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Abstract

It is generally known that under the generalized Riemann hypothesis one could establish the twin
primes conjecture by the circle method, provided one could obtain the estimate o(nlog‘zn) for

the integral of the representation function over the minor arcs. One of the new results here is that
the assumption of GRH can be removed. We compare this and other such sufficiency results with
similar results for the Goldbach conjecture.
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1. Introduction
Let n>n, and log®n<P<n" for €>0. Let X, =% (n)—>0 rapidly. When 0<h<q<P and (hq)=1
. h h .
let M (h,q) denote the closed interval h— xo,a+ xo} , a so-called major arc.
It is easily shown, for any choice of P, thatall the M (h, q) are disjoint and contained in the closed interval

[%,14 %]
For each n let m(n) be those points in [X0,1+ XO] which are not in any closed neighborhood (major arc)

of radius x, about any rational number g,where (h,q)=1 and q<P.

For each n let m*(n) be those points in [XO,1+X0] which are not in any closed neighborhood (major arc)
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of radius x, about any rational number E,where (h,q)=1 (a,n)=1 and q<log®n.
q

Let r(n) denote the number of ways n (even) can be represented as a sum of two primes.
Let r'(n) denote the number of twin primes less than or equal to n.

Let f(x,v)= pZﬁ‘&e(px) where €(z) =€ (v20).

Letg(x,v)= 2<Z“mq%(v >2),9(x,v)=0(v<2).
Ls[v]= zﬁ —g(0v)~ [ﬁ) Ls[0] = Ls[1] = 0.

In [1] the following two theorems are established: log™®
Theorem 1.1 Under the generalized Riemann hypothesis with P=n‘ and x, ~ 2%

J
m(n)

Theorem 1.2 Let P=10g”n and x, =

if
fz(x,n)e(—nx)dx=0(nlog’2 n),then r(n)>0 foralleven n>n.

log™ n

if

;[ )f ?(x,n)e(-nx)dx =0(nlogn), then r(n)>0 foralleven n>n,.
In [2] the following two theorems are established: P
Theorem 1.3 Under the assumption that Siegel zeros do not exist with P = exp(c log"? n) and x, = - if

(j)fz(x,n)e(—nx)dx:o(nlog’zn), then r(n)>0 foralleven n>n,.
Theorem 1.4 Let P=exp(clog“n) and x0=%.lf
!)f2(x,n)e(—nx)dx=o(nP’V32 log*n), then r(n)>0 foralleven n=n,.

The proof of Theorem 1.3 and, in particular, the proof of Theorem 1.4 is very complicated.

In Section 6 of [2] it is shown, by a very complicated argument, that a particularly natural approach for
eliminating the condition (q,n)=1 in Theorem 1.2 does not work.

As we will now see, the situation with regard to the twin prime conjecture is significantly, very less
complicated. The reason is primarily because we only need to consider the Ramanujan sums Cq (2) rather than

the sums C, (n) , which appear in all of the theorems above, related to the Goldbach conjecture.
In Section 2 we will establish

Theorem 1.5 Let P=1l0g®°n and x, = cr(n)> o if ]
n goes to infinity in some suitable sequence. " m(n)

log® n

f (x,n)|2 e(-2x)dx=o(nlog*n) as

2. A Proof of Theorem 1.5

Xo+1

r'(n)= J' |f (x,n)|2 e(—2x)dx.
Xo
We decompose the above integral

r'(n)= m{ﬁ)| f(x, n)|2 e(=2x)dx+ MJ(.H) f(x, n)|2 e(-2x)dx.

r'(n)=A(n)+B(n).

It is immediate by the prime numbers theorem that



C.]. Mozzochi

A(n) :O(nlog’l n).

By definition
[1txnfe(d= ¥ ¥ T(ha)
M(n) g<log!®n O<h<
(h.a)=1
where

h
—+Xg

q
T(h,q)= I |f(x,n)|ze(—2x)dx.
h
a—xo
Lemma 2.1 Let g<log®n, |y|<x,,(h,q)=1 and n>n,. Then

(] 2o

<nlog™®n

This is Theorem 58 in [3].
Lemma 2.2 Under the hypothesis of Lemma 2.1 we have

[t ion

Proof. This follows immediately from Lemma 2.1 and the trivial inequalities |f(x,n)|$n and
lg(y,n)|<n and the fact that if |a|sn and b<n,then |a2—b2|§2n|a—b|.
u?(q
_L|g(y,n)|2

Hence it is immediate that
‘f (E+ y nj
q #°(q)
f (E+ Y, n]
q

By the change of variable y = [x —2 we have
2h)
T(h,q):e (——) J.
q
However, by (2.1) we have
uz(q)( h]% 2
e(—-2y)dy— €| —2— g(y,n) e(-2y)dy
(-2n)dy=ove 25| [ vl e(-20)

<C,n*log™®n.

2

<C,n*log™® n.

2

e(—2y)dy.

2

—Xo
Xg
G
q)5| \d
hoo v
f(—+ y,n} 5
g ¢°(a)
=2x,C,n*log™® n=C,nlog™n.
Xg
Let T,(n)= | |gz(y,n)|ze(—2y)dy so thatif (h,q)=1 g<log™n, then
i ,
u®(q) [ ZhJ
T(h,q)————2T, (n)e| -~
Let T(n)= > log™*m,, log™ m, with the condition of summation n>m, >2,n>m,>2 and m,-m, =2.
It is easy to Seé that

-Xo

)

‘]

-Xo

Xg
dy < f C,n? log™® ndy

X

|2

lg(y.n)

<C,nlog™ n.

N |

T(n)= |q(y,n)|2 e(-2y)dy and %nlog‘2 n<T(n)<n.

N
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For (h,q)=1q<log*n we have

6_2_h u"(a) =T, (n) < —~ nlog™n
[ q]UZ(q)‘lTU T ()< e (anog ).
Hence for (h,q)=1 and g<log"n
_uz(q) n)e 2h nlo n+— nlog™n);
(n9) ¢2(q)T()( qj Canlog ™+ o7 gy 2nea )

so that for some fixed q<10g™n we have:

u’ 2h
e (1) -5 07 ) 221 <
(ha)=t #*(q) " Thatl g
But ¢(q)<log*n and by definition

(c,nlog™ n)g(q)+ 431 (2nlog™ n)¢** (q).

Z(—z—hj —c,(2);

(h.a)=1

so that it follows immediately that

2 u*(a) cenloa® st (onl0gn
fhfg)éjl-r(h’q>_¢2(q)-r(n)cq (2) <G, log ¢4/3(Q)<2 log )

Now summing over all ¢ <10g™n we have

> 2t (ha)-T(n) % S @c (o)

g<log N(h, q) g<log™®n ¢ (q) q

-39 15 1 -10
S(Cznlog n)(log n) q<% n¢4/3—()(2nlog )

<C,nlog™ n+C, (2n log™ n) <C,nlog™n

since by Theorem 327 page 267 in [3]
1

Hence

r'(n)-T(n) )3 uz(q)c (2) <k(n)nlog?n+C,nlog™n

where k(n)— 0. Now let

D YL )
R( ) q<|og15n¢ (q)C (2)

U ()
S = §¢2(q) C,(2)

Lemma 2.3

g;z Q)Cq(n)—zuz(q)c (n)=0(d(n)(loglogay)2 y*l)_

Proof. [4] page 211.
It is immediate by Lemma 2.3 that
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What remains to be done is to show S is bounded away from 0.
Let

Since u(q), #(q) and C,(2) are all multiplicative functions of q, f isamultiplicative function of .
Also, by means of the trivial estimate on Cq (2) , hamely 2, and a direct application of Theorem 327 page 267
in [5] we have

§|f(q)|szg¢th) <o;

so that by Theorem 2 [3] page 3 we have

Hence

1 1 i 1
s=J7|1 C (2)|=2x|1- 217 1-— |=1.
1:[[+(|0—1)2 p()J "TZ[ (lo—l)zJ> H( mz)
3. A Primitive Formulation of the Circle Method

1) Part | log"™
We assume n (even) >C,. XO:(M}
n

Foreach n let E, =[x5,1-X,].
Let r(n) be the number of representations of n as the sum of two primes, each of which is less than n.
Clearly,

1+Xg

r(n)= f fz(x,n)e(—nx)dx, for each even n.
Xo

We decompose this integral
r(n)=m(n)+T(1,1),

where
m(n)=!f2(x,n)e(—nx)dx, T(1,1)=1+J‘:0f2(x,n)e(—nx)dx.

Clearly, by Theorem 55 in [3] and the last paragraph on page 63 in [3] we have
| f(1,v)-g (0,v)| < nlog™®n, uniformly (0 <v <n).
By direct application of the easily established Equation (151) in [3]

v

(% +X%,V)=¢€(vx,) f (xl,v)—Znixzje(uxz) f(x,u)du, (3.0)

0

and the Equation (204) in [3]
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v

9 (% +%,,V) = €(vx, ) (%, V) - 2mix, [e(ux, ) g (%, u)du. (3.0)

0

We have for |y| <X,

|t (1+y.,n)-g(y,n) <(nlog** n)

98+g

3.2)
(1+2mx,n) < C;nlog™

By the trivial inequalities |f (x,n)[<n and |g(y, n)|<n and the fact that if [aj<n and |b|<n, then
| b2|<2n|a b| with a-fEl+y n) and b=g(y,n), we have for |y|<Xx,

|70+ y.n)- 07 ()| <Canlog . 3

By the change of variable y=(x—1), we have

T(11)= f f2(1+y,n)e(-ny)dy;

—Xg

S0 that
Xo Xg )
[ £2(1+y.n)e(-ny)dy— [ g*(y.n)e(-ny)dy| < | |f2(1+ y,n)—gz(y,n)|dy<C nlog™**% n,
—Xp —Xo —Xo
Xo
Let T,(n)= [ g*(y.n)e(-ny)dy
—Xo
[T (11)-T,(n)| < C;nlog***n
Let T(n)= > log™ m, log™ m,. (3.4)
mlzz,mzleZ]lf;rq:izthrmZ:n
Clearly

N |

g% (y,n)e(—ny)dy.

T(n)=

N

Also, the number of terms on the right hand side of (3.4) is (n—3) and each term is greater than log™n
and less than 1 so that

%nlog’2 n<T(n)<n

1
< >2
|S|n7ty| 2|y| (m O<lyl= j

Hence by definition of g(y,n) and Abel's lemma we have

- 1
s <™ (0<hyl=3 )

Se(my)<

m=2

so that

1

2
[T(n)-T,(n)|<2[y?dy <C,x" =C,nlog *n. (35)
%

Hence,
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[T (L1)-T (n)|<C;nlog™**** n+C,nlog >/ n. (3.6)

Let S(n)=1.Then [T(n)S(n)-T(n)=0
so that
|r(n)=T (n)S(n)| < Cynlog™* n+|m(n);
so that we have
r(n)>0ifm(n)= o(n log™ n) asn (even) goes to infinity.

Remark. Unfortunately, the integral m(n) cannot be o( j; since for almost all n, the integral is

log“n

asymptotically (S(n)- )[ j where S(n) is the usual singular series.

log®n
We assume n>C,.Foreach n let E, =[%,,1-X].

Let r(n) be the number of twin primes, each of which is less than n .
Clearly,

1+Xg

j|fxn| ~2x) dx.

We decompose this integral

r(n)=m(n)+T(1,1),

where
r(n)=m(n)+T(1,1),
where
1+xg
m(n) = [ |f (xn)[ e(=2x)dx, T (12)= [ | (x.n)[ e(-2x)dx.
En 1-x

Immediately, from (3.3) we have
“f (1+ y,n)|2—|g(y,n)|2‘£|f2(1+ y,n)—g’(y, n)|<C n?log %" n.

By the change of variable y=(Xx—1), we have
T(1)= [ [f @y (-2y)a

so that

96+25

Xg X
j|f(1+y,n)|ze(—2y)dy—Jg|g(y,n| e(-2y)dy| < j“f 1+yn| ~la(y.n | ‘dy<C nlog

—Xo —Xp
Let
= [lo(y.n) e(-2y)dy.
[T (L1)-T,(n)| < Cgnlog **+*
Let
T(n)= > log™ m, log™ m,. (3.7)

M
my >my,my>2 and my —my =2.
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Clearly,

T(n)=[|a(y.n)[ e(-2y)dy.

|
o N e

Also, the number of terms on the right hand side of (3.7) is (n—3) and each term is greater than log™n
and less than 1 so that

%nlog’2 n<T(n)<n.
Hence by definition of g(y,n) and Abel’s lemma we have

- 1
sty <ly* (0<hyl<3

so that
1
2
[T (n)-T,(n)| <2[y dy <C,nlog */n. (3.8)
X0
Hence
[T (1,1)-T(n)|<Csnlog *** n+C,n log™®*) n, (3.9)
Let S(n)=1. Then [T(n)S(n)-T(n)=0;
so that

|r(n)—T (”)S(n)| < C,nlog™**) n+|m(n)|;

so that we have r(n)— o if m(n)= o(n/log n) as n goes to infinity in some suitable sequence.
2) Part 11

For each (even) n>C, let p, be a prime in {2(Iog%+%),4(log"n+%ﬂ. Let E, be those points in

[%,,1+%,] which are not in [1—x0,1+xo] and not in any closed interval of radius X, about any rational

h
number — where

Py

O<h<np,.
Letm =[Iogo1 n].

Letf,(x,v)= > €(px).

p<v
p=1mod p,
p=2 mod py,

p=m mod Pn

Let r(n) be the number of representations of n as the sum of two primes, which are limited to those
primes inthe m arithmetic progressions mod p,,.
Clearly,

1+xg

r(n)= [ £2(x.n)e(-nx)dx.
Xo
We decompose this integral

r(n)=m(n)+T (L,1)+ > T(h,p,).

O<h<p,
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where

T*(ll)zjjioff(x n)e(-nx)d
T(h pn):phnj' f2(x,n)e(-nx)dx,(0<h<p,),

1+xg

Im(n)|< Hf (x,n)[ dx<C,

m2n n
=G,
( D, ) logn Iog("*l’”l) n

1+Xg

T (L) =T@LY)+ [ (£7(x.n)—f*(x,n))e(-nx)dx

1-%o

Conjecture 1.

1+Xg

1(n)= _[ (flz(x,n)— fz(x,n))e(—nx)dx=o(I n2 ]asn (even) goes to infinity.

1%

We now estimate T (h,p,),0<h<p,.

(o] 2 {2) 5 {2 2 (B

p=1 mod Pn p=1 mod Pn p=mmod p,

p=m mod Pn

Ame{Zran
{0~ 5 )i
(2238

so that uniformly 0<v<n

[Dhtana- (2 tana 8

But consider

—100

<nlog

-100

<nlog™" n.

Pn Py

Hence for 0<h< p, uniformly 0<v<n

(pn Mz( j]vﬁ([pvv])

—100

<C,mnlog
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So by (100) and (101) for |y|<X,,(0<h<p,)

h o (1h))g(y.n)
fl—+y,n |- -
[pn”n] [Iz{pj] 4(p,)

i“e[lh]g(y,n)
But since m<(p,-1)=¢(p,). W

<Cy,mnlog™***n.

f £l+ Y, nj
Pn
equalities immediately below (3.2) for |y|<X,,(0<h<p,)

fz(pln+ y,nj—(g{gn iz(()gnn)) < C,mn*log™*"n.

S (S

Hence for |y|<X,,(0<h<p,)

<n and since <n, we have by the in-

But

2
N
[y y,nj— gz(y ) <C,mn?log*** n+C,m’n’log*?n (3.10)
n ¢*(pn)
By a change of variable y:[x—ij we have
Pn
X9
T(hp,)= (_n_hj | f2[1+ y,n}(—ny)dy.
pn 7)(0 pﬂ
However,
e[——] jf [l+y n}( ny)dy — 2; { ]Ig (y,n)e(—ny)dy
) Py ¢ (py) U P )5,
Xo 2
< I fz[L-i- y,nj—w dy <C,mnlog " n+C,m?nlog™’*n.
! ¢°(pn)
Let

T.(n)= _T g?(y,n)e(-ny)dy.

Hence, if O<h<p,,

<C,m?nlog™?%*n,

Let T(n)= Z log™ m, log™ m,.
>y My >3 arctmy +mp =
By (3.5) we have
[T (n)-T,(n)|<C,nlog **/n,

and
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%nlog‘2 n<T(n)<n.

But
nh nlog ®n
€ T C,—————
M ](cﬁ () J' ()-T()=<C, ¢ (Pp,)
Hence, if 0<h<p,,
T(h p,)- T(n) e[—n—hJ <C,m’nlog™*n+C M
n ¢2(pn) pn 16 4 ¢2(pn)
so that
T(n) B nlog 2+e
T(h,p,)-—=C <C,m’nlog*n+C, ———
O<hz<:pn ( ) ¢2(pn) pn() 17 4 ¢(pn)
where
nh
C, (n)= > e(——].
O<h<p, pn
But by (3.6) we have
[T (L1)-T (n)[<Cynlog I n
so that
CPn (n) 0426, +¢
th T(h p,)+T(L1)-T(n)| 1+ 7 (o) <Cy,hlog n;
<h<p, n
so that
1+C
r(“)_T(“)(;Z#(;)J <Cynlog " ?4* n+ I (n)[+|m(n)|.
Let

By Theorem 272 in [5]
-1 if (n,p,)=1
Cp (n): ( -p )
" (p,-1) if (n,p,)>1

sothat S(n)> 1, since we assume n>C,.

Hence

[r(n)—=T(n)S(n)|<Cynlog "*** n+|1(n)+|m(n)|

sothat r(n)>0 if Conjecture 1 is true.

Let r(n) be the number of twin primes, each of which is in one of the arithmetic progressions mod p,
defined above.

Clearly,

1+Xg

n)—Hf xn| (-2x)dx.
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We decompose the integral
r(n)=m(n)+T"(L1)+ > T(h, p,), where

O<h<p,

”f xn| —2x)dx,

1+xg

fon| 2xd

1+xg

T (1) =T (L1)+ j(|f (e =[f () Je(-2x)ae

1-x9

Conjecture 2.

n) :1+JX0 (| fl(X,n)|2 _| f (x,n)|2)€(—2x)dx = 0[|0;2

1-xg

infinity in some suitable sequence.
From (3.10) we have for |y|<x,,(0<h<p,)

2 2
(o] ot

AT IR
By change of variable y = (X—L] we have

n

T(h,q):e(_Zh)f fz(l+y,nj e(-2y)dy.
pn 7X0 pn
However,
on\ % | (h ? 1 (—2h
el — | [[f| —+yn| e(-2y)——— [ j g(y,n) e(-2y)dy
ST rwn) <Con—gy ST Itk 2
XO h |g y’ | -26
< || f|—+y,n dy <C,,m’nlog*“n.
NG ] # ()|
Let

Hence, if 0<h< p,

Clearly,

],as n goes to
n
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So that by (3.8)
[T (n)-T,(n)|<C,nlog >/ n

and %nlog’2n<T(n)<n.

2h 1 nlog™*n
= T(n)-T,(n)|<C,——
( pn](qﬁz(pn)J' (m-T(m) <. ¢*(py)
Hence, if 0<h<p,,
T(n) ( 2hJ 2 20 nlOQ_(2+E)n
T(hp,)- €| — | <C,mnlog™""*“n+C, ————;
(hp.) #(p) L op ) Y8 (p)
so that
T(n) s nlog ** n
T(hp,)- C, (2)[<C,, log "4 n+C,————
&, ) =g 0 (7)) <Ca T o(p)
where
2h
Cpn (2): Z [__]
O<h<pp pn
But by (3.6)
[T(11)-T(n) <Cunlog *n;
so that
c, (2 _os2
> T(h,p,)+T(L1)-T(n)[ 1+ <C,,nlog ?"?4*n,
O<h<p, ¢ (pn)
Hence
C (2
r(n)—T(n)(1+2”“—()J < Cpnlog ?* n+[1 (n)|+|m(n)|.
¢*(pa)
C (2
LetS(n):(1+ 2”“( )J S(n)>1 ifn>C,.
# (py) 2
Hence

|r(n)=T (n)S(n)| < Cpnlog 2 n+|1(n)|+|m(n)|

so that r(n) — oo; if Conjecture 2 istrue, as n goes to infinity in a sequence that satisfies the conjecture.

4. Some Heuristics
Theorem 4.1 If

£2(x,n)e(=nx)dx :o[ n j

[(2+50)(2+%0)]-M(n) log?n

then every sufficiently large even integer is the sum of two primes, where M (n) is an exceptional set, whose
measure goes to O with n .
Proof. This is established in [1].
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Theorem 4.2 Let m be an arbitrary fixed integer. Then

jr M) g, o 1agiogn)

uniformly for almost all te(-1/2,1/2).
Proof. This deep result is immediate by (5-2) in [6].
There is no compelling reason to assume Theorem 4.2 is not true for t=0.
It is worthwile to investigate if Carleson’s proof can be modified to establish Theorem 4.2 with m replaced

with n and 0(|oglogn) replaced with o[l nz ]
og®n

In [7] Tao presents a heuristic argument to establish that the major arc contribution in the circle method is

O[I n2 ] He states that his argument can be made rigorous.
0og°n

However, it follows from the proof of Theorem 1.5 that the major arc contribution is not o(

sequence of n.

J in any
log“n

But it is well known that r'(n) = 0[ j so that the contribution of the minor arc in the circle method

log“n

approach to the twin primes conjecture (Theorem 1.5) is o( ] which makes plausible that the required

log=n

og’n

It is plausible that in Theorem 1.3

T2 (xom)e(-mojox - o(

estimate of O(I n j might be true.

f

m(n)

f(x, m)|2 e(—2x)dx)

where the latter integral is that of Theorem 1.5, which makes plausible that the required estimate of o( n2 j
might be true. 0g-n

Those, who seriously attempt Conjecture 2 have the advantage that there is some degree of freedom in the
choice of m :[Iogf’l n| and in the choice of p, foreach n;and the o(n log™ n) estimate is required only
as n goes to infinity in some suitable sequence.

Acknowledgements
I thank R. C. Vaughan for the Remark in Part I, Section 3.

References
[1] Mozzochi, C.J. and Balasubramanian, R. (1978) Some Comments on Goldbach’s Conjecture. Report No. 11, Mittag-
Leffler Institute.

[2] Balasubramanian, R. and Mozzochi, C.J. (1983) Siegel Zeros and the Goldbach Problem. Journal of Number Theory,
16, 311-332.

[3] Estermann, T. (1961) Introduction to Modern Prime Number Theory. Cambridge Univ. Press, London/New York.

[4] Montgomery, H.L. and Vaughan, R.C. (1973) Error Terms in Additive Prime Number Theory. Quarterly Journal of
Mathematics, 24, 207-216.

[5] Hardy, G.H. and Wright, E.M. (1965) An Introduction to the Theory of Numbers. 4th Edition, Oxford University Press,
London/New York.

[6] Carleson, L. (1966-1967) Sur la convergence et I'order des gradeur des somes partielles des series de Fourier. Marseille
Notes.

[7] Tao, T. (2012) Heuristic Limitations of the Circle Method. Blog Post 20 May 2012, 1-11.



	A Comparison of Sufficiency Condtions for the Goldbach and the Twin Primes Conjectures
	Abstract
	Keywords
	1. Introduction
	2. A Proof of Theorem 1.5 
	3. A Primitive Formulation of the Circle Method 
	4. Some Heuristics
	Acknowledgements
	References

