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Abstract 
For *C -algebras A  and B , the constant involved in the canonical embedding of ** **A Bγ⊗  into 

( )**
A Bγ⊗  is shown to be 1

2
. We also consider the corresponding operator space version of this 

embedding. Ideal structure of ˆA B⊗  is obtained in case A  or B  has only finitely many closed 
ideals. 
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1. Introduction 
The systematic study of various tensor norms on the tensor product of Banach spaces was begun with the work 
of Schatten [1], which was later studied by Grothendieck in the context of locally convex topological space. One 
of the most natural and useful tensor norm is the Banach space projective tensor norm. For a pair of arbitrary 
Banach spaces X  and Y  and u  an element in the algebraic tensor product X Y⊗ , the Banach space 
projective tensor norm is defined to be 

1 1
inf : .

n n

i i i i
i i

u x y u x y
γ

= =

 = = ⊗ 
 
∑ ∑  

X Yγ⊗  will denote the completion of X Y⊗  with respect to this norm. For operator spaces X  and Y , 
the operator space projective tensor product of X  and Y  is denoted by ˆX Y⊗  and is defined to be the 
completion of X Y⊗  with respect to the norm: 

{ }inf ,u x yα β
∧
=  

the infimum taken over ,p q∈  and all the ways to write ( )u x yα β= ⊗ , where 1, pqMα ∈ , ,1pqMβ ∈ ,  
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( )px M X∈  and ( )qy M Y∈ , and ( )( ) ( )
( )

, , ,ij kl pqi k j l
x y x y M X Y⊗ = ⊗ ∈ ⊗ . 

Kumar and Sinclair defined an embedding µ  from ** **A Bγ⊗  into ( )**
A Bγ⊗ , and using the non-com- 

mutative version of Grothendieck’s theorem to the setting of bounded bilinear forms on *C -algebras, it was  

shown that this embedding satisfies ( )1
4

u u u
γ γ

µ≤ ≤  ([2], Theorem 5.1). Recently, analogue of Grothen-  

dieck’s theorem for jointly completely bounded (jcb) bilinear forms was obtained by Haagerup and Musat [3]. 
Using this form for jcb, the canonical embedding for the operator space projective tensor product have been  

studied by Jain and Kumar [4], and they showed that the embedding µ  from ** **ˆA B⊗  into ( )**ˆA B⊗  

satisfies ( )1
2

u u uµ
∧ ∧
≤ ≤ . 

In Section 2, an alternate approach for the bi-continuity of the canonical embedding of ** **A Bγ⊗  into 
( )**
A Bγ⊗  has been presented with an improved constant. Our proof essentially uses the fact that the dual of 

the Banach space projective tensor norm is the Banach space injective tensor norm. We also consider the 
corresponding operator space version of this embedding and discuss its isomorphism. As a consequence, one can 
obtain the equivalence between the Haagerup tensor norm and the Banach space projective tensor norm (resp. 
operator space projective tensor norm). 

In the next section, it is shown that if the number of all closed ideals in one of the *C -algebras is finite then 
every closed ideal of ˆA B⊗  is a finite sum of product ideals. One can obtain all the closed ideals of 
( ) ( )ˆB H B H⊗  as ( ) ( )ˆB H K H⊗ , ( ) ( )ˆK H B H⊗  and ( ) ( ) ( ) ( )ˆ ˆB H K H K H B H⊗ + ⊗ , and the closed  

ideals of ( ) ( )0
ˆB H C X⊗  as ( )

1

ˆ
n

i
i

A I E
=

⊗∑ , where ( )A B H=  or ( )K H ,  

( ) ( ) ( ){ }0 : 0 for alli iI E f C X f x x E= ∈ = ∈  for each i , for an infinite dimensional separable Hilbert space 
H  and locally compact Hausdorff topological space X . Similarly, the closed ideal structure of 

( )( ) ˆM A A B⊗ , where B  is any *C -algebra and ( )M A  is the multiplier algebra of A , A  being a 
nonunital, non-element- ary, separable, simple AF *C -algebra, can be obtained. We may point that such result 
fails for minA B⊗ , the minimal tensor product of *C -algebras A  and B . 

Section 4 is devoted to the inner automorphisms of ˆA B⊗  and hA B⊗  for *C -algebras as well as for 
operator algebras. Recall that the Haagerup norm on the algebraic tensor product of two operator spaces X  
and Y  is defined, for u X Y∈ ⊗ , by  

{ }infhu x y=  

where infimum is taken over all the ways to write  

1 1
1

r

k k
k

u x y x y
=

= = ⊗∑⊙  

where ( ) ( )1, ,1, ,r rx M X y M Y r∈ ∈ ∈ . The Haagerup tensor product hX Y⊗  is defined to be the comple-  
tion of X Y⊗  in the norm 

h⋅  [5]. 

2. Isomorphism of Embeddings 
For Banach spaces X  and Y  and *

i Xφ ∈ , *
i Yψ ∈ , define a linear map ( )* *: ,J X Y B X Y⊗ → ×   as  

( ) ( ) ( )
1 1

,
n n

i i i i
i i

J x y x yφ ψ φ ψ
= =

 ⊗ = 
 
∑ ∑ , for x X∈  and y Y∈ . Using ([6], Proposition 1.2), it is easy to see that  

J  is well defined. Also, clearly this map is linear and contractive with respect to γ
⋅ , and in fact 1J = , and 

hence can be extended to * *X Yγ⊗  with 1J = . A bilinear form T  in ( ),B X Y×   is called nuclear if  

( )* *T J X Yγ∈ ⊗ , and the nuclear norm of T  is defined to be 
1 1

inf :n n n nN
n n

T Tφ ψ φ ψ
∞ ∞

= =

 = = ⊗ 
 
∑ ∑ . The  

Banach space of nuclear bilinear forms is denoted by ( ),NB X Y×  . For *C -algebras A  and B , consider 
the canonical map θ  from A Bγ⊗  into ( )** *A Bλ⊗ , the dual of the Banach space injective tensor product of 
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*A  and *B , defined by  
i J iθ ′=    

where i  is the natural isometry of A Bγ⊗  into ** **A Bγ⊗ , J  is as above with *X A=  and *Y B= , i′  
is the natural inclusion of ( )* * ,NB A B×   into ( )* * ,IB A B×  , the space of integral bilinear forms. 

Lemma 2.1 For *C -algebras A  and B , the canonical map ( ) ( )(** * * **: , ,A B A B J A Bγ λθ ⊗ → ⊗ =  the 

space of integral operators from *A  to ** )B  satisfies ( )1
2

u u u
γ γ

θ≤ ≤  for all u A Bγ∈ ⊗ . In par-  

ticular, θ  is bi-continuous.  
Proof: The inequality of the right hand side follows directly from the definition of θ . Let 0 u A Bγ≠ ∈ ⊗  

and > 0 . By the Hahn Banach Theorem, there exists ( )*T A Bγ∈ ⊗  with 1T ≤  such that ( ) >T u u
γ
−  .  

Since ( ) ( )* *,A B B A Bγ⊗ = , so ( ) ( )( )T a b T a b⊗ =  , for some ( )*,T B A B∈ , for all a A∈  and b B∈   

with 1T T= ≤ . By ([7], Proposition 2.1(2)), there is a net ( )aT  of finite rank operators from A  to *B   

such that  2aT T≤   and  ( ) ( ) 0lim aT x T xα − =  for any x A∈ . 

Now, for each α , corresponding to aT  we can associate ( )*T A Bα γ∈ ⊗ . For u A Bγ∈ ⊗ , there is 0α  

such that ( ) ( ) <T u T uα−   for all 0α α≥ . Thus ( )
0

> 2T u uα γ
−  . Since 

0
Tα  is a finite rank operator, so 

let ( )( )0
dim Range T mα = < ∞ . Choose an Auerbach basis { }1 2, , , mφ φ φ  for ( )0

Range Tα  with associated 

coordinate functionals 1 2, , , mF F F  in **B . Thus, for any x A∈ ,  ( )
0

1

m

i i
i

T x cα φ
=

= ∑ , ic ∈  for 1, 2, ,i m=  .  

By using ( )i j ijF φ δ= , it follows that  ( ) ( )
0 1

m
i iiT x xα ψ φ

=
= ∑ , 

0

*:i iF T Aαψ = ∈  for 1, 2, ,i m=  . Therefore, 
for any x A∈  and y B∈ ,  

 ( )( ) ( ) ( ) ( )( )
0

1 1

m m

i i i i
i i

T x y x y S x yα ψ φ ψ φ
= =

 = = ⊗ 
 

∑ ∑  

where S  is the canonical isometric map from * *A Bλ⊗  to ( )*,B A B . Thus 
0

1

m

i i
i

Tα
λ

ψ φ
=

= ⊗∑  and so  

1

1 1
2

m

i i
i λ

ψ φ
=

⊗ ≤∑ . Moreover, for 
1

n n
n

u a b
∞

=

= ⊗∑ , we have  

( ) ( )  ( )( ) ( )
0 0

1 1

1 1 1 1
2 2 2 2

m

i i n n
i n

u u T a b T u uα α γ
θ θ ψ φ

∞

= =

 ≥ ⊗ = = > − 
 
∑ ∑   

Since > 0  is arbitrary, so ( ) 1
2

u u
γ

θ ≥ .   

Next, we consider the map ( )*** ** * *: A B A Bγ λφ ⊗ → ⊗  defined by i Jφ ′=  .  
Proposition 2.2 For *C -algebras A  and B , the natural map ( )*** ** * *: A B A Bγ λφ ⊗ → ⊗  is bi-conti-  

nuous and ( )1
2

u u u
γ γ

φ≤ ≤ , for all ** **u A Bγ∈ ⊗ . 

Proof: By the above lemma, we have a map ( )** ** *** ****: ,A B J A Bγθ ⊗ →  with ( )1
2

u u u
γ γ

θ≤ ≤  for all  
** **u A Bγ∈ ⊗ . Also, ([6], Proposition 3.21) shows that the natural inclusion map  
( ) ( )( )* ** *** **** **: , ,j J A B J A B T T′ → →  is isometric. We will show that j φ θ′ = . For **F A∈ , **G B∈ , 

***F A∈  and ***G B∈ , 

( )( )( ) ( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )** *
j F G F G j F G F G F G F G F F G G F F G Gφ φ φ φ′ ′⊗ = ⊗ = ⊗ = ⊗ =      

        

 , 

since ( ) ( )( ) ( )( )( ) ( ) ( )*
F G G f G F G f G G F fφ φ⊗ = ⊗ =  

    for *f A∈ . Thus 
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( )( )( ) ( )( )( )j F G F G F G G Fφ θ′ ⊗ = ⊗  

 . Therefore, by linearity and continuity, j φ θ′ = , and hence the 

map φ  satisfies ( )1
2

u u u
γ γ

φ≤ ≤  for all ** **u A Bγ∈ ⊗ .   

Haagerup proved that every bounded bilinear form on A B×  can be extended uniquely to a separately 
normal norm preserving bounded bilinear form on ** **A B×  ([7], Corollary 2.4), so we have a continuous iso-  
metric map ( ) ( )** ** **: A B A Bγ γχ ⊗ → ⊗ . Set 

( )*** ** **:i A B A Bγ γµ χ= ⊗ → ⊗  

where i  is the natural embedding of ** **A Bγ⊗  into ( )**** **A Bγ⊗ . Kumar and Sinclair proved that this  

embedding is a bi-continuous map with lower bound 1
4

 ([2], Theorem 5.1). We re-establish its bi-continuity  

with an alternate proof and an improved lower bound 1
2

.  

Theorem 2.3 For *C -algebras A  and B , the natural embedding µ  satisfies ( )1
2

u u u
γ γ

µ≤ ≤  for 
all ** **u A Bγ∈ ⊗ .  

Proof: We know that the natural embedding ( ) ( )** *: ,j A B B A B A Bλ γ⊗ → × = ⊗  is isometric. Thus, by  
the Hahn Banach theorem, ( ) ( )**** * *:j A B A Bγ λ⊗ → ⊗  is a quotient map. We will show that  

*j µ φ=  

where φ  is as in Proposition 2.2. Since *j µ  and φ  are linear and continuous, it suffices to show that 
*j µ  and φ  agree on ** **A B⊗ . Note that, for **F A∈ , **G B∈ , *f A∈  and *g B∈ ,  

( )( ) ( )( )( ) ( ) ( )( )

( )( )( ) ( )( )( )

* * * *

,

j F G f g j F G f g F G j f g

j f g F G j f g F G

µ χ χ

χ χ

⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗

= ⊗ ⊗ = ⊗ ×



 

where ( )( )j f gχ ⊗  is the bilinear form corresponding to ( )( ) ( )*** **ˆj f g A Bχ ⊗ ∈ ⊗ . 
Since **F A∈  and **G B∈  so, by Goldstine’s Lemma, there are nets x Aλ ∈  and y Bµ ∈  such that xλ  

converges to F  in ( )** *,A Aσ  and yµ  converges to G  in ( )** *,B Bσ . The separate *w -continuity of the  
bilinear form ( )( )j f gχ ⊗  and the equality ( )( )  ( )  ( ) ( ),j f g x y x f y gλ µ λ µχ ⊗ =  shows that  

( )( ) ( )( )*j F G f g F G f gµ φ⊗ ⊗ = ⊗ ⊗ . Thus, *j µ φ= . Hence, by Proposition 2.2, we deduce that  

( )1
2

u u u
γ γ

µ≤ ≤ .   

Remark 2.4 (i) Note that, for a *C -algebra A  having Completely positive approximation property, the 
canonical embedding of ** **

minA B⊗  into ( )**
minA B⊗  is isometric by ([8], Theorem 3.6) and ([9], Theorem 

3.6). However, for the largest Banach space tensor norm, the embedding µ  is isometic if one of the *C
-algebra has the metric approximation property, which follows directly by using ([6], Theorem 4.14) in the 
above theorem. 

(ii) For a locally compact Hausdorff topological group G , let ( )*C G  and ( )*
rC G  be the group *C - 

algebra and the reduced group *C -algebra of G , respectively. Then, for any *C -algebra A  and a discrete  

amenable group G , the natural embedding of ( )*** **
rC G Aγ⊗  into ( )( )***

rC G Aγ⊗  is isometric by ([8], 

Theorem 4.2); and for any amenable group G , the natural embedding of ( )*** **C G Aγ⊗  into ( )( )***C G Aγ⊗   

is isometric by ([8], Proposition 4.1). 
(iii) The natural embedding µ  is isomorphism if *A  has the approximation property, **A  has the Radon 

Nikodym property and every bilinear form on A B×  is nuclear. This follows directly by observing that if **A  
has the Radon Nikodym property then ([6], Theorem 5.32) gives us  
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( ) ( ) ( )* ** * ** * **, , ,N B A PJ B A J B A= =  

where ( )* **,PJ B A  and ( )* **,N B A  denote the Pietsch integral and nuclear operators from *B  to **A , 
respectively [6]. Clearly, bijectivity follows if we show that j  is an onto map. For this, let ( ),T B A B∈ ×   
so it is nuclear. Since *A  has the approximation property, so there exists an element * *u A Bγ∈ ⊗  such that  

( )J u T=  

where J  is an isometric isomorphism from * *A Bγ⊗  to ( ),B A B×   ([6], Corollary 4.8). Consider the 
canonical map * * * *:i A B A Bγ λ⊗ → ⊗ . Of course j i J=  on * *A B⊗ , and hence by linearity and con- 
tinuity j i J= .  

We now discuss the operator space version of the above embedding, which is already discussed in [4]. Note 
that in this case the embedding is positive, and becomes an isomorphism under the conditions weaker than that 
required in case of the Banach space projective tensor product. For operator spaces X  and Y , an operator 
from X  into Y  is called completely nuclear if it lies in the image of the map * *ˆ:J X Y X Y⊗ → ⊗



 [10]. 
The space of completely nuclear operators will be denoted by ( ),CN X Y . This space has the natural operator  

space structure determined by the identification ( ) ( )
* ˆ

,
ker
X YCN X Y

J
⊗

≅ . 

For *C -algebras A  and B , consider the map θ  from ˆA B⊗  into the dual of operator space injective 
tensor product ( )** *A B⊗



 given by  
S J iθ =    

where ** **ˆ ˆ:i A B A B⊗ → ⊗  is the natural completely isometric map, ( )** ** * **ˆ: ,J A B CN A B⊗ →  and 
( ) ( )** ** * *: ,S CN A B A B→ ⊗



 [10]. Making use of the fact that the dual of the operator space projective tensor 
norm is the operator space injective ([10], Proposition 8.1.2) and an application of Grothendieck’s theorem for 
jcb ([11], Proposition 1) and the techniques of Lemma 2.1, we obtain the following: 

Lemma 2.5 For *C -algebras A  and B , the canonical map ( )** *ˆ: A B A Bθ ⊗ → ⊗


 satisfies  

( )1
2

u u uθ
∧ ∧
≤ ≤  for all ˆu A B∈ ⊗ . In particular, θ  is bi-continuous.  

Proposition 2.6 For *C -algebras A  and B , the natural map ( )*** ** * *ˆ: A B A Bφ ⊗ → ⊗


, defined by  

S Jφ = 
, is bi-continuous satisfying ( )1

2
u u uφ

∧ ∧
≤ ≤  for all ** **ˆu A B∈ ⊗ .  

Proof. By ([10], Theorem 15.3.1) we have *A  is locally reflexive operator space. Therefore, ([10], Theorem  
14.3.1) implies that ( )** *A B⊗



 can be identified with ( )* **,I A B , where ( )* **,I A B  denotes the space of  

completely integral operators from *A  to **B . Now, the result follows by using the techniques of Proposition 
2.2 and ([10], Proposition 15.4.4).  

By ([4], Proposition 2.5), we have a continuous completely isometric map ( ) ( )* *** **ˆ ˆ: A B A Bχ ⊗ → ⊗ . Let  

( )*** ** **ˆ ˆ:i A B A Bµ χ= ⊗ → ⊗  

where i  is the natural embedding of ** **ˆA B⊗  into ( )**** **ˆA B⊗ . Then clearly 1µ ≤ . 
For a matrix ordered space A  and its dual space *A , we define * -operation on *A  by ( ) ( )* *f x f x= , 

x A∈  and ( ) ( ){ }* , : is completely positiven nM A CB A Mφ φ
+
= ∈ . Note that, for *C -algebras A  and B , 

ˆA B⊗  is a Banach * -algebra ([12], Proposition 3). 
Theorem 2.7 For *C -algebras A  and B , the natural embedding µ  is * -preserving positive bounded  

map which satisfies ( )1
2

u u uµ
∧ ∧
≤ ≤  for all ** **ˆu A B∈ ⊗ .  

Proof: Given 21,
Mα

∞
∈ , 2 ,1

Mβ
∞

∈ , ( )**m M A∞∈ , ( )**n M A∞∈  and ( )*ˆf A B∈ ⊗ ,  

( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )** * * * * * * *m n f m n f f m n f m nµ α β µ α β χ α β χ β α⊗ = ⊗ = ⊗ = ⊗  

On the other hand, ( )( )( ) ( ) ( )( )* * * * * * * *m n f f m nµ β α χ β α⊗ = ⊗ . So in order to prove that µ  is * - 
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preserving, we have to show that ( ) ( )* *f fχ χ= . 

Note that, for Aa∈  and b B∈ , ( ) ( ) ( )( ) ( ) ( ) ( )( )* * * * * * *ˆ ˆ ˆˆ ˆ ˆf a b f a b f a b f a b f a bχ χ χ⊗ = ⊗ = ⊗ = ⊗ = ⊗ ,  

and hence the result follows from the separate *w -continuity of the bilinear forms corresponding to ( )*fχ  
and ( )*fχ . 

Now given an algebraic element ( ) *
1m n Cα α⊗ ∈ , where nC  is defined as in [13]. For the positivity of  

µ , we have to show that ( )( )( )* 0m n fµ α α⊗ ≥  for ( )( )*ˆf A B
+

∈ ⊗ . By ([13], Theorem 1.9), it suffices to 

show that if ( )*,f CP A B∈  then  

( ) ( )** ***,f CP A Bχ ∈  

where ( )( ) ( )f a b f a b= ⊗  for all a A∈ , b B∈  and ( ) ( )( ) ( )( )f m n f m nχ χ= ⊗  for all **m A∈ , **n B∈ .  

Since ( )nM A +
 is *w -dense in ( )**

nM A
+ , so given ( )**

ij nF M A  ∈   we obtain a net ( )ij na M Aλ ++  ∈   

which is *w -convergent to ijF   . Now note that ( )
* limij n ijnf F w f aλ

λχ    = −   
 . Hence the result follows. 

The bi-continuity of the map µ  follows as in Theorem 2.3.   
Remark 2.8 By ([14], Theorem 2.2), the natural embedding µ  is completely isometric if one of the *C

-algebras has the *W MAP.  
We now discuss the isomorphism of this embedding. For x A∈ , the map ( ) ( )ˆf g x f g f x g⊗ → = , for 

*f A∈  and *g B∈ , has a unique continuous extension to a map * * *
ˆ

ˆ:xR A B B⊗ → , with x̂R x≤ . The 
next proposition does not have counterpart in the Banach space context.  

Proposition 2.9 For *C -algebras A  and B , the family { }ˆ :xR x A∈  is total on * *ˆA B⊗ .  

Proof: Suppose that * *ˆu A B∈ ⊗  such that ( )ˆ 0xR u =  for all x A∈ . Let ( )** *ˆT A B∈ ⊗  with 1T ≤ . 

Since ( ) ( )** * * **ˆ ,A B CB B A⊗ = , so ( ) ( )( )T f g T g f⊗ =   for some ( )* **,T CB B A∈ , for all *f A∈  and 
*g B∈ , with 1cbcb

T T= ≤ . If **A  is taken in the universal representation of A  then T  satisfies the *W AP  

by ([10], Theorem 15.1) and ([5], §  1.4.10). So there exists a net Tα  of finite rank *w -continuous mapping 
from *B  to **A  such that 

cb cb
T Tα ≤  , and ( ) ( )T g T gα →   for all *g B∈ . Thus for * *ˆu A B∈ ⊗  and  

> 0 , there exists 0α  such that ( ) ( ) <T u T uα−   for all 0α α≥ . Since ( )* **,T CB B Aα ∈ , we have 

( )** *ˆT A Bα ∈ ⊗  such that ( ) ( )( )T f g T g fα α⊗ =  . Since Tα  is a finite rank operator so, as in Lemma 2.1, 

( ) ( )
1

l

j j
j

T g gα
=

= Φ Ψ∑  for **
j BΦ ∈  and **

j AΨ ∈ . Thus, for  

( )
1

k k k k
k

u f gα β
∞

=

= ⊗∑  

where 1, k kk p qMα ×∈ , ,1k kk p qMβ ×∈ , ( )*
kk pf M A∈ , and ( )*

kk qg M B∈ , a norm convergent representation  

in * *ˆA B⊗  [10], ( ) ( )( ) ( )1, ,1 1, ,1
1 , , , 1 1 , , ,

l
k k k k k k k k

mn nq mp pq j mn j nq mp pq
k m n p q j k m n p q

T u T g f g fα αα β α β
∞ ∞

= = =

 
= = Ψ Φ 

 
∑ ∑ ∑ ∑ ∑ . Given  

( )1, ,1
1 , , ,

ˆ 0k k k k
mn mp nq pq

k m n p q
x f gα β

∞

=

=∑ ∑  for all x A∈ . Therefore, ( )1, ,1
1 , , ,

0k k k k
mn mp nq pq

k m n p q
f G gα β

∞

=

=∑ ∑  for any **G B∈ . 

Thus ( ) 0T uα = , giving that ( ) ( ) ( ) ( )T u T u T u T uα α≤ − + <   for all 0α α≥ , and hence 0u = .   

In particular, the map ( )* * *ˆ: ,J A B CN A B⊗ →  defined above is 1-1. Thus ( )* * *ˆ ,A B CN A B⊗ ≅ . 
Now, as in Remark 2.4(iii), we have the following:  
Corollary 2.10 Let A  and B  be *C -algebras such that every completely bounded operator from A  to 

*B  is completely nuclear and the map φ  defined in the Proposition 2.6 is onto. Then the natural embedding 
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( )**** **ˆ ˆ: A B A Bµ ⊗ → ⊗  is an isomorphism map. 
Remark 2.11 The embedding in the case of the Haagerup tensor product turns out to be completely isometric, 

which can be seen as below. For operator spaces X , Y , using the fact that *
n nT M=  and ([5], §  1.6.7), the  

map ( ) ( )** ** **: h hX Y X Yχ ⊗ → ⊗  is completely isometric. Set  

*: iτ χ=   

where ( )**** ** ** **: h hi X Y X Y⊗ → ⊗ . Then, clearly 1cbτ ≤ . By the self-duality of the Haagerup norm, the 

map ( )*** ** * *: h hX Y X Yφ ⊗ → ⊗  is completely isometric. As in Theorem 2.3,  

*j τ φ= ,  

where j  is the completely isometric map from * *
hX Y⊗  to ( )*hX Y⊗ , which further gives *

n n nj τ φ=  for 
any n∈ . Thus τ  is completely isometric.  

3. Closed Ideals in ˆA B⊗  
It was shown in ([4], Theorem 3.8) that if A  or B  is a simple *C -algebra then every closed ideal of ˆA B⊗  
is the product ideal, i.e. of the form ˆA J⊗  or ˆI B⊗  for closed ideal I  of A  and J  of B . In the 
following, we generalize this result to the *C -algebra which has only a finite number of closed ideals. More 
precisely, it is shown that if one of the *C -algebras A  and B  has only finitely many closed ideals, then  

every closed ideal in ˆA B⊗  is precisely of the form 
1

ˆ
n

j j
j

I J
=

⊗∑ , for some n N∈  and closed ideals jI  in  

A , jJ  in B , 1, 2, ,j n= 
. Thus obtaining the complete lattice of closed ideals of ( ) ( )ˆB H B H⊗ , 

( ) ( )0
ˆB H C X⊗ , ( )( ) ˆM A A B⊗ , where H  is an infinite dimensional separable Hilbert space, X  is a 

locally compact Hausdorff space, B  is any *C -algebra and ( )M A  is the multiplier algebra of A , A  being 
a nonunital, non-elementary, separable, simple AF *C -algebra ([15], Theorem 2). We would like to remark that 
in [4] the lattice of closed ideals of ( ) ( )ˆB H B H⊗  has already been explored. 

Proposition 3.1 Let A  and B  be *C -algebras and I  a closed ideal in ˆA B⊗ . If ha b I⊗ ∈ , the closure 
of ( )i I  in 

h⋅ , then a b I⊗ ∈ , where i  is the natural map from ˆA B⊗  into hA B⊗ .  
Proof: Since ha b I⊗ ∈  so there exists a sequence ni I∈  such that ( ) 0n h

a b i i⊗ − →  as n  tends to 
infinity. Consider the identity map min: hA B A B⊗ → ⊗  and min

ˆ:i A B A B′ ⊗ → ⊗ . Of course, i iε′ =   on 
A B⊗ , and hence by continuity i iε′ =  . Thus mina b I⊗ ∈  and so a b I⊗ ∈  by ([12], Theorem 6).   

The following lemma can be proved as a routine modification to the arguments of ([16], Lemma 1.1).  
Lemma 3.2 For closed ideals M  of A  and N  of B , ( ) ( )ˆ ˆ ˆ

h hA N M B A N M B A B⊗ + ⊗ = ⊗ + ⊗ ⊗ .  

In order to prove our main result. We first investigate the inverse image of product ideals of 2 2
ˆA B⊗  for *C

-algebras 2A  and 2B , which is largely based on the ideas of ([10], Proposition 7.1.7)  
Proposition 3.3 For *C -algebras 1 2 1, ,A A B , and 2B  and the complete quotient maps 1 2: A Aφ → , 

1 2: B Bψ → . Let 2I  and 2J  be closed ideals in 2A  and 2B , respectively. Then  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

2 2 1 2 2 1
ˆ ˆ ˆ ˆ ˆ0 0 .I J B I J Aφ ψ φ φ ψ ψ

− − − − −⊗ ⊗ = ⊗ + ⊗ + ⊗  

Proof: By ([4], Proposition 3.2) and the Bipolar theorem, it suffices to show that  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

2 2 2 2 2 1
ˆ ˆ ˆ ˆ ˆ0 0 .I J A I J Aφ ψ φ φ ψ ψ

− ⊥ ⊥− − − − ⊗ ⊗ = ⊗ + ⊗ + ⊗   

Let ( ) ( ) ( ) ( )1 1 1 1
2 2 2 1

ˆ ˆ ˆ0 0F A I J Aφ φ ψ ψ
⊥− − − − ∈ ⊗ + ⊗ + ⊗   then ( )*1 1

ˆF A B∈ ⊗  and  

( ) ( ) ( ) ( )( )1 1 1 1
2 2 2 1

ˆ ˆ ˆ0 0 0F A I J Aφ φ ψ ψ− − − −⊗ + ⊗ + ⊗ = . Since ( ) ( )*1 1 1 1
ˆ,JCB A B A B× = ⊗ , so  

( ) ( )1 ,F v w F v w⊗ =  for some ( )1 1 1,F JCB A B∈ ×  , for all 1v A∈  and 1w B∈ . Define a bilinear map 

2 2 2:F A B× →   as  
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( ) ( )2 1 1 1, ,F v w F v w=  

where ( ) 1v vφ =  and ( ) 1w wψ = . Clearly, 2F  is well defined. Note that, for p∈ , ( )1ij pv M A  ∈   and  
[ ] ( )1kl pw M B∈ , we have ( ) [ ]( ) ( ) [ ]( )2 1, ,p ij p kl ij klp pF v w F v wφ ψ   =    . For any > 0 , there are  

( )1
2ij pv M A  ∈   and ( )1

2kl pw M B  ∈   with 1 1ijv  ≤  , 1 1klw  ≤   such that  

( ) ( ) ( )1 1
2 2 ,ij klp pF F v w   − <     . We can find ,r s∈  such that 1 < 1ijv r  ≤  , 1 < 1klw s  ≤  . By defini- 

tion, we may write  
1
ij

p ij

v
v

r
φ

    =   and [ ]
1
kl

p kl

w
w

s
ψ

  =  

where ( )1ij pv M A  ∈  , [ ] ( )1kl pw M B∈  both have norm <  1. Thus  

( ) ( ) [ ]( ) ( ) [ ]( ) ( )
1 1

1 1 2 2, , ,ij kl
ij kl p ij p klp p p p

v w
F F v w F v w F

r s
φ ψ

           > = =     
 

, and so ( ) ( )1 2p pF F≥ . 

This shows that 2 2 2:F A B× →   is jcb bilinear form. Thus it will determine a ( )*2 2 2
ˆF A B∈ ⊗ . We have 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )1 2 2 2
ˆ, ,F v w F v w F v w F v w F v wφ ψ φ ψ φ ψ⊗ = = = ⊗ = ⊗ ⊗ 

  for all 1v A∈  and 1w B∈ . 

This implies that ( )2
ˆF F φ ψ= ⊗

  on 1 1A B⊗ , and so by continuity ( )2
ˆF F φ ψ= ⊗

 . Now let  

( ) ( )1

2 2
ˆ ˆz I Jφ ψ

−
∈ ⊗ ⊗ . We may assume that < 1z

∧
. Then ( ) 2 2

ˆ ˆz I Jφ ψ⊗ ∈ ⊗  and ( )ˆ < 1zφ ψ
∧

⊗ . So 

( ) ( ) ( )1, ,1
1 1 , , ,

ˆ k k k k
k k k k mn mp nq pq

k k m n p q
z i j i jφ ψ α β α β

∞ ∞

= =

⊗ = ⊗ = ⊗∑ ∑ ∑  with 2
k
mpi I∈ , 2

k
nqj J∈  and < 1k

mpi , < 1k
nqj  

[10]. Since φ  and ψ  are complete quotient maps and  

( ) ( ) ( ) ( )( )1 1 1 1
1 2 2 1

ˆ ˆ ˆ0 0 0F B I J Aφ φ ψ ψ− − − −⊗ + ⊗ + ⊗ = , so it follows that ( ) 0F z = . Hence  

( ) ( ) ( ) ( ) ( ) ( )11 1 1 1
2 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆ0 0 .A I J A I Jφ φ ψ ψ φ ψ
− ⊥⊥− − − − ⊗ + ⊗ + ⊗ ⊆ ⊗ ⊗   

Since the annihilator is reverse ordering, so converse is trivial.   
Now we are ready to prove the main result.  
Theorem 3.4 If A  and B  are *C -algebras such that number of closed ideals in A  is finite. Then every 

closed ideal in ˆA B⊗  is a finite sum of product ideals.  
Proof. Proof is by induction on ( )n A , the number of closed ideals in A  counting both { }0  and A . If 
( ) 2n A =  then the result follows directly by ([4], Theorem 3.8). Suppose that the result is true for all C∗ - 

algebras with ( ) 1n A n≤ − . Let A  be a C∗ -algebra with ( )n A n= . 
Since there are only finitely many closed ideals in A  so there exists a minimal non-zero closed ideal, say I , 

which is simple by definition. Let K  be a closed ideal in ˆA B⊗  then ( )ˆK I B⊗  is a closed ideal in ˆI B⊗ .  

So it is equal to ˆI J⊗  for some closed ideal J  in B  by ([4], Theorem 3.8). Consider the closed ideal hK ,  
the closure of ( )i K  in 

h⋅ , where ˆ: hi A B A B⊗ → ⊗  is an injective map ([11], Theorem 1). Then 

( )h h hK I B I J⊗ = ⊗ 

  for some closed ideal J  in B  by ([17], Proposition 5.2). We first show that J J= . 

Since the map ˆ: hi A B A B⊗ → ⊗  is injective so ( )ˆ
hK A B K⊗ ⊇ . Thus ( ) ( )ˆ

h hI J A B K I B⊗ ⊗ ⊇ ⊗

  ,  

which by using ([18], Corollary 4.6), ([19], Proposition 4), and Lemma 3.2, gives that ˆ ˆI J I J⊗ ⊇ ⊗  and so 
J J⊇ . To see the equality, let j J∈  . Take any 0 i I≠ ∈  then hi j K⊗ ∈  so it belongs to K  by Proposi- 
tion 3.1. Thus ˆi j I J⊗ ∈ ⊗ . Hence j J∈ . 

As in ([17], Theorem 5.3), h h hK A J M B⊆ ⊗ + ⊗  for ( )M ann I= . Thus ˆ ˆK A J M B⊆ ⊗ + ⊗  by 
Lemma 3.2. Since M  cannot contain I , so ( ) ( ) 1 1n M n A n≤ − = − . Thus ( )ˆK M B⊗ , which is a closed  
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ideal in ˆM B⊗ , is a finite sum of product ideals by induction hypothesis. Let ( )ˆT K A J= ⊗  then clearly  

T  contains ˆI J⊗ . Corresponding to the complete quotient map : A A Iπ → , we have a quotient map 
ˆ ˆ ˆ:id A J A I Jπ ⊗ ⊗ → ⊗  with kernel ˆI J⊗  and ( )ˆ id Tπ ⊗  is a closed ideal of ˆA I J⊗  ([19], Lemma 2).  

Also ( ) ( ) 1 1n A I n A n≤ − = −  and so by the induction hypothesis  

( )
1

ˆ ˆ
t

r r
r

id T I Jπ
=

⊗ = ⊗∑  

where rI  and rJ  are closed ideals in A I  and J , for 1, ,r t= 
, respectively. Thus, by ([19], Lemma 2)  

and Theorem 3.3, ( )1
1

ˆ ˆt
r rrT I J I Jπ −

=
= ⊗ + ⊗∑ . So ( ) ( )ˆ ˆK A J K M B⊗ + ⊗   is a finite sum of product 

ideal and hence closed by ([4], Proposition 3.2). 
We now claim that ( ) ( ) ( )ˆ ˆ ˆ ˆK A J M B K A J K M B⊗ + ⊗ = ⊗ + ⊗   . 

Let ( )ˆ ˆz K A J M B∈ ⊗ + ⊗ . Since the closed ideal ˆ ˆA J M B⊗ + ⊗  has a bounded approximate identity  

so there exist ˆ ˆ,x y A J M B∈ ⊗ + ⊗  such that z xy=  and y  belongs to the least closed ideal of ˆ ˆA J M B⊗ + ⊗   
containing z  ([20], §  11, Corollary 11). This implies that y K∈  so ( ) ( )ˆ ˆz K A J K M B∈ ⊗ + ⊗  . 

Hence ( ) ( ) ( )ˆ ˆ ˆ ˆK A J M B K A J K M B⊗ + ⊗ = ⊗ + ⊗   . Therefore K  is a finite sum of product ideals.  

4. Inner Automorphisms of ˆA B⊗  
For unital *C -algebras A  and B , isometric automorphism of ˆA B⊗  is either of the form ˆφ ψ⊗  or 

ˆν ρ τ⊗  , where : A Aφ → , : B Bψ → , : B Aν →  and : A Bρ →  are isometric isomorphisms ([11], 
Theorem 4). In the following, we characterize the isometric inner * -automorphisms of ˆA B⊗  completely. 

Proposition 4.1 For unital *C -algebras A  and B , the map ˆφ ψ⊗  ( )hφ ψ⊗  is inner automorphism of 
ˆA B⊗  (resp. hA B⊗ ) if and only if φ  is inner automorphism of A  and ψ  is inner automorphism of B .  
Proof: Suppose that ˆφ ψ⊗  is implemented by ˆu A B∈ ⊗ . We will show that minφ ψ⊗  is implemented by 
( )i u , where i  is * -homomorphism from ˆA B⊗  into minA B⊗  [11]. It is easy to see that min

ˆi iφ ψ φ ψ⊗ = ⊗  .  
So, for ˆx A B∈ ⊗ , ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11 1

min i x i uxu i u i x i u i u i x i uφ ψ −− −⊗ = = = . As ( )ˆi A B⊗  is min⋅ -  

dense in BA min⊗ , so ψφ min⊗  is implemented by )(ui . Hence the result follows from ([21], Theorem 1). 
Converse is trivial.   

We now characterize the isometric inner automorphism of ˆA B⊗  for *C -algebras A  and B  other than 
nM . 
Theorem 4.2 For unital *C -algebras A  and B  other than nM  for some n∈ , the isometric inner * - 

automorphism of ˆA B⊗  is of the form ˆφ ψ⊗ , where φ  and ψ  are inner * -automorphisms of A  and B , 
respectively.  

Proof: Suppose that θ  is the isometric inner * -automorphism of ˆA B⊗ . So  
ˆθ φ ψ= ⊗  

where φ  and ψ  are * -automorphisms of A  and B , respectively or  
ˆθ ν ρ τ= ⊗   

where : B Aν →  and : A Bρ →  are * -isomorphisms, ˆ ˆ: A B B Aτ ⊗ → ⊗  is a flip map [11]. In view of 
Proposition 4.1, it suffices to show that the second case will never arise for *C -algebras A  and B  other than 

nM . Let { }0J ≠  be a proper closed ideal in B  and 1
ˆI A J= ⊗ , which is a closed ideal in ˆA B⊗  by ([12], 

Theorem 5). Since ˆθ ν ρ τ= ⊗   is inner so it preserves ˆA J⊗ . Thus, for any x J∈ , ( ) 11 x Iθ ⊗ ∈ . 
Therefore ( ) ( )1 0x Jν ⊗ + =  [19], which further gives that 0x = . Hence { }0J =  and so B  is simple. 
Similarly, one can show that A  is simple. By hypothesis there exists ˆd A B∈ ⊗  which implements θ  so  

that ( ) ( ) ( ) 1b a d a b dν ρ −⊗ = ⊗  for all a A∈  and b B∈ . Choose ,z w A B∈ ⊗  such that 
111<

4
z d d

−−
∧ ∧

− , 
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< 1z d
∧ ∧

+ , and ( ) 11 1< 1
4

w d d
−−

∧∧
− + . Thus, for 

1

r

i i
i

z x y
=

= ⊗∑  and 
1

s

j j
j

w u v
=

= ⊗∑ , we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
2

b a z a b w d a b d z a b d z a b d z a b w a bν ρ − − −

∧ ∧
⊗ − ⊗ ≤ ⊗ − ⊗ + ⊗ − ⊗ ≤ , hence  

( )
,

1, 1

11
2

r s

i j i j
i j

a x au y v aρ
= = ∧

⊗ − ⊗ ≤∑ . 

Now choose *f A∈  such that ( )1 1f f= = . Therefore, ( ) ( )
,

1, 1

1
2

r s

i j i j
i j

a f x au y v aρ
= =

− ≤∑  for all 

a A∈ . Take any b B∈ , ρ  being an isomorphism, there exists a unique a A∈  such that ( )b aρ= . Thus 

( )( )
,

1

1, 1

1
2

r s

i j i j
i j

b f x b u y v bρ−

= =

− ≤∑  for any b B∈ . Now define a finite dimensional subspace D  of B  by  

{ }span : 1,2, , , 1, 2, , .i jD y v i r j s= = =   

The above inequality implies that ,
2
b

D B b
 

≠ ∅ 
 

 , where ,
2
b

B b
 
 
 

 is the closed ball center at b  and 

radius 
2
b

. If D  is proper then Riesz Lemma implies that for 1>
2

r  there exists rx B∈  such that 1rx =  

and ( )dist ,rx D r≥ . Since ,
2
b

D B b
 

≠ ∅ 
 

  for any b B∈ , so we can choose d D∈  such that 1
2rd x− ≤ , 

and, because 1>
2

r , a contradiction arises. Therefore, D B= . Thus, by the classical Wedderburn-Artin  

Theorem, nB M=  for some n∈ . Similarly, nA M=  for some n∈ .    
However, by ([11], Theorem 5), for unital *C -algebras A  and B  with at least one being non-commutative, 

isometric inner automorphism of hA B⊗  is of the form hφ ψ⊗ , where φ  and ψ  are inner automorphisms 
of A  and of B , respec- tively. 

Corollary 4.3 For an infinite dimensional separable Hilbert space H , every inner automorphism of 
( ) ( )ˆB H B H⊗  is of the form ˆφ ψ⊗ , where φ  and ψ  are inner automorphisms of ( )B H .  
We now give an equivalent form of Proposition 4.1 in case of operator algebras. For operator algebras V  

and W , we do not know if ˆφ ψ⊗  (or hφ ψ⊗ ) is inner then φ  and ψ  are inner or not. However, if one of 
the automorphism is an identity map then we have an affirmative answer for the Haagerup tensor product. In 
order to prove this, we need the following results.  

Proposition 4.4 For operator spaces V  and W , the family { }*:R Vφ φ ∈  { }( )*:L Wψ ψ ∈  is total on 
hV W⊗ .  

Proof: For hu V W∈ ⊗ , assume that ( ) 0R uφ =  for all *Vφ ∈ . We can assume that < 1hu . Therefore,  

for 
1

i i
i

u a b
∞

=

= ⊗∑  a norm convergent representation in hV W⊗ , where { } 1i i
a ∞

=
 and { } 1i i

b ∞

=
 are strongly 

independent with 
1 2

*

1
1i i

i
a a

∞

=

<∑  and 
1 2

*

1
1i i

i
b b

∞

=

<∑ . Then we have ( )
1

0i i
i

a bφ
∞

=

=∑  for all *Vφ ∈ . From the  

strongly independence of { } 1i i
a ∞

=
, choose linear functionals *

j Vφ ∈  such that  

( ) ( )( )1 2, , ,j j ja a eφ φ − <    

where { }je  are the standard basis for 2l  by the equivalent form of ([17], Lemma 2.2). Thus 

( )
1

j j i i
i

b a bφ
∞

=

− <∑   and so <jb  . Because   was arbitrary, we conclude that 0jb =  for each j , hence  
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0u = .   
Corollary 4.5 For operator algebras V  and W , if φ  and ψ  are completely contractive automorphisms 

of V  and W , respectively. Then hφ ψ⊗  is a completely contractive automorphism of hV W⊗ .  
Proof: By the functoriality of the Haagerup tensor product, the map :h h hV W V Wφ ψ⊗ ⊗ → ⊗  is comple-  

tely contractive. One can see that hφ ψ⊗  is an algebra homomorphism. Let 
1

i i
i

u a b
∞

=

= ⊗∑  be a norm con-  

vergent representation in hV W⊗ . Since φ  and ψ  are bijective maps, so there exist unique ia V∈  and  

ib W∈ , for each i , such that ( ) ( )
1

i i
i

u a bφ ψ
∞

=

= ⊗∑ 

 . By [22], there is a new norm on V  and W  with respect  

to that V  and W  become a new operator algebras, say V  and W , and the natural maps 1θ  from V  to 
V , 2θ  from W  to W  and their inverses are completely bounded, and the maps 1θ φ  and 2θ ψ  are 
completely isometric. Therefore, ( ) ( )1 2hθ φ θ ψ⊗   is completely isometric, so for all positive integers k l≤   

( )( ) ( )( ) ( ) ( )1 2 1 2 .
h h h

l l l

i i i i i icb cb
i k i k i kV W V W V W

a b a b a bθ φ θ ψ θ θ φ ψ
= = =⊗ ⊗ ⊗

⊗ = ⊗ ≤ ⊗∑ ∑ ∑
 

  

  
   

This shows that the partial sums of 
1

i i
i

a b
∞

=

⊗∑ 

  form a Cauchy sequence in hV W⊗ , and so we may define 

an element 
1

i i h
i

z a b V W
∞

=

= ⊗ ∈ ⊗∑ 

 . Then, clearly ( )h z uφ ψ⊗ = . Thus the map hφ ψ⊗  is onto. To prove 

the injectivity of the map hφ ψ⊗ , let ( ) 0h uφ ψ⊗ =  for hu V W∈ ⊗ . Then, for 
1

i i
i

u a b
∞

=

= ⊗∑  a norm con- 

vergent representation in hV W⊗ , we have ( ) ( )
1

0i i
i

a bφ ψ
∞

=

⊗ =∑ . Thus, for any *VΦ∈ , ( )( ) ( )
1

0i i
i

a bφ ψ
∞

=

Φ =∑ . 

But ψ  is one-to-one, so ( )( )
1

0i i
i

a bφ
∞

=

Φ =∑ . Now Proposition 4.4 yields that ( )
1

0i i
i

a bφ
∞

=

⊗ =∑ . Again by 

applying the same technique we obtain 0u = .   
By the above corollary, for operator algebras V  and W  and automorphisms φ  of V  and ψ  of W , it is 

clear that if φ  and ψ  are inner then hφ ψ⊗  is. 
In the following, by a * -reduced operator algebra we mean an operator algebra having isometric involution 

with respect to which it is * -reduced, and for any * -reduced operator algebra V  having approximate identity, 
we denote by ( )P V  the set of all pure states of V . 

Corollary 4.6 For * -reduced operator algebra V  having approximate identity and any operator algebra 
W , the family ( ){ }:R P Vφ φ ∈  is total on hV W⊗ .  

Proof: Using ([23], Proposition 2.5.5), we have { } ( )( )0V co P V=  , where V  is the set of continuous 
positive forms on V  of norm less than equal to 1. Therefore, if ( ) 0R uφ =  for all ( )P Vφ ∈  then ( ) 0R uφ =   

for all Vφ ∈  . Thus ( ) ( )
1

0i i
i

a bφ ψ
∞

=

=∑  for any Vφ ∈   and *Wψ ∈ . Since the algebra V  is * -reduced, so 

it admits a faithful * -representation, say 1π , on some Hilbert space, say 1H . For a fix ζ  in the closed unit 
ball of 1H , define *Vφ ∈  as ( ) ( )1 ,a aφ π ζ ζ=  for a V∈ . One can easily verify that Vφ ∈  . As 1π  is  

faithful so φ  is one-to-one. Therefore, ( )
1

0i i
i

a bψ
∞

=

=∑  for any *Wψ ∈  and hence the result follows from 

Proposition 4.4.   
Corollary 4.7 For any operator algebra V  and * -reduced operator algebra W  having approximate 

identity, the family ( ){ }:L P Wψ ψ ∈  is total on hV W⊗ . 
The following can be proved on the similar lines as those in ([21], Lemma 2) by using ([23], Proposition 

2.5.4), so we skip the proof.  
Lemma 4.8 For unital Banach * -algebra V  and any Banach algebra W  and a pure state φ  of V , we 

have ( ) ( ) ( ) ( )R cxd R c R x R dφ φ φ φ=  for hx V W∈ ⊗  and ( ), hc d Z V W∈ ⊗  (Similarly, for any Banach algebra 
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V  and unital Banach * -algebra W , ( ) ( ) ( ) ( )L cxd L c L x L dψ ψ ψ ψ=  for hx V W∈ ⊗  and ( ), hc d V Z W∈ ⊗ , 
( )P Wψ ∈ ). 

Theorem 4.9 Let V  and W  be unital operator algebras. Suppose that W  is * -reduced and V  has a 
completely contractive outer automorphism. Then hV W⊗  has a completely contractive outer automorphism.  

Proof: Let Φ  be a completely contractive outer automorphism. Define a map µ  from hV W⊗  into  

hV W⊗  as ( )
1 1

t t

i i i i
i i

a b a bµ
= =

 ⊗ = Φ ⊗ 
 
∑ ∑ . By Corollary 4.5, µ  is a completely contractive automorphism of  

hV W⊗ . Assume that µ  is a inner automorphism implemented by u . Then ( ) 1x uxuµ −= . As 0u ≠  so we 
can find the pure state ψ  on W  such that ( ) 0L uψ ≠  by Corollary 4.7. Let ( ):u L uψ ψ= . Note that for any 
b W∈  we have ( ) ( )1 1u b b u⊗ = ⊗ . This implies that ( )1 c

hu W∈ ⊗ , the relative commutant of 1 h W⊗  
in hV W⊗ , which is ( )hV Z W⊗  by ([18], Corollary 4.7). For a V∈ ,  

( )( ) ( )( )( ) ( )1 1u a L u a L a u a uψ ψ ψ ψ= ⊗ = Φ ⊗ = Φ  by the module property of the slice map. Since  
( )hu V Z W∈ ⊗  is invertible, so uψ  is invertible by Lemma 4.8. Therefore, ( ) 1a u auψ ψ

−Φ =  and hence Φ  is 
inner, a contradiction. Thus µ  is an outer automorphism.   
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