5

2 2 2 2 2 11 1
5

1 2 1 11 1 1 12

, , , , ,

1 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1 1 1

n
l l l l l l ll l l

l l l l ll l l l l

H l l l l l t t

t t t t t t t t t t t
t

t t t t t t t t t t t t

ϕ −

−
+ + + + + + ++ +

+ + + + ++ − + +

+

= − − − − − − − − − −−

− − − − − − + − − − − − 

   (11) 

Proof. By Lemma 2.1 (b) and Lemma 2.2 we have 

( )( )
( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3 2 3

2 3 1 4 5 2 3 1 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

1 1 4 5 1 2 3

1 1 1 1

1 1 2

, , , , ,

, , , , , , 1, , ,

, , , , , , ,

, , , , , , , , ,

l l l l

l l l l l l l l l l

l l l l l l l l l l

H l l l l l

P T l l l P P T l l l

P P P P P P P

P P P P P P P P P

ϕ λ

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

+ +

+ + + + + + −

− + + −

= − −

= −

− +

     (12) 

( )( )

( )
( ) ( )( )( ) ( )( )( )( )( )

( )( )( )( )( ) ( )( )( )( )( )

2 3 4 5 2 3 51 1 4

3 4 5 3 51 2 1 2 4

1 2 1 2
1 2 3 4 5

2 2 2 2 2 11 1
5

1 2 1 11 1 1 12

, , , , ,

1 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1 1 1

n
l l l l l l ll l l

l l l l ll l l l l

H l l l l l t t

t t t t t t t t t t t
t

t t t t t t t t t t t t

ϕ −

−
+ + + + + + ++ +

+ + + + ++ − + +

+

= − − − − − − − − − −−

− − − − − − + − − − − − 

  󲐀 

If a graph has the same degree sequences as the H-shape, then Γ is one of the following graphs G1, G2, G3, G4, 
G5 in figure or it is an H-shape. 
 

 

G1 G2 
G3 G4 

5mC

 

v m1 
m3 

m2 

u m4 

G5  
 

Lemma 3.8 If Γ is cospectral to an H-shape tree, then Γ contains no ( )
1 2 1 2,n nP P n n n<  as two connected 

component. 
Proof. Assume that Γ contains a 1nP as a connected component, by (11) some li is equal, without loss of gene- 

rality, let l1 = l2 = l4 = n1, then 
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( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 3 1 5 1 3 1 5

1 3 1 5 1 3 1 5 1

1 2 3 4 5

1 1 1 1

1 1 2

, , , , ,

, , , , ,

, , , , , , , ,

l l l l l l l l

l l l l l l l l l

H l l l l l

P P P P P

P P P P P P P P

ϕ λ

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ

+ + + + + + −

− + + −

= −

− +

 

If Γ contains a 
2nP  as a connected component, then l3 = l5 and l1 + l3 + 1 = l1, a contradiction. 󲐀 

Thus, if a graph ( )nWΓ Γ ≠  cospectral to an H-shape and have the same degree sequences as the H-shape, 
then Γ is one of the following graphs G3, G4, G5 (Fig.) uniting some even cycle, respectively, or it is an H-shape.  

Lemma 3.9 If ( )1 1 2 3 4 5, , , ,H H m m m m m=  and ( )1 2 3 4 5, , , ,H H l l l l l=  are cospectral, then  
( ) ( )1 2 3 4 5 1 2 3 4 5, , , , , , , ,H m m m m m H l l l l l≅  
Proof. By (11) we have 

( )( ) ( )

( ) ( )( )( ) ( )( )( )( )
( ) ( )( )( )( )( ) ( )( )( )( )( )

2 3 4 5 2 31 1 4

5 3 4 5 3 51 2 1 2 4

51 2 1 2 2
1 2 3 4 5

2 2 2 21 1

1 1 2 1 11 1 1 12

, , , , , 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

n

l l l l l ll l l

l l l l l ll l l l l

H l l l l l t t t t

t t t t t t t t t

t t t t t t t t t t t t t

ϕ −

+ + + + + ++ +

+ + + + + ++ − + +

+ −

= − − − − − − − − −

− − − − − − − + − − − − −

(13) 

1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 1 2 3 4

1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5 1 2 3 1 4 5 1 2 3

1

5 5 5 5 4n 5 n 4 n 3

4 4 4 4 5 5 4

4 4 2

2 2 2 2

2

l l l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l l l l l

l l

t t t t t t t t

t t t t t t t

t

+ + + + + + + + + + + + + + + + + + + ++ + +

+ + + + + + + + + + + + + + + + + + + + + + + + +

+

= − + + + + + −

− − − − − − +

+ 4 5 2 3 4 2 3 5 2 4 5 3 4 5 1 2 5 1 3 41 2 4

1 3 5 2 5 3 4 3 5 2 3 4 5 1 32 4 1 2 1 4

1 5 2

4 4 4 4 4 3 33

3 4 4 4 3 3 34 3 3

3

2 2

l l l l l l l l l l l l l l l l l l ll l l

l l l l l l l l l l l l l l ll l l l l l

l l l l

t t t t t t t

t t t t t t t t t t

t t

+ + + + + + + + + + + + + + + + + + + ++ + +

+ + + + + + + + + + + + + + ++ + + + + +

+ + +

+ + + + + + +

+ − − − − − − − − −

− +

( )

3 4 5 3 5 3 51 2 4 2 42 2 3 3 2 23 3 3 2 2 2

H

2 2 2 2 4 4 1

: ,

l l l l l ll l l l lt t t t t t t t t t t t

tψ

+ + + + + + ++ + + + ++ + + + + + − − − − − + −

=

 (14) 

where 1 2 3 4 5 2l l l l l n+ + + + + = . By (14) we have 

( )( ) ( )
1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5

1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

1 2 3

51 2 1 2 2
1 2 3 4 5

5 5 5 55 4 3

4 4 4 4 4

5

, , , , , 1

4 4

2 2 2 2

n

m m m m m m m m m m m m m m m mn n n

m m m m m m m m m m m m m m m m m m m m

m m m

H m m m m m t t t t

t t t t t t t

t t t t t

t

ϕ −

+ + + + + + + + + + + + + + + ++ + +

+ + + + + + + + + + + + + + + + + + + +

+ + +

+ −

= − + + + + +

− − − − −

− 1 4 5 1 2 3 1 4 5 2 3 4 2 3 5

2 4 5 3 4 5 1 2 5 1 3 4 1 3 51 2 4 2 4

2 5 3 4 3 5 2 3 4 5 1 2

5 4 4 4 4

4 4 3 3 33 4

4 4 4 3 3 3

2 2

2 2

m m m m m m m m m m m m m m m

m m m m m m m m m m m m m m mm m m m m

m m m m m m m m m m m m

t t t t t

t t t t t t t

t t t t t t

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + ++ + + + +

+ + + + + + + + + + + +

− + + + +

+ + + + + + −

− − − − − − −

( )

1 3 1 4

1 5 2 3 4 5 3 5 31 2 4 2

54

3 3

3 2 2 3 3 23 3 3 2

22 2

1

2 2 2 2

4 4 1

:

m m m m

m m m m m m m m mm m m m

mm

H

t t

t t t t t t t t t t

t t t t

tψ

+ + + +

+ + + + + + + + ++ + + +

++

−

− + + + + + + + − −

− − − + −

=

 

Let ( ) ( )1H t H t= , without loss of generality, we assume that l2 ≥ l3 ≥ l4 ≥ l5 and m2 ≥ m3 ≥ m4 ≥ m5. Com- 
paring the 4th lowest term of ( )H t  and ( )1H t , we get m5 = l5. Similarly, we comparing the 5th, 6th and 7th 
lowest term of ( )H t  and ( )1H t , respectively, we get m4 = l4, m3 = l3 and m2 = l2. By  

1 2 3 4 5 1 2 3 4 52 2m m m m m l l l l l n+ + + + + = + + + + + = , we get m1 = l1, thus  
( ) ( )1 2 3 4 5 1 2 3 4 5, , , , , , , , .H m m m m m H l l l l l≅  󲐀 
Lemma 3.10 Let G5 be a graph in Figure, then G5 and H-shape are not cospectral. 
Proof. Let 

1 2 3 4 55 1 1m m m m mG u v P P P P P −− − = =     ( )51, 1, 2,3, 4. 4im i m≥ = ≥ , that is  
1 2 3 4 5 1m m m m m n+ + + + + = . Denote the first component by G5,1 and the second component by G5,2. By Lem- 

ma 2.1 and Lemma 2.3 we have 
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( ) ( ) ( ) ( ) ( )5 4 5 45,1 1 1, , , , ,m m m mG C P P Pϕ λ ϕ λ ϕ λ ϕ λ ϕ λ− −= −  

( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )( ) ( ) ( )( )

544
5 5 54 4

4 5
5 54 4

1 2 1 2
5,1

1 21 2222 2 1

2 22 1
2

,

1 1 1 1
1 1 1

1 1 1 1 1 ,
1

mmm
m m mm m

m m
m mm m

G t t

t t tt t t t t
t t t

t t t t t t t
t

ϕ −

− −− −−
− +

− +
+

+

= − − − − −
− − −

 = − − − − − −  −

 

( ) ( ) ( ) ( )( )( )1 2 3 1 2 35,2 1 1, , , , , ,m m m m m mG P P P P Pϕ λ ϕ λ ϕ λ ϕ λ λ λ+ + −= −  

( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )( ) ( )( )( )

2 3 1 31 2
2 3 31 1 2

1 2 3
2 3 31 1 2

1 2 1 2
5,2

1 2 1 2 22 2
2 11 1

1 2
2 11 1

2

,

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 .
1

m m m mm m
m m mm m m

m m m
m m mm m m

G t t

t t t t tt t t t t
t t t t t

t t t t t t t
t

ϕ −

− + + − − −− −
+ + ++ +

− + + +
+ + ++ +

+

= − − − − − −
− − − − −

 = − − − − − − −

 

By Lemma 2.1 (a) we have 

( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( )( )( )
( )

5 5 2 3 34 4 1 1 2

51 2 1 2 2
5

22 2 11 1 1

5

, 1

1 1 1 1 1 1 1 1 1 1

:

n

m m m m mm m m m m

G

G t t t t

t t t t t t t t t t t t

t

ϕ

ψ

−

+ + ++ + +

+ −

   = − − − − − − × − − − − − −   
=

 

(15) 
Comparing (14) and (15), since ( )0 1Hψ = −  for any ( )1,2, ,5il i =   and ( )5 0 1Gψ =  for any  
( )1,2, ,5im i =  , hence ( ) ( )5H Gt tψ ψ≠ . G5 and H-shape are not cospectral. 

Remark. If G5 uniting some 
inC , without loss of generality, let 

15,1 5 n nG G C −=  , where m1 + m2 + m3 + m4 

+ m5 + 1 = n1. Since ( ) ( ) ( )( )1 1
1

22 21 2 1 2 1n n n n
n nC t t t tϕ − − −−
− + = − , we have ( ) ( )5,1 5G Gt tψ ψ=  ( )( )1

22  1n nt − − , 

( ) ( )5,1 50 0 1G Gψ ψ= = , ( ) ( )5,1H Gt tψ ψ≠ . Thus, G5,1 and H-shape are not cospectral. 󲐀 
Theorem 3.11 Let ( )1 2 3 4 5, , , ,H H l l l l l=  ( )1 0, 1, 2,3, 4,5il l i≥ ≥ = , if a graph Γ (Γ ≠ Wn) cospectral to an 

H-shape, then either Γ is U (Definition 1) uniting some even cycles 
inC  (ni ≥ 6), denoted by U′, and U′, H sa- 

tisfying one of the following conditions. 
1) There are one 6-cycle in U′ and l1 ≥ 1, l2, l3, l4, l5 ≥ 2. 
2) There are one 6-cycle in U′ and l1 = 0, have 1 element is 1 in { }2 3 4 5, , ,l l l l . 
3) No 6-cycle in U′ and l1 ≥ 1, have 2 elements are 1 in { }2 3 4 5, , ,l l l l . 
4) No 6-cycle in U′ and l1 = 0, have 3 elements are 1 in { }2 3 4 5, , ,l l l l , or Γ is the graph G3 and G4 in Figure 

uniting some even cycles ( )6
in iC n ≥ , respectively. 

Proof. This result is contained from Lemma 3.2 up to Lemma 3.10. 󲐀 
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