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Abstract 
The analytic properties of the scattering amplitude are discussed, and a representation of the po-
tential is obtained using the scattering amplitude. A uniform time estimation of the Cauchy prob-
lem solution for the Navier-Stokes equations is provided. 
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1. Introduction 
This paper combines the results of studies on the inverse scattering problem with the Cauchy problem for the 
Navier-Stokes equations. First, we consider some ideas for the potential in the inverse scattering problem, and 
this is then used to estimate of solutions of the Cauchy problem for the Navier-Stokes equations. A similar ap-
proach has been developed for one-dimensional nonlinear equations [1]-[4], but to date, there have been no re-
sults for the inverse scattering problem for three-dimensional nonlinear equations. This is primarily due to diffi-
culties in solving the three-dimensional inverse scattering problem. 

This paper is organized as follows: first, we study the inverse scattering problem, resulting in a formula for 
the scattering potential. Furthermore, with the use of this potential, we obtain uniform time estimates in time of 
solutions of the Navier-Stokes equations, which suggest the global solvability of the Cauchy problem for the 
Navier-Stokes equations. 

Essentially, the present study expands the results for one-dimensional nonlinear equations with inverse scat-
tering methods to multi-dimensional cases. In our opinion, the main achievement is a relatively unchanged pro-
jection onto the space of the continuous spectrum for the solution of nonlinear equations, that allows to focus 
only on the behavior associated with the decomposition of the solutions to the discrete spectrum. In the absence  
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of a discrete spectrum, we obtain estimations for the maximum potential in the weaker norms, compared with 
the norms for Sobolev’ spaces. 

Consider the operators ( )xH q x= −∆ + , 0 xH = −∆  defined in the dense set ( )2 3
2W R  in the space 

( )3
2L R , and let q  be a bounded fast-decreasing function. The operator H  is called Schrödinger’s operator. 
We consider the three-dimensional inverse scattering problem for Schrödinger’s operator: the scattering 

potential must be reconstructed from the scattering amplitude. This problem has been studied by a number of 
researchers ([5]-[8] and references therein). 

2. Results 
Consider Schrödinger’s equation: 

2 , x q k k C−∆ Ψ + Ψ = Ψ ∈                                  (1) 

Let ( ), ,k xθ+Ψ  be a solution of (1) with the following asympotic behavior: 

( ) ( )
i

i e 1, , e , , 0 , ,
k x

k xk x A k x
x x

θθ θ θ+

 
′Ψ = + + →∞  

 
                    (2) 

where ( ), ,A k θ θ′  is the scattering amplitude and 2,x S
x

θ θ′ = ∈  for { }0k C Imk+∈ = ≥  

( ) ( ) ( )3
i1, , , , e d .

4
k x

R
A k q x k x xθθ θ θ ′−

+′ = − Ψ
π ∫                        (3) 

Let us also define the solution ( ), ,k xθ−Ψ  for { }0k C Imk−∈ = ≤  as 

( ) ( ), , , ,k x k xθ θ− +Ψ = Ψ − −  

As is well known [1]: 

( ) ( ) ( ) ( )2, , , , , , , , d , .
4 S

kk x k x A k k x k Rθ θ θ θ θ θ+ − −′ ′ ′Ψ −Ψ = − Ψ ∈
π ∫                (4) 

This equation is the key to solving the inverse scattering problem, and was first used by Newton [6] [7] and 
Somersalo et al. [8]. 

Equation (4) is equivalent to the following: 
,S+ −Ψ = Ψ                                     (5) 

where S  is a scattering operator with the kernel ( ) ( ) ( ) ( )3, , , , , d
R

S k ł S k ł k x ł x x∗
+ −= Ψ Ψ∫ . 

The following theorem was stated in [1]: 
Theorem 1 (The energy and momentum conservation laws) Let q∈R . Then, , ,SS I S S I∗ ∗= =  where I  

is a unitary operator. 

Definition 1 The set of measurable functions R  with the norm, defined by ( ) ( )
6 2 d d

R

q x q y
q x y

x y
= < ∞

−∫R
  

is recognized as being of Rollnik class. 
As shown in [8], ( ),k x±Ψ  is an orthonormal system of H  eigenfunctions for the continuous spectrum. In 

addition to the continuous spectrum there are a finite number N  of H  negative eigenvalues, designated as  
2
jE−  with corresponding normalized eigenfunctions ( ) ( )2, 1,j jx E j Nψ − = , where ( ) ( )2 3

2,j jx E L Rψ − ∈ . 

We present Povzner’s results [9] below: 
Theorem 2 (Completeness) For both an arbitrary ( )3

2f L R∈  and for H  eigenfunctions, Parseval’s 
identity is valid. 

( ) ( )
2

2 , , .D D Ac AcLf P f P f P f P f= +  
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( )
1

, .
N

D j j j
j

P f f x Eψ
=

= −∑  

( ) ( )2
20

, , d d ,Ac S
P f s f s s x sθ θ

∞

+= Ψ∫ ∫                             (6) 

where f  and jf  are Fourier coefficients for the continuous and discrete cases.  
Theorem 3 (Birmann-Schwinger estimation). Let q R∈ . Then, the number of discrete eigenvalues can be 

estimated as:  

( )
( )

( ) ( )
3 32 2

1 d d .
4π R R

q x q y
N q x y

x y
≤

−∫ ∫                             (7) 

This theorem was proved in [10]. 
Let us introduce the following notation: 

( ) ( )2 , , d , for , , ,
S

NA A k f f k xθ θ θ θ′ ′= =∫  

( ) ( )2 , , , , d ,
S

Df k A k f k xθ θ θ θ′ ′ ′= ∫                             (8) 

( ) i
0 , , e ,z xz x θφ θ =  

( ) ( )( )i, , , , e ,z xz x z x θθ θ+′Φ = Ψ − ∆                           (9) 

where ( ) ( )
1

i i
N

j j
j

k E k E
=

∆ = + −∏ . We define the operators T± , T  for ( )1
2f W R∈  as follows: 

( )
0

1 lim d ,  0,
2πi Imz

f s
T f s Im z

s z

∞

+ →
−∞

= >
−∫                           (10) 

( )
0

1 lim d ,  0,
2πi Imz

f s
T f s Im z

s z

∞

− →
−∞

= <
−∫                           (11) 

( )1 .
2

Tf T T f+ −= +                                 (12) 

Consider the Riemann problem of finding a function Φ , that is analytic in the complex plane with a cut 
along the real axis. Values of Φ  on the sides of the cut are denoted as +Φ , −Φ . The following presents the 
results of [11]: 

Lemma 1 

1 1 1 1 1, , , , .
4 2 2 2 2

TT I TT T TT T T T I T T I+ + − − + −= = = − = + = −                (13) 

Theorem 4 Let q∈R , ( )g + −= Φ −Φ . Then, 
.T g± ±Φ =                                  (14) 

The proof of the above follows from the classic results for the Riemann problem. 
Lemma 2 Let ( ) ( ), , , , , ,q g g z x g g z xθ θ+ −∈ = = −R . Then, 

( ) ( ) ( ) ( )i i, , e , , , e .z x z xz x T g z x T gθ θθ θ −
+ + + − − −Ψ ∆ = + Ψ ∆ = +              (15) 

The proof of the above follows from the definitions of , ,g ± ±Φ Ψ . 
Lemma 3 Let q∈R , 

( ) ( ), , , , , .A A z x A A z xθ θ+ − −= = −  Then 
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( ) ( ), , .A k T A Aθ θ + + −′ ∆ = ∆ − ∆                              (16) 

The proof of the above again follows from the definitions of the functions , ,g ± ±Φ Ψ . 
Lemma 4 Let q∈R . Then, 

( ).NA NT DA+ + −∆ = ∆                                (17) 

The proof of the above follows from the definitions of , ,g ± ±Φ Ψ  and Theorem 1. 
Definition 2 Denote by   the set of functions ( ), ,f k θ θ ′  with the norm ( ), , .sup kTAf Tf fθ θ ′= + < ∞   

Definition 3 Denote by ( )I DT−−  the set of functions g  such that ( )g I DT f−= − , for any .f ∈  

Lemma 5 Suppose 1TAA α< < . Then, the operator ( )I T D−− , defined on the set   has an inverse  
defined on ( )I T D−− .  

The proof of the above follows from the definitions of ,D T−  and the conditions of Lemma 5. 
Lemma 6 Let q∈R , and assume that ( ) 1I T D −

−−  exists. Then,  

g T g T g+ −= −                                   (18) 

( ) 1
0 ,T g I T D T Dφ−

− − − −= −                              (19) 

( ) 1
0 0

1 .I T D T Dφ φ−
− − −Ψ = − +

∆
                           (20) 

The proof of the above follows from the definitions of , ,g ± ±Φ Ψ  and Equation (4) Let us rewrite (20) using  

( ) 0.K I φ± ±Ψ = +                                (21) 

Lemma 7 Let q∈R . Then,  
1 , where .F F F K I−

± ± ± ±′= = +                           (22) 

The proof is the same as that in [5]. 
Lemma 8 Let q∈R . Then,  

00
lim .
z

q H − −→
= Ψ Ψ                              (23) 

The lemma can be proved by substituting ±Ψ  into Equation (1).  
Lemma 9 Let q∈R , and assume that ( ) 1I T D −

−−  exists. Then,  

( ) ( )1 1
0 0 0 00

1 1lim .
z

q N I T D T DH N I T D T D Nφ φ φ− −
− − − −→

   = − − +   ∆ ∆   
          (24) 

The proof of the above follows from the definitions of ,N ±Ψ  and Lemma 6. 
Lemma 10 Let q∈R . Then 2D ≤ .  
The proof of the above follows from the definition of D  and the unitary nature of S . 
Lemma 11 Let ( )3

4q L R∈ R . Then, 

( ) 22
3 d ,j jR

E q x xψ≤ ∫                             (25) 

( ) ( )3
2

max 2 .j j L Rx
x qψ ψ≤                           (26) 

The proof of the above follows from the definitions of 2 , j jE ψ  and (1). 
Lemma 12 Let ( )3

2q L R∈ R . Then,  

( ) ( )3
2 ,

max 2 max .D jL Rx x j
P q q q xψ≤ R                     (27) 

The proof of the above follows from the definition of DP f .  
Lemma 13 Let ( )3

2q L R∈ R , and 1TAA α< < . Then,  
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( )3
2

max .Ac L Rx
P q C q≤                              (28) 

To prove this result, one should calculate 

( )3 3
2d d

R R
q x k xΨ = ∆Ψ + Ψ∫ ∫                           (29) 

Using Lemma 7, the first approximation can be obtained in terms of q :  

1
AcP q T Dq µ−= +

∆
                               (30) 

where µ  represents terms of highest order of q . The lemma can be proved using obvious estimations for µ  
and Lemmas 8, 10. 

3. Conclusions for the Three-Dimensional Inverse Scattering Problem 
This study has shown once again the outstanding properties of the scattering operator, which, in combination 
with the analytical properties of the wave function, allow to obtain an almost-explicit formulas for the potential 
to be obtained from the scattering amplitude. Furthermore, this approach overcomes the problem of over- 
determination, resulting from the fact that the potential is a function of three variables, whereas the amplitude is 
a function of five variables. We have shown that it is sufficient to average the scattering amplitude to eliminate 
the two extra variables. 

4. Cauchy Problem for the Navier-Stokes Equation 
Numerous studies of the Navier-Stokes equations are devoted to the problem of the smoothness of its solutions. 
A good overview of these studies is given in [12]-[14]. The spatial differentiability of the solutions is an 
important factor, this controls their evolution. 

Obviously, differentiable solutions do not provide an effective description of turbulence. On the other hand, 
the global solvability and differentiability of the solutions has not been proven, and therefore the problem of 
describing turbulence remains open. 

It is interesting to study the properties of the Fourier transform of solutions of the Navier-Stokes equations. Of 
particular interest is how they can be used in the description of turbulence, and whether they are differentiable. 
The differentiability of such Fourier transforms appears to be related to the appearance or disappearance of 
resonance, as this implies the absence of large energy flows from small to large harmonics, which in turn 
precludes the appearance of turbulence. 

Thus, obtaining uniform global estimations of the Fourier transform of solutions of the Navier-Stokes 
equations means that the principle modeling of complex flows and related calculations will be based on the 
Fourier transform method. 

The authors are continuing to research these issues in relation to a numerical weather prediction model, and 
this paper is a theoretical justification for this approach. 

Consider the Cauchy problem for the Navier-Stokes equations: 

( ) ( ), , ,  0,tq q q q p f x t div qν− ∆ + ∇ = −∇ + =                      (31) 

( )00tq q x
=
=                                  (32) 

in the domain ( )3 0,TQ R T= × , where: 

0 0.div q =                                   (33) 

The problem defined by (31), (32), (33) has at least one weak solution ( ),q p  in the so-called Leray-Hopf 
class [12]. 

The following results have been proved [12]: 
Theorem 5 If  

( ) ( )1 3
0 2 2, ,Tq W R f L Q∈ ∈                            (34) 

there is a single generalized solution of (31), (32), (33) in the domain 
1TQ , [ ]1 0,T T∈ , satisfying the following 
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conditions:  

( )2
2, , .t Tq q p L Q∇ ∇ ∈                                 (35) 

Note that 1T  depends on 0q  and f . 
Lemma 14 Let ( )1 3

0 2q W R∈ , ( )2 Tf L Q∈ . Then, 

( ) ( ) ( ) ( )3 3 3
2 2 22

22 2
0

0 0

d .sup
T

t

L R L R L QL R
t T

q q q fτ
≤ ≤

+ ∇ ≤ +∫                     (36) 

Our goal is to provide global estimations for the Fourier transforms of derivatives of the Navier-Stokes 
equations’ solutions (31), (32), (33) without the that the smallness of the initial velocity and force are small. We 
obtain the following uniform time estimation. Using the notation that: 

( ) ( ) ( ) ( ) ( ) ( )

3 3

i , i ,e d , e d ,k x k l x

R R

q k q x x q k l q x x−= − =∫ ∫                      (37) 

( ) ( ) ( )
3

2 2 d ,avg
R

q k q k l k l l kδ= − −∫                          (38) 

Assertion 1 The solution of (31), (32), (33) according to Theorem 5 satisfies:  

( ) ( )( )2

0
0

e , d ,
t

k tq q q q fν τ τ− −= + ∇ +  ∫ 

                             (39) 

where F p f= −∇ + . 
This follows from the definition of the Fourier transform and the theory of linear differential equations. 
Assertion 2 The solution of (31), (32), (33) satisfies: 

2 2
,

i j i
i j i

i j i

k k k
p q q i F

k k
= +∑ ∑ 

                                 (40) 

and the following estimations: 

( ) ( ) ( )3 3 32 2 2

3 1
2 23 ,L R L R L R

p q q≤ ∇                              (41) 

2
2

2

1 3 .
fq

p f q
k kk

∇ ≤ + + ∇ + ∇






                             (42) 

This expression for p  is obtained using div  and the Fourier transform. The estimations follow from this 
representation. 

Lemma 15 The solution of (31), (32), (33) in Theorem 5 satisfies the following inequalities: 

3

2 2 2 2

30

d d d const,
t

R R

x q x x q x τ+ ∇ ≤∫ ∫ ∫                          (43) 

3 3

4 2 4 2

0

d d d const,
t

R R

x q x x q x τ+ ∇ ≤∫ ∫ ∫                          (44) 

or  

( )3
2 3

22

0

d d const,
t

L R
R

q k q k τ∇ + ∇ ≤∫ ∫ 

                           (45) 

( )3
2 3

222 2

0

d d const.
t

L R
R

q k q k τ∇ + ∇ ≤∫ ∫ 

                          (46) 

This follows from the Navier-Stokes equations, our first a priori estimation (Lemma 1) and Lemma 2. 
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Lemma 16 The solution of (31), (32), (33) satisfies the following inequalities:  

( ) ( )3 3
2 2

2 2
0

0 0

max max d ,sup
2

t

L R L Rk k t T

Tq q q q τ
≤ ≤

≤ + + ∇∫                      (47) 

( )3
2 3

22
0

0 0

max max d d ,sup
2

t

L Rk k t T R

Tq q q k q k τ
≤ ≤

∇ ≤ ∇ + ∇ + ∇∫ ∫ 

                   (48) 

( )3
2 3

222 2 2 2
0

0 0

max max d d .sup
2

t

k k L Rt T R

Tq q q k q k τ
≤ ≤

∇ ≤ ∇ + ∇ + ∇∫ ∫                  (49) 

These estimations follow from (9), Parseval’s identity, the Cauchy-Schwarz inequality, and Lemma 3. 
Lemma 17 The solution of (31), (32), (33) according to Theorem 5 satisfies ( )const, 0, 2, 4 ,iC i≤ =  where: 

( )
22 2 2

0 1 1 2 1 4 1
0 0 0

d , , , d , d .
t t t

C F F q q F C F C Fτ τ τ= = ∇ + = ∇ = ∇∫ ∫ ∫               (50) 

This follows from our a priori estimation (Lemma 1) and the assertion of Lemma 3. 
Lemma 18 The solution of (31), (32), (33) according to Theorem 5 satisfies to the following inequalities:  

( )( ),kq k e e tλ−                                (51) 

( )( )
11
22 0

0
1 ,

2k
k

C
q k e e

k e eλ
λν

 ≤ − +   − 
                        (52) 

where 

( )2
0 1 1

0

d , , .
t

C F F q q Fτ= = ∇ +∫                           (53) 

Proof. From (39), we have the inequality:  

( )( ) ( )( ) ( ) ( )( )
22

0 1
0

, e , d ,k
t

k e e t
k k kq k e e t q k e e F k e eλν τ

λ λ λ τ τ− − −− ≤ − + −∫ 

              (54) 

where 

( )1 , .F q q F= ∇ +                                 (55) 

Using the notation  

( ) ( )( )
22

1
0

e , d ,k
t

k e e t
kI F k e eλν τ

λ τ τ− − −= −∫                        (56) 

and Hölder’s inequality in I , the following inequality can be obtained:  

( )22

1 1

1
0 0

e d d ,k
t tp p qqk e e tI Fλν τ τ τ− − −   

≤    
   
∫ ∫                      (57) 

where ,p q  satisfy 1 1 1
p q
+ = . 

Let 2.p q= =  Then,  
1
22

1 1
2 0

d
1 .

2

t

k

F
I

k e eλ

τ

ν

 
 

   ≤   − 

∫ 
                               (58) 
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Using the estimation for I  in (57), the assertion in the lemma can be proved.                        □ 
Lemma 19 Let q R∈ , max

k
q < ∞ . Then,  

( ) ( ) ( )2
3 3

2

2 d d max .L k
R R

q x q y
x y C q q

x y
≤ +

−
∫ ∫                          (59) 

A proof of this lemma can be obtained using Plancherel’s theorem. 

For 

1
2

1 1
2 2

04π
K

CC

ν

ν
=

−

 consider the transformation of the Navier-Stokes:  

2, , , .v ft tA v f
A A A
νν′ ′ ′ ′= = = =                             (60) 

Lemma 20 Let 
( )

1 2
3 30

4

1
A

CCν
=

+
, then 8 .

7
K ≤  

Proof. Using the definitions for C  и 0C  we get 
11 1

2 2 0
2

4πCC
K

A A A
ν ν

−
 

    = −       
 

                             (61) 

1
1 1

02 2
3
2

4π 8 .
7

CC

A
ν ν

−
 
 = − <
 
 

                              (62) 

□ 
We now obtain uniform time estimations for Rollnik’s norms of the solutions of (31), (32), (33). The follow-  

ing (and main) goal is to obtain the same estimations for max
x

q —velocity components of the Cauchy problem  

for the Navier-Stokes equations. We will use Lemmas 8 and 13. 
Theorem 6 Let ( )2 3

0 2 ,q W R∈  ( )2 3
0 2 ,q L R∇ ∈  ( )2 ,Tf L Q∈  ( ) ( )3

1 2 ,Tf L Q L R∈ 
  

( ) ( )2 3
1 2 .Tf L Q L R∇ ∈ 

 Then, there exists a unique generalized solution of (31), (32), (33) satisfying the  

following inequality: 
3

1
max max const,it xi

q
=

≤∑  where the value of const  depends only on the conditions of the  

theorem. 
Proof. It suffices to obtain uniform estimates of the maximum velocity components iq , which obviously  

follow from max ix
q , because uniform estimates allow us to extend the local existence and uniqueness theorem  

over the interval in which they are valid. To estimate the velocity components, Lemma 12 can be used:  

( )3
2

2
00

d 1 ,
T

i i x L Rq q q t A = + + 
 ∫  

( )
1 2
3 30 04 1 .A CCν

 
= +  

 
 

Using Lemmas (15)-(19) for  

( )3
2

2
00

d 1
T

i i x L Rq q q t A = + + 
 ∫  

we can obtain 1i TAA α< < , where iA  is the amplitude of potential iq  and ( ) 1iN q < . That is, discrete 
solutions are not significant in proving the theorem, so its assertion follows the conditions of Theorem 6, which 
defines uniform time estimations for the maximum values of velocity components. 

Theorem 6 asserts the global solvability and uniqueness of the Cauchy problem for the Navier-Stokes 
equations. 
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5. Conclusion 
Uniform global estimations of the Fourier transform of solutions of the Navier-Stokes equations indicate that the 
principle modeling of complex flows and related calculations can be based on the Fourier transform method. In 
terms of the Fourier transform, under both smooth initial conditions and right-hand sides, no appear exacerbations 
appear in the speed and pressure modes. A loss of smoothness in terms of the Fourier transform can only be 
expected in the case of singular initial conditions, or of unlimited forces in ( )2 TL Q . 
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