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Abstract 
 
A q-analog, also called a q-extension or q-generalization is a mathematical expression parameterized by a 
quantity q that generalized a known expression and reduces to the known expression in the limit 1q  . 
There are q-analogs for the fractional, binomial coefficient, derivative, Integral, Fibonacci numbers and so 
on. In this paper, we give several results, some of them are new and others are generalizations of the main 
results of [1]. As well as we give a generalization to the key lemma ([2], Lemma 1.3). 
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1. Introduction 
 
For 0 1q  , the q-analog of the derivative of the func-
tion  f x , denoted by  qD f x  is defined (see [5]) by  

     
 

, 0
1q

f x f qx
D f x x

q x


 


       (1.1)  

If  0f   exists, then    0 0 .qD f f   The q-deri- 
vative reduces to the usual derivative as 1q  . 

The q-analog of integration may be given (see [6]) by  

     
1
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d 1 k k
q
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   ,       (1.2) 

which reduces to  
1

0

df x x  as 1q  . 

The q-Jackson integral from 0 to a , for a more 
general case, can be defined (see [2,3]) by 
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   ,     (1.3) 

provided the sum converges absolutely. The q-Jackson 
integral on a general interval may be defined (see [2,3]) 
by 

     
0 0

d d d
b b a

q q q
a

f x x f x x f x x    .    (1.4) 

The q-Jackson integral and q-derivative are related by 
the “fundamental theorem of quantum calculus” which 
can be restated ([3, p.73]) as follows: If F  is an anti 
q-derivative of the function f, that is qD F f , conti-
nuous at x a , then 

     d .
b

q
a

f x x F b F a           (1.5) 

For any function f, we have  

   d
x

q q
a

D f t t f x
 

 
 
 .         (1.6) 

It is not difficult to check that the q-analog of Leib-
niz’s rule is  

            q q qD f x g x f x D g x g qx D f x  . (1.7) 

For 0b   and na bq  with n , we denote  

      1, : 0  and , ,k

q q q
a b bq k n a b aq b       . (1.8) 

Some applications of q-integrals: 
1 1 1
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 , where  q a  is a doubly pe- 

riodic function. If 1q  , the integral reduces to  
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0

d
1 sin

ax
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 . 

In [4], the authors proved the following results: 
Theorem 1.1. If  f x  is a non-negative and in-

creasing function on  ,
q

a b  and satisfies 

            22 11 1qf qx D f x f x x a
          

(1.9) 
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for 1   and 1  , then 

   d d
b b

q q
a a

f x x f x x


  
  
 

  .        (1.10) 

Theorem 1.2. If  f x  is a non-negative and increa-  

sing function on ,n m

q
bq b    for ,m n  and satisfies  

         211 1 m
qD f x f q x x a

          (1.11) 

on  ,
q

a b  and for  , 1  , then 

   d d .
b b

m
q q

a a

f x x f q x x


  

  
 

       (1.12) 

Theorem 1.3. If  f x  is a non-negative function on 
 0,

q
b  and satisfies 

 d d
b b

q q
x x

f t t t t              (1.13) 

for  0,
q

x b  and 0  , then the inequality 

   
0 0

d d
b b

q qf t t t f t t               (1.14) 

holds for all positive numbers   and  . 
In the coming section, we start with Lemma 2.1, 

which represent a generalization of ([1], Lemma 1.3). 
Theorems 2.3 and 2.4 are generalizations of Theorems 
1.1 and 1.2 respectively, while Theorem 2.5 gives a ge-
neralization for more than one direction to Theorem 1.3. 
Other new results are also given.  
 
2. Results 
 
Lemma 2.1. Let      , ,f x f x g x  be nonnegative, 
nondecreasing functions defined on  ,

q
a b , and let 

1.p   Then 
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 (2.1) 

Proof. We have  
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Also,  
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Lemma 2.2. Define  

 
     
   

,q

f g x f g qx
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.       (2.2) 

Then 

      , .q q qD f g x D f g D g x       (2.3) 

Proof. It is follows as  
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Theorem 2.3. Let      , ,f x f x g x  be nonnega-
tive, nondecreasing functions defined on  ,

q
a b  satis-

fies 
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  (2.4) 

for 1   , 2  , then  
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Proof. Let  
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Then via Lemma 2.1, we have 
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As        ,h g x f g x x a   then   
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The above implies    0qD F g x  , by (2.4), which 

implies    0F g x   and hence   0,qD M x   so that 
  0M x  . 

Theorem 2.4. Let      , ,f x f x g x  be nonnegative,  

nondecreasing functions defined on ,n m

q
bq b    satisfies 
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  (2.6) 

for 1, 2,      then 
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Proof. Let  
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Then via Lemma 2.1, we have
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The above implies    0qD F g x  , by (2.4), which 

implies    0F g x   and hence   0qD N x  , so that 
  0N x  . 
Theorem 2.5. Let , ,f g h  be nonnegative functions, 

h defined on  ,
q

a b  and ,f g  are defined on  R h , g, 
h are nondecreasing with     0g a h a  . If  

       d d , , ,
b b

q q q
x s

f h t t g h t t t a b      

then  

        d d
b b

q q
a a

f h x x f h x g h x x        (2.8) 
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for all , 0   . 
Proof. Since by Lemma 2.2,  

         d , d
x x
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 (2.9) 

Using the arithmetic-geometric inequality yields  
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Integrating the above inequality yields  
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which implies via (2.9),  
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and hence 
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Theorem 2.6. Let , ,f g h  be nonnegative functions, 
h defined on  ,

q
a b  and f , g  are defined on  R h , 

,g h  are nondecreasing with     0g a h a  . If  
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b b

q q q
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for all 1, 0.    
Proof. For 1  , we have 
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 (2.11) 

Now, applying the AG inequality, we have for 1  ,  

           11 1
f h x g h x f h x g h x  

 


  . 

On integrating the above inequality with the using of 
(2.11) leads to  
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which implies  
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Again, by the AG inequality, and via integration 
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and the above implies, by (2.12),  
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The other way round direction may be obtained from 
the following. 

Theorem 2.7. Let f, g, h be nonnegative functions, h 
defined on  ,

q
a b  and f, g are defined on  R h , g, h 

are nondecreasing with     0g a h a  . If  
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       d d , , ,
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then 
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for all 0   . 
Proof. We have, via Lemma 2.2,  
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(2.14) 

Making use of the AG inequality, 
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Integrating the above inequality, with making use of 
(2.14) yield 
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