
Natural Science, 2014, 6, 552-564 
Published Online April 2014 in SciRes. http://www.scirp.org/journal/ns 
http://dx.doi.org/10.4236/ns.2014.67055  

How to cite this paper: Majerník, V. (2014) Entropy—A Universal Concept in Sciences. Natural Science, 6, 552-564. 
http://dx.doi.org/10.4236/ns.2014.67055 

 
 

Entropy—A Universal Concept in Sciences 
Vladimír Majerník 
Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia 
Email: Eva.Majernikova@savba.sk 
 
Received 24 February 2014; revised 24 March 2014; accepted 31 March 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
Entropy represents a universal concept in science suitable for quantifying the uncertainty of a se- 
ries of random events. We define and describe this notion in an appropriate manner for physicists. 
We start with a brief recapitulation of the basic concept of the theory probability being useful for 
the determination of the concept of entropy. The history of how this concept came into its to-day 
exact form is sketched. We show that the Shannon entropy represents the most adequate measure 
of the probabilistic uncertainty of a random object. Though the notion of entropy has been intro- 
duced in classical thermodynamics as a thermodynamic state variable it relies on concepts studied 
in the theory of probability and mathematical statistics. We point out that whole formalisms of 
statistical mechanics can be rewritten in terms of Shannon entropy. The notion “entropy” is differ- 
ently understood in various science disciplines: in classical physics it represents the thermody-
namical state variable; in communication theory it represents the efficiency of transmission of 
communication; in the theory of general systems the magnitude of the configurational order; in 
ecology the measure for bio-diversity; in statistics the degree of disorder, etc. All these notions can 
be mapped on the general mathematical concept of entropy. By means of entropy, the configura- 
tional order of complex systems can be exactly quantified. Besides the Shannon entropy, there ex- 
ists a class of Shannon-like entropies which converge, under certain circumstances, toward Shan- 
non entropy. The Shannon-like entropy is sometimes easier to handle mathematically then Shan-
non entropy. One of the important Shannon-like entropy is well-known Tsallis entropy. The ap- 
plication of the Shannon and Shannon-like entropies in science is really versatile. Besides the 
mentioned statistical physics, they play a fundamental role in the quantum information, commu- 
nication theory, in the description of disorder, etc. 
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1. Introduction 
At the most fundamental level, all our further considerations rely on the concept of probability. Although there 

http://www.scirp.org/journal/ns
http://dx.doi.org/10.4236/ns.2014.67055
http://dx.doi.org/10.4236/ns.2014.67055
http://www.scirp.org/
mailto:Eva.Majernikova@savba.sk
http://creativecommons.org/licenses/by/4.0/


V. Majerník 
 

 
553 

is a well-defined mathematical theory of probability, there is no universal agreement about the meaning of 
probability. Thus, for example, there is the view that probability is an objective property of a system and another 
view that it describes a subjective state of belief of a person. Then there is the frequentist view that the probabil- 
ity of an event is the relative frequency of its occurrence in a long or infinite sequence of trials. This latter inter- 
pretation is often employed in the mathematical statistics and statistical physics. The probability means in every- 
day life the degree of ignorance about the outcome of a random trial. This is why the probability is commonly 
interpreted as degree of the subjective expectation of an outcome of a random trial. Both subjective and statis- 
tical probability are “normed”. It means that the degree of expectation that an outcome of a random trial occurs, 
and the degree of the “complementary” expectation, that it does not, is always equal to one [1]1. 

Although the concept of probability is here covered in a sophisticated mathematical language, it expresses 
only the commonly familiar properties of probability used in everyday life. For example, each number of spots 
at the throw of a simple die represents an elementary random event to which a positive real number is associated 
called its probability (relation (i)). The probability of two (or more) numbers of spots at the throw of a simple 
die is equal to the sum of their probabilities (relation (iii)). The sum of probabilities of all possible numbers of 
spots is normed to one (relation (iv)). 

The word “entropy”2 was first used in 1984 by Clausius in his book Abhandlungen über Wärmetheorie to de- 
scribe a quantity accompanying a change from the thermal to mechanical energy and it continued to have this 
meaning in thermodynamics. Boltzmann [2] in his Vorlesungen über Gastheorie presented the statistical inter- 
pretation of the thermodynamical entropy. He linked the thermodynamic entropy with the molecular disorder. 
The general concept of entropy as a measure of uncertainty was first introduced by Shannon and Wiener. Shan- 
non is also credited for the development of a quantitative measure of the amount of information [3]. Shannon 
entropy may be considered as a generalization of entropy, defined by Hartley, when the probability of each 
event is equal. Nyquist [4] was the first author who introduced a measure of information. His paper has largely 
remained unnoticed. After publication of Shannon seminal paper in 1948 [3], the use of entropy as measure of 
uncertainty grew rapidly and was applied with various successes in most area of human endeavor. 

Mathematicians were attracted to the possibility of providing axiomatic structure of entropy and to the rami- 
fication thereof. The axiomatic approach to the concept of entropy attempts to find a system of postulates which 
provides a unique mathematical characteristic of entropy3 and which adequately reflects the properties asked 
from the probabilistic uncertainty measure in a diversified real situation. This has been very interesting and 
thought-provoking area for scientists. Khinchin [5] was the first who gave a clear and rigorous presentation of 
the mathematical foundation of entropy. A good number of works have been done to describe the properties of 
entropy. An extensive list of works in this field can be found in the book of Aczcél and Daróczy [6]. 

The fundamental concept for the description of random processes is the notion of the random trial. A random 
trial is characterized by a set of its outcomes (values) and the corresponding probability distribution. A typical 
random trial is the throw of a single dice characterized by the following scheme ( 1 2 6, , ,S S S  are the positions 
of dice after its throwing) 

S S1 S2 S3 S4 S5 S6 
P 1/6 1/6 1/6 1/6 1/6 1/6 
x 1 2 3 4 5 6 

 

 

1The concept of probability was mathematically clarified and rigorously determined about sixty years ago. The probability is interpreted as a 
complete measure on the σ-algebra γ of the subsets S1, S2,···Sn of the set of the elementary random events B. The probability measure P ful- 
fils following relations: 

(i) ( ) 0,i iP S S γ≥ ∈  

(ii) From i jS S⊂  it follows ( ) ( ) , ,i j i jP S P S S S γ≤ ∈ . 

(iii) If 1 2, , , nS S S
 are such elements of σ-algebra γ, for which 0,i jS S i j= ≠ , then it holds the following equation: 

( ) ( )1 2
1

.
n

n k
k

P S S S P S
=

+ + + =∑  

(iv) ( ) 1P B = . 

The σ-algebra, on which the set function P is defined, is called the Kolmogorov probability algebra. The triplet [ ], ,B Pγ  denotes the 

probability space. Under a random variable x  we understand each real-valued measurable function defined on the elementary random 
events B [1]. 
2The word “entropy” stems from the Greek word “ øπτρ η ” which means “transformation”. 
3Entropy is sometimes called “missing information”. 
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To any random trial it is assigned a random variable x  which represents a mathematical quantity assuming 
a set of values with the corresponding probabilities (see, e.g. [1]). 

There are two measures which express the uncertainty of a random trial: 
(i) The moment measures containing in its definition both the values assigned to trial outcomes and the set of 

the corresponding probabilities. The moment uncertainty measures are given as a rule by the higher statistical 
moments of a random variable x . As it is well-known, the k -th moment about zero (uncorrelated moment) 

kx , and the central moment of the k -th order k
cx  assigned to a discrete random variable x  with the proba- 

bility distribution ( ) ( ) ( ){ }1 2, , , iP P x P x P x=  , is defined as 

( ) ( ) ( )kk
i i

i
x P x x= ∑  

and 

( ) ( ) ( ) ( )0 0, ,k
c i i i i

i i
x P x x x x P x x= − =∑ ∑  

respectively. 
The statistical moments of a random variable are often used as the uncertainty measures of the random trial, 

especially in the experimental physics, where, e.g., the standard deviation of measured quantities characterizes 
the accuracy of a physical measurement. The moment uncertainty measures of a random variable are also used 
by formulating the uncertainty relations in quantum mechanics [7]. 

(ii) The probabilistic or entropic measures of uncertainty of a random trial contain in their expressions only 
the components of the probability distribution of a random trial. 

To determine the notion of entropy we consider quantities, called as partial uncertainties which are assigned 
to individual probabilities , 1, 2, ,iP i n=  . A partial uncertainty we denote by symbol iH . In any probabilistic 
uncertainty measures, a partial uncertainty is function only of the corresponding probability ( ) ,i iH f P=  

1, 2, ,i n= 
. The requirements asked from a partial uncertainty ( )iH P  are the following [8]: (see Appendix): 

(i) It is a monotonously decreasing continuous and unique function of the corresponding probability; 
(ii) The common value of the uncertainty of a certain outcome of two statistically independent trials ( ),i jH P P  

is additive, i.e. 

( ) ( ) ( ), ,i j i jH P P H P H P= +                                (1) 

where iP  and jP  are the probability of the i-th and j-th outcome, respectively; 
(iii) ( )1 1iH P e= = . 
It was shown that the only function which satisfies these requirements has the form [8] 

( ) log .i iH P P= −  

The mean value of the partial uncertainties 1 2, , , nH H H  is 

log .
n

i i
i

H P P= −∑                                     (2) 

The quantity H  is called information-theoretical or Shannon entropy. We denote it by symbol S. Shannon 
entropy is a real and positive number. It is a function only of the components of the probability distribution 

{ }1 2, , , nP P P P≡   assigned to the set of outcomes of a random trial. 
Shannon entropy satisfies the following demands (see Appendix): (i) If the probability distribution contains 

only one component, e.g. 1, 1, 2, ,iP i n= =  , and the rest components are equal to zero, then ( ) 0S P = . In 
this case, there is no uncertainty in a random trial because an outcome is realized with certainty. 

(ii) The more spread is the probability distribution P , the larger becomes the entropy S . 
(iii) For a uniform probability distribution uP , ( )uH P  becomes maximal. In this case, the probabilities of 

all outcomes are equal, therefore the mean uncertainty of such a random trial becomes maximum. 
One uses for the characterization of a random trial a random scheme. If x  is a discrete random variable as- 

signed to a random trial then its random scheme has the form 
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S 1S  2S  nS  

P ( )1P x  ( )2P x  ( )nP x  

X 1x  2x  nx  

1 2, , , nS S S  are the outcomes of a random trial (in quantum physics, e.g. the quantum states), 
( ) ( ) ( )1 2, , , nP x P x P x  are their probabilities and 1 2, , , nx x x  are the values defined on 1 2, , , nS S S  (in 

quantum physics, e.g. the eigenvalues). A probability distribution, { }1 2, , , ,nP P P P≡   is the complete set of 
probabilities of all individual outcomes of a random trial. 

We note that there is a set of the probabilistic uncertainty measures defined by means of other functions then 
( ) logiH P P= − . They are called nonstandard or Shannon-like entropies. We shall deal with them in the next 

sections. 

2. Entropy as a Qualificator of the Configurational Order 
Since the simple rule holds that the smaller the order in a system the larger its entropy, the entropy appears to be 
the appropriate quantity for the expression of the measure of the configurational order (organization). The order- 
liness and entropy of a physical system are related to each other inversely so that any increase in the degree of 
configurational order must necessarily result in the decrease of its entropy. The measure of the configurational 
order constructed by using entropies is called Watanabe measure and is defined as follows [9]: 

configurational order of a system = (sum of entropies of the parts of the system) − (entropy of the whole system). 

The Watanabe measure for configurational order is related to the other measure of configurational organiza- 
tion well-known in theory of information, called redundancy. Both measures express quantitatively the property 
of the configurationally organized systems to have order between its elements, which causes that the system as a 
whole behaves in a more deterministic way than its individual parts. If a system consists only of elements which 
are statistically independent, the Watanabe measure for the configurational organization becomes zero. If the 
elements of a system are deterministically dependent, its configurational organization gets the maximum value. 
A general system has its configurational organization between these extreme values. To the prominent systems 
which can be organized configurationally belong physical statistical systems (i.e., about all, Ising systems of 
spins) [10]. High configurational organization is exhibited especially by systems which have some spatial, tem- 
poral or spatio-temporal structures that have arisen in a process which takes place far from thermal equilibrium 
(e.g. laser, fluid instabilities, etc.) [11]. These systems can be sustained only by a steady flow of energy and 
matter, therefore they are called open systems [12]. A large class of systems, which are generally organized con- 
figurationally as well as functionally, comprises the so-called string systems which represent sequences of ele- 
ments forming finite alphabets. To these systems belong, e.g., language, music, genetic DNA and various 
bio-polymers. Since many of such systems are goal-directed and have a functional organization as well, they are 
especially appropriate for the study of the interrelation between the configurational and functional organization 
[10]. 

3. The Concept of Entropy in Thermodynamics and Statistical Physics 
A remarkable event in the history of physics was the interpretation of the phenomenological thermodynamics in 
terms of motion and randomness. In this interpretation, the temperature is related to motion while the random- 
ness is linked with the Clausius entropy. The homeomorphous mapping of the phenomenological thermody- 
namics on the formalism of mathematical statistics gave rise to two entropy concepts: the Clausius thermody- 
namic entropy as a thermodynamic state variable of a thermodynamic system and the Boltzmann statistical en- 
tropy as the logarithm of probability of state of a physical ensemble. The fact that the thermodynamic entropy is 
a state variable means that it is completely defined when the state (pressure, volume, temperature, etc.) of a 
thermodynamic system is defined. This is derived from mathematics, which shows that only the initial and final 
states of a thermodynamic system determine the change of its entropy. The larger the value of the entropy of a 
particular state of a thermodynamic system, the less available is the energy of this system to do work. 

The statistical concept of entropy was introduced in physics when seeking a statistical quantity homeo- 
morphous with the thermodynamic entropy. As it is well-known, the Clausius entropy of a thermodynamic sys- 
tem tS  is linked with ensemble probability W  by the celebrated Boltzmann law, logt BS K W= , where W  
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is so-called “thermodynamic” probability determined by the configurational properties of a statistical system and 
BK  is the Boltzmann constant4. The Boltzmann law represents the solution to the functional equation between 

tS  and W . Let us consider a set of the isolated thermodynamic systems 1 2, , , nΣ Σ Σ . According to Clausius, 
the total entropy of this system is an additive function of the entropies of its parts, i.e., it holds 

( ) ( ) ( ) ( )1 2 1 2 .t n t t t nS S S SΣ + Σ + + Σ = Σ + Σ + + Σ                      (3) 

On the other side, the joint “thermodynamic” probability of system (3) is 

( ) ( )1 2
1

.
n

n i
i

W W
=

Σ + Σ + + Σ = Σ∏                              (4) 

To obtain the homomorphism between Equations (3) and (4), it is sufficient that 

log .t BS K W=                                      (5) 

which is just the Boltzmann law [2]. 
We give some remarks regarding the relationship between the Clausius, Boltzmann and Shannon entropies: 
(i) The thermodynamic probability W  in the Boltzmann law is given by the number of the possibilities how 

to distribute N  particles in n  cells having different energies 1 2, , , nE E E  

1

!log .
!

n

i

NW
N

=

∏
 

We show that the physical entropy given by Boltzmann’s law is equal to the sum of Shannon entropies of 
energies taken as random variables defined on the individual particles, i.e., 

.Boltz B ShannS K NS=                                    (6) 

The probability iP  that a particle of the statistical ensemble has the i-th value of energy is given by the ratio 
iN N . Inserting the probabilities 

( ) ( ) ( )1 1 2 2, , , n nP x N N P x N N P x N N= = =                        (7) 

into Boltzmann’s entropy formula we have 

( )
( )

1

1

log !log log ! log ! .
!

n

Boltz B B in
i

i

NS K K N NP
NP =

 = = −  
∑

∏
                     (8) 

Supposing that the number of particles in a statistical ensemble is very large, we can use the asymptotic for- 
mula 

( )1log ! logN N N N O N −= − +  

which inserted in Boltzmann’s entropy yields 

( ) ( )

( )

1

1 1

1

1

log log

log .

n n

Boltz B i i i
i i

n

B i i
i

S K N N N NP NP NP O N

NK P P O N

−

= =

−

=

 = − − + +  

= − +

∑ ∑

∑
                  (9) 

For very large N, the second term in Equation (9) can be neglected and we find 

 

 

4The probability as well as the Shannon entropy is dimensionless quantities. On the other side, the thermodynamical entropy has the physical 
dimension equal to 1J K−⋅   . Therefore, in order to get the correct physical dimension for the thermodynamic entropy we must multiply the 

Shannon entropy by the Boltzmann constant, which has the value 23 11.38 10 J KBK − −= × ⋅   . 
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1
log .

n

Boltz B Shann B i iS K NS K N P P= = − ∑  

We see that the Boltzmann entropy of an ensemble with large N  is equal to the sum of Shannon entropies of 
the individual particles. The asymptotical equality between Boltzmann and Shannon entropies for the large N  
makes it possible to use the Shannon entropy also for describing an statistical ensemble. The pioneer on this 
field was E. Jaynes who published, already in fifties, works in which only Shannon entropy was used to formu- 
late statistical physics [13]. However, many authors advocating the use of Shannon entropy in statistical physics 
do not fully realized the difference between Boltzmann’s and Shannon entropy. The use of Shannon entropy can 
be only justified if one considers the physical ensemble as a system of random objects on which energy (or other 
physical quantity) is taken as a random variable. Then, the total entropy of the whole ensemble is given as the 
sum of Shannon entropies of individual statistical elements (e.g., particles). While the Boltzmann’s entropy los- 
es its sense for an ensemble containing only a few particles, Shannon entropy is defined also for an “ensemble” 
with even one particle. Boltzmann’s entropy is typical ensemble concept while Shannon entropy is a probabilis- 
tic concept. This is not only the change of the methodology when treating statistical ensemble but it has also 
long-reaching conceptual and even pedagogical consequences. 

According to Jaynes [14], the equilibrium probability distribution of the particle energy of a statistical ensem- 
ble should maximize the Shannon entropy 

( ) ( )
1

log
n

B i i
i

S K P E P E
=

= − ∑                               (10) 

subject to given constraints. For example, by taking the mean energy per particle as the constraint at the extre- 
mizing procedure, we obtain the following probability distribution for the particle energy 

( ) [ ]exp ,i iP E Eλ µ= − −  

where the constants λ  and µ  are to be determined by substituting ( )iP E  into constraint’s equations. We 
see how easily and quickly we obtain results forming the essence of the classical statistical mechanics. The use 
of Shannon entropy in statistical physics makes it possible to rewrite it in terms of modern theory of probability 
where a statistical ensemble is treated as a collection of the mutually interacting random objects [13]. 

4. The Shannon-Like Entropies 
Recently, there is an endeavour in the applied sciences (see, e.g. [15]) to employ entropic measures of uncer- 
tainty having similar properties as information entropy, but they are simpler to handle mathematically. The clas- 
sical measure of probabilistic uncertainty which has dominated in the literature since it was proposed by Shan- 
non, is the information or Shannon entropy defined for a discrete random variable according by the formula 

log .
n

i i
i

S P P= −∑                                   (11) 

Since Shannon has introduced his entropy, several other classes of probabilistic uncertainty measures (entro- 
pies) have been described in the literature (see, e.g., [16]). We can broadly divide them into two classes: 

(i) The Shannon-like uncertainty measures which for a certain value of the corresponding parameters con- 
verge towards the Shannon entropy, e.g., Rényi’s entropy 

(ii) The Maassen and Uffink uncertainty measures which converges also, under certain conditions, to the 
Shannon entropy, 

( )( )
1

1 .
r

r
r i

i
M P x + =   

∑                                (12) 

(iii) The uncertainty measures having no direct connection to Shannon entropy, e.g., information “energy” de- 
fined in information theory as [16] 

( ) ( )2
e i

i
E x P= ∑                                   (13) 
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and called Hilbert-Schmidt norm in quantum physics. The most important uncertainty measures of the first class 
are: 

(i) The Rényi entropy defined as follows [17] 

( ) ( )
1

1 log 1.
1

n

i
i

H x P x α
α α

α =

 = ≠ 
−  

∑                        (14) 

(ii) The Havrda-Charvat entropy (or α -entropy)5 is defined as [18] 

( ) ( )( ) (
1

1 1 0, 1.
1

n

i
i

S x P x α
β α α

α =

= − ∈ ∞ ≠
− ∑                    (15) 

For the sake of completeness, we list some other entropy-like uncertainty measures presented in the literature 
[19]: 

(i) The trigonometric entropy is defined as [10] 

( )

( ) ( )( )
1

1 cos π 2 1.
π 1

n
M

i
i

H P x γ
γ γ

γ =

 = ≠ −  
∑                       (16) 

(ii) The R-norm entropy ( )RH x  defined by the formula 

( ) ( )( )1
=1

1 1.
1

n RR
R i

i

RH x P x R
R

 = − ≠ 
−  

∑  

All the above-listed Shannon-like entropies converge towards Shannon entropy if 1α → , 1b → , 1R → . 
1γ →  and 1β → . In some instances, it is simpler to compute , , ,RH H H Hα β γ  and bH  and then recover by 

taking limits , , , , 1b Rα β γ → . 
A quick inspection shows that all five Shannon-like entropies listed above are all mutually functionally re- 

lated. For example, each of the Havrda-Charvat entropies can be expressed as a function of the Rényi’s entropy, 
and vice versa 

( ) ( ) ( )( )( )1 exp 1 1 .
1

S x H xβ αβ
β

= − −
−

   

There are six properties which are usually considered desirable for a measure of a random trial: (i) symmetry, 
(ii) expansibility, (iii) subadditivity, (iv) additivity, (v) normalization, and (vi) continuity. The only uncertainty 
measure which satisfies all these requirements is Shannon entropy. Each of the other entropies violates at least 
one of them, e.g. Rényi’s entropy violates only the subadditivity property, Havrda-Charvat’s entropy violates the 
additivity property, the R-norm entropies violate both subadditivity and additivity. More details about the prop- 
erties of each entropies can be found elsewhere (e.g., [15]). The Shannon entropy satisfies all above require- 
ments put on uncertainty measure and it exact matches the properties of physical entropy6. All these classes of 
entropies represent the probabilistic uncertainty measures which have similar mathematical properties as Shan- 
non entropy. 

The best known Shannon-like probabilistic uncertainty measure is the Havrda and Charvat entropy [18] which 
is more general than Shannon measure and much simpler than Renyi’s measure. It depends on a parameter α  
which is from the interval ( )0,α ∈ ∞ . As such, it represents a family of uncertainty measures which includes 
information entropy as a limiting case when 1α → . We note that in physics the Havrda Charvat entropy is 
known as Tsallis entropy [20]. All the mentioned entropic measures of uncertainty are functions of the compo- 
nents of the probability distribution of a random variable Ax  and they have three important properties: (i) They 
assume their maximal values for the uniform probability distribution of x . (ii) They become zero for the prob- 
ability distributions having only one component. (iii) They express a measure of the spread of a probability dis- 
tribution. The larger this spread becomes, the smaller values they assume. These properties qualify them for be- 

 

 

5The Havrda-Charvat α -entropy exactly matches the Tsallis [20] non-extensive entropy of statistical physics. 
6The Tsallis entropy [20] which is mathematically identical with the Havrda-Charvat α -entropy [18], was introduced by two mathemati- 
cians Havrda and Charvat in sixties, violates the additivity property which is considered as an essential property of physical entropy. This is 
why the other Shannon-like entropies could be more suitable for formulation of an alternative statistical physics. 
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ing the measures of uncertainty (inaccuracy) in the physical theory of measurement. 
The entropic uncertainty measures for a discrete random variable are, in the frame of theory of probability, 

exactly defined. The transition from the discrete to the continuous entropic uncertainty measures is, however, 
not always unique and has still many open problems. A continuous random variable cx  is characterized by the 
function of its probability density ( )p x . The moment and probabilistic uncertainty measures exist also for the 
continuous random variables. The typical moment measure is the k -th central moment of cx . The classical 
probabilistic uncertainty measure of a continuous random variable cx  is the corresponding Shannon entropy 

( )cH x . It is a function of the probability density ( )p x  and consists of two terms7 

( ) ( ) ( ) ( )1 2
cH x H p H= +  

( ) ( ) ( ) ( )1 log dH p p x p x x= −∫  

( )2

0
limlog .
x

H x
∆ →

= − ∆  

( )cH x  with both terms ( ) ( )1H p  and ( )2H  always diverges. Usually, one “renormalizes” ( )cH x  by 
taking only the term ( ) ( )1H x  (called differential entropy or the Shannon entropy functional ( )H x ) for the 
entropic uncertainty measure of a continuous random variable. This functional is well known to play an impor- 
tant role in probability and statistics. We refer to [15] for applications of the Shannon entropy functional to the 
theory of probability and statistics. 

As it is well-known, the Shannon entropy functionals of some continuous variables represent complicated in- 
tegrals which often are difficult to compute analytically or even numerically. Everybody, who tried to calculate 
analytically the differential entropies of the continuous variables, became aware how difficult it may be. From 
the purely mathematical point of view, the differential entropy can be taken as a formula for expressing the 
spread of any standard single-valued function (the probability density belongs to this class of functions). Gener- 
ally, the Shannon entropy functional assigns to a probability density function (belonging to the class of functions 

( )2 1L R ) a real number H  through a mapping ( )2
1L R H→ . H  is a monotonously increasing function of 

the degree of “spreading” of ( )p x , i.e. the larger H  becomes, the spread is ( )p x . 
The Shannon entropy functional was studied just at the beginning of information theory [17]. Since that time, 

besides the Shannon entropy functional, several other entropy functionals were introduced and studied in the 
probability theory. The majority of them are dependent on certain parameters. As such, they form a whole fami- 
ly of different functionals (including the Shannon entropy functional as a special case). In a sense, they are a 
generalization of the Shannon entropy functional. Some of them can equally well express the spread of the pro- 
bability density functions as differential entropy and are considerably easier to handle mathematically. These in- 
clude: 

(i) The Rényi entropic functional [17] 

( ) ( )( )1 log d .
1

RH p x x R
α

α α
α

= ∈  − ∫                       (17) 

 

 

7In order to apply the formula for the Shannon entropy for the continuous random variable cx  with the probability density function ( )p x , 

we divide the x -axis into n  equidistant intervals. The probability that cx  assumes value from the interval ,i i ix x x+ ∆  is 

( ) ( )i iP x p x x≈ ∆ , where x  is from i -th interval. Inserting ( )iP x  into the Shannon entropy we have 

( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1

log log log ,
n n n

c i i i i
i i i

H x p x x p x x p x p x x p x x x
− = =

≈ − ∆ ∆ = − ∆ − ∆ ∆∑ ∑ ∑  

Passing to the infinitesimal interval, we obtain 
( ) ( ) ( ) ( )1 2 ,cH x H p H= +  

where 
( ) ( ) ( ) ( )1 log dH p p x p x x= −∫  

and 
(2)

0
lim log .

x
H x

∆ →
= − ∆  

( ) ( )1H p  is the Shannon entropy functional. 
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(ii) The Havrda-Charvat entropic functional [18] 

( ) ( )( )1 d 1 .
1

HCH p x x R
β

α α
α

= − ∈  − ∫                        (18) 

(iii) The trigonometric entropic functional [10] 

( )

( ) ( )( ) [ )2 cos π 2 d 1, .
π 1

MH p x x
γ

γ γ
γ

= ∈ ∞  − ∫                    (19) 

Note that ( ) ( ),R HCH Hα β  and ( )MHγ  tend to ( )H p  as , ,α β γ  tend to 1. Again, in some instances, it is sim-  
pler to compute ( ) ( ),R HCH Hα β  and ( )MHγ  and then recover ( )H p  by taking limits , , 1α β γ → . In treating  

( ) ( ),R HCH Hα β  and MHγ , it is often enough to study the properties of the functional 

( ) ( ) d .G p p x x
α

α =   ∫  

As it is known long ago, the entropy functionals ( ) ( ), RH p Hα  and ( )MHγ  have a mathematical shortcoming 
connected with the dimension of the physical probability density function. In contrast with the probability which 
is a dimensionless number, the probability density function has a dimension so that its appearance behind the 
logarithm and cosine in the entropy functionals ( ) ( ), RH p Hα  and ( )MHγ  is mathematically inadmissible. This  
brings complication when calculating ( ) ( ), RH p Hα  and ( )MHγ  for a physical random variable (see, e.g., [21])8,9. 

5. Conclusions 
From what has been said so far it follows: 

(i) The concept of entropy is inherently connected with the probability distribution of outcomes of a random 
trial. The entropy quantifies the probability uncertainty of a general random trial. 

(ii) There are two ways how to express the uncertainty of a random trial: 
The moment and probabilistic measure. The former measure includes in its definition both values assigned to 

trial outcomes and their probabilities. The latter measure contains in its definition only the corresponding proba- 
bilities. The moment uncertainty measures are given as a rule by the higher statistical moments of a random va- 
riable whereas the probabilistic measure is expressed by means of entropy. The most important probabilistic 
uncertainty measure is the Shannon entropy defined by the formula 

1
log ,

n

i iE P P= −∑  

where iP  is the probability of i-th outcome of a random trial. 
(iii) By means of Shannon entropy it is possible to quantify the configurational order in the set of elements of 

a general system. The corresponding quantity is called the Watanabe measure of configurational order and is de- 
fined as follows 

configurational order of a system = (sum of entropies of the parts of the system) − (entropy of the whole system). 

This measure expresses quantitatively the property of a configurationally organized systems to have order 
between its elements, which causes that the system as a whole behaves in a more deterministic way than its in- 
dividual parts. 

(iv) The asymptotical equality between the Boltzmann and Shannon entropies for the statistical systems with 
large particles makes it possible to use the Shannon entropy for describing statistical ensembles. 

(v) Besides the Shannon entropy there exists a class of so-called Shannon-like Entropies. The most important 

 

 

8It is typical for the entropy and even for the probability itself that their uncertainty measures are determined trough a set of certain reason- 
able requirements (axioms), therefore they are more “abstract” than the measures, e.g., for work or energy in physics. Physical quantities are 
mostly derived from the concepts of motion or field which are more concrete than the concept of probability and entropy. 
9In many textbook and also in some advanced books, Shannon entropy and information are used so as if were synonymous. This can be 
confusing and may lead to the some conceptual shortcomings. Especially, the Brillouin’s use of the concept of information, which he used in 
his celebrated work “Science and Information Theory” [22], has been often criticized (see, e.g. [23]). 
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Shannon-like entropies are (a) The Rényi entropy Equation (14); (b) The Havrda-Charvat entropy Equation (13). 
The well-known Tsallis entropy is mathematically identical with Havrda-Charvat entropy. 

In conclusion, we can state that the concept of entropy is inherently connected with the probability theory. 
The application of Shannon entropy in science is really versatile. Besides the mentioned statistical physics, 
Shannon entropy is used in metronomic, in biological physics, in quantum physics and even in cosmology. En- 
tropy expresses the extent of the randomness of a probabilistic (statistical) system and, therefore, it belongs to 
the important quantities for describing the natural phenomena. This is why entropy represents in physics a fun- 
damental quantity next the energy. 
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Appendix 
The Essential Mathematical Properties of Entropy 
We ask from the Shannon entropy the following desirable properties [24]: 

(i) ( ) 0,H x ≥  is a continuous function of all components of a probability distribution of a random variable 
x  which is invariant under any permutation of the indices of the probability components. 

(ii) If probability distribution of x  has only one component which is different from zero then ( ) 0H x =  
(iii) For ( )H x  it holds 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 1 2, , , , , , ,0 .m m m mH P x P x P x H P x P x P x+=              (A1) 

(iv) 

( ) ( ) ( )( ) ( )1 2, , , 1 ,1 , ,1 ,m m mH P x P x P x H m m m≤                  (A2) 

with equality if and only if ( ) 1 , 1,2, ,kP x m k m= =  . 
(v) If { }*

1,1 1,2 ,, , , m nΠ = Π Π Π  is a joint probability distribution whose marginal probability distributions 

are ( ) ( ) ( ){ }1 2, , , mP P x P x P x ′′ ′′ =   and ( ) ( ) ( ){ }1 2, , , nQ Q y Q y Q y ′′ ′′ =  , respectively, then 

( )

( ) ( ) ( )( ) ( ) ( ) ( )

1,1 1,2 ,

,1 ,
1 2

1

, , ,

, , , ,

mn n m

m
k k n

m n k n
k k k

H

H P x P x P x P x H
P x P x=

= Π Π Π

 Π Π
= + + +  

 
∑



 

          (A3) 

where the conditional entropy, defined as 
( ) ( )

,1 ,k k n
n

k k

H
P x P x

 Π Π
+ +  

 
 , is computed only for those values of k  

for which ( ) 0kP x ≠ . 
(vi) Using notation given above it holds 

( ) ( ) ( ) ( ) ( ) ( )( ),1 ,
1 2

1
, , , .

m
k k n

k n n n
k k k

P x H H Q y Q y Q y
P x P x=

 Π Π
+ + ≤  

 
∑               (A4) 

The equality in (A4) is valid if and only if 

( ) ( ), 1, 2, , 1, 2, , ,k l k lP x Q y k m l nΠ = = =   

in which case (A3) becomes 

( ) ( ) ( )* .mn m nH H P H QΠ = +  

All these properties can be proved in an elementary manner. Without entering into the technical details, we 
note that properties (i)-(iii) are obvious while property (v) can be obtained by a straightforward computation 
taking into account only the definition of entropy. Finally, from Jensen’s inequality 

( )
1 1

m m

k k k k
k k

a f b f a b
= =

 ≤  
 

∑ ∑  

applied to the concave function ( ) log ,f x x x= −  we obtain property (iv) by putting, 1 ,ka m= ( ) ,k kb P x=
1,2, , ,k m=   and the inequality (A4) by putting ( ) ,k ka P x= ( ), , 1, 2, , ,k k l kb P x k n= Π =   and, in the last 

case, summing the resulting n  inequalities. 
Interpretation of the above properties agrees with common sense, intuition, and the reasonable requirements 

that can be asked from a measure of uncertainty. Indeed, a random experiment which has only one possible out- 
come (that is, a strictly deterministic trial) contains no uncertainty at all; we know what will happen before per- 
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forming the experiment . This is just property (ii). If to the possible outcomes having the probability zero, the 
amount of uncertainty with respect to what will happen in the trial remains unchanged (property (iii)). Property 
(iv) tells us that in the class of all probabilistic trials having m  possible outcomes, the maximal uncertainty is 
contained in the special probabilistic trial whose outcomes are equally likely. Before interpreting the last proper- 
ties let us consider two discrete random variable x  and y , whose ranges contain m  and n  numerical val- 
ues, respectively. Using the notations as in property (v), suppose that *Π  is the joint probability distribution of 
the pair ( ),x y  , and P  and Q  are the marginal probability distributions of x  and y , respectively. In this 
case equality iii may be written more compactly 

( ) ( ) ( ), ,H x y H x H y x= +                                    (A5) 

where 

( ) ( ) ( ) ( ) ( )( )1,1 1,2 , 1, , , , , ,mn m n m mH x y H H x H P x P x= Π Π Π =  
   

and 

( ) ( ) ( ) ( )
,1 ,

1
.

m
k k n

k n
k k k

H y x P x H
P x P x=

 Π Π
= + +  

 
∑ 

  

Here ( )H y x   is the conditional entropy of y  given x . According to (v), the amount of uncertainty con- 
tains in a pair of random variables (or, equivalently, in compound- or product-probabilistic trial) is obtained by 
summing the amount of uncertainty contained in x  and the uncertainty contained in y  conditioned by ran- 
dom variable x . Similarly, we get 

( ) ( ) ( ), ,H x y H y H x y= +                                   (A6) 

where 

( ) ( ) ( ) ( )( )1 2, , ,n nH y H Q y Q y Q y=
  

and 

( ) ( ) ( ) ( )
1, ,

1
, , .

n
l m l

l m
l l l

H x y Q y H
Q y Q y=

 Π Π
=   

 
∑ 

  

Here 

( ) ( )
1, ,, ,l m l

m
l l

H
Q y Q y

 Π Π
  
 

  

is the conditional entropy of x  given the l -th value of y . mH  is defined only for those values of l  for 
which ( ) 0lQ y > . From (A5) and (A6) we get 

( ) ( ) ( ) ( )H x H x y H y H y x− = −       

which is the so-called “uncertainty balance”, the only conservation law for entropy. 
Finally, property (vi) shows that some data on x  can only decrease the uncertainty on y , namely 

( ) ( )H y x H y≤                                     (A7) 

with equality if and only if x  and y  are independent. From (A5) and (A7) we get 

( ) ( ) ( ),H x y H x H y≤ +     

with equality if and only if x  and y  are independent. 
Fortunately this inequality holds for any number of components. More generally, for s  random variables 
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with arbitrary finite range we can write 

( ) ( ) ( )1 1, , s sH x x H x H x≤ + +   
   

with equality if and only if 1, , sx x 
  are globally independent. Therefore 

( ) ( ) ( )1 1
1

, , , , 0
s

s i s
s

W x x H x H x x
=

= − ≥∑    
                         (A8) 

measures the global dependence between the random variables 1, , sx x 
 , that is, the extent to which the system 

( )1, , sx x 
 , due to interdependence, makes up “something more” that the mere juxtaposition of components. In 

particular, 0W =  if and only if 1, , sx x 
  are independent. 

Note that the difference between the amount of uncertainty contained by the pair ( ),x y   and the amount of 
dependence between the components x  and y , namely 

( ) ( ) ( ), , ,d x y H x y W x y= −       

or, equivalently, 

( ) ( ) ( ) ( ) ( ) ( ), 2 , ,d x y H x y H x H y H x y H y x= − − = +           

is the distance between the random variables x  and y , with the two random variables considered identical if 
either one completely determines the other, or if ( ) 0H x y =   and ( ) 0H y x =  . Therefore, the “pure random- 
ness” contained in the pair ( ),x y  , i.e., the uncertainty of the whole, minus the dependence between the com- 
ponents, measured by ( ),d x y  , is a distance between x  and y . 

Khintchin [25] proved that properties (i), (iii), (iv) and (v), taken as axioms imply uniquely the formula of the 
Shannon entropy (except an numerical factor). It is worthy to remark that there is also another way to determine 
the uncertainty of a probabilistic object. The Shannon entropy is a measure of the degree of uncertainty of ran- 
dom object whose probability distribution is given. In algorithmic theory, the primary concept is that of the in- 
formation content of an individual object, which is a measure of how difficult it is to specify or describe and 
how to construct or calculate that object. This notion is also known as information-theoretical complexity. The 
information content ( )I s  of a binary string s  is defined to be the size in bits of the smallest program for a 
canonical universal computer to calculate s [26] [27]. 
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