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Abstract 
Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as 
functions of bounded variation. Thus the variable knot of approximating function could be self- 
adaptively chosen by balancing the total variation of the target function. In this paper, we adopt 
continuous piecewise linear approximation instead of the existing piecewise constants approxi-
mation. The results of experiments show that this new method is superior to the old one. 
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1. Introduction 
The fundamental problem of approximation theory is to resolve a possibly complicated function, called the tar-
get function, by simpler, easier to compute functions called the approximants [1] [2]. The early methods utilized 
approximation from finite-dimensional linear spaces. In the beginning, these were typically spaces of polyno-
mials, both algebraic and trigonometric. It was noted shortly thereafter that there were some advantages to be 
gained by not limiting the approximations to come from linear spaces [2]. In nonlinear approximation, the ap-
proximating function is not restricted to come from spaces of piece wise polynomials with a fixed partition; ra-
ther, the partition was allowed to depend on the target function. In principle, the idea was simple: we should use 
a finer mesh where the target function is not very smooth (singular) and a coarser mesh where it is smooth. Thus, 
an important question in nonlinear approximation is how we should measure this smoothness in order to obtain 
definitive results. 

 

 

*Corresponding author. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.54063
http://dx.doi.org/10.4236/am.2014.54063
http://www.scirp.org
mailto:yihua@whu.edu.cn
mailto:yutao@jgsu.edu.cn
mailto:chenzhiquanji@126.com
mailto:zhujingwen666@163.com
http://creativecommons.org/licenses/by/4.0/


H. Yi et al. 
 

 
668 

Kahane (1961) [3] gave a result which was concerned with how to obtain the variable knot of function in 
bounded variation space. Zhang (2009) [4] gave the corresponding numerical experiments by using the piece-
wise constants function. Moreover, the advantages of Zhang’s method over other denoising methods, such as 
Visushrink [5] and SureShrinkage [6] were also analyzed [4]. 

In this paper, we use piecewise linear basis functions instead of the piecewise constants basis functions 
adopted by Kahane, which is motivated by continuous piecewise linear approximation studied by Y. Shi (2010) 
[7]. The experimental results of this new method are superior to those of the old one. 

2. The Method for the Selection of Variable Knots and Continuous Piecewise Linear  
Approximation 

We can consider that a real-life signal f is defined on [ ): 0,1Ω =  and ( )f BV∈ Ω . In order to self-adaptively 
select the knots according to the target function, we can balance the total variation (TV) of this function [4]. The 
TV of f is given by  

[ ] ( ) ( ) ( )10,1
1
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where the supremum is taken over the set of all partitions T  of [ ]0,1 . The TV function ( ) [ ] ( )0,Var ,tV t f=
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Hence, T  forms the partition balancing the TV of f  over each interval [ ]1, ,0k kt t k n− ≤ ≤ . Then the 
target function can be approximated by piecewise constants [4]. That is,  
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is the approximating function of f . In this case, the L∞ —error to f  is  
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However, ( )nS x  is not continuous. In order to approximate the target function by continuous function, we 
construct the continuous piecewise linear basis function as follows [7]:  
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We can substitute ( )xη  for Haar scaling function(the piecewise constant function) to achieve continuous 
piecewise linear approximation, and the corresponding error analysis has been thoroughly studied in [7].  

We define  
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( )nP x  achieves the continuous piecewise linear approximation for the target function. 

3. Numerical Experiments 
In this section, we give comparisons of methods in signal compression and denoising by two examples. The 
signal leleccum is composed of 1000 points, presented in Figure 1(a). TV function of the original function is 
shown in Figure 1(b). By dividing the range of the TV function on the y-axis into n pieces to get 1n +  
y-values, the preimage of these y-values form the self-adaptively knots of the target function. In this experiment 
of this paper, we let 1 500n + = . So the original signal can be represented by a compressed version with 500 
points. Figure 1(e) provides the compressed signal by Zhang’s method, i.e., using the piecewise constants ap-
proximation. Figure 1(c) presents the compressed signal by using continuous piecewise linear approximation. 
We use 2L  norm to measure the error of compression. That is,  

2
.n LErr s P= −                                  (1.7) 

We see that the proposed method is superior to the old one as long as we notice that 43.30Err =  for our 
method is less than 44.61Err =  for the old one. The compressed signal with 51.68Err =  by VisuShrink is 
also presented in Figure 1(d). 

The second example is related to a natural noisy signal which is shown in Figure 2(a). The restored signals 
by using our method and by using the old one are respectively shown in Figures 2(d) and (c). The advantages of 
our method over the old one consist of two aspects. Firstly, 13.93SNR =  of the denoised signal in Figure 2(d) 
is larger than 13.91SNR =  in Figure 2(c). At this time, SNR of the denoised signal nP  is defined as  
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Figure 1. compression for signal leleccum.                              

 

 
Figure 2. (a) Noise reduction for signal noisdopp; (b) Restored signal by Visu 
Shrink with SNR = 13.29; (c) Restored signal by Zhang’s method with n = 
450, SNR = 13.91; (d) Restored signal by using our method with n = 450, 
SNR = 13.93.                                                            
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Secondly, the signal in Figure 2(d) is more smooth. See the rectangle parts of Figures 2(c) and (d) for details. 
The sawtooth nature of denoised signal in Figure 2(c) may be caused by the shape of piecewise constant basis 
function. 

4. Conclusion 
Nonlinear approximation is the theoretical foundation of compression and denoising of signals. Zhang has pre-
sented a general partition method to obtain the variable knots according to the target function. However, the 
drawback of Zhang’s method is that the smoothness of the restored signal is bad when n is small. In this paper, 
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we use continuous piecewise linear basis function as a substitute for the piecewise constant basis function 
adopted by Zhang. Our method performs better than the old one both in terms of SNR and vision. 
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