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Abstract 
This paper describes a particularly transparent derivation of the Hawking effect for massive par-
ticles in black holes. The calculations are performed with the help of Painlevé-Gullstrand’s coor-
dinates which are associated with a radially free-falling observer that starts at rest from infinity. It 
is shown that if the energy per unit rest mass, e, is assumed to be related to the Killing constant, k, by 

k2 = 2e − 1 then e, must be greater than 1
2

. For particles that are confined below the event horizon 

(EH), k is negative. In the quantum creation of particle pairs at the EH with k = 1, the time compo-
nent of the particle’s four velocity that lies below the EH is compatible only with the time compo-
nent of an outgoing particle above the EH, i.e, the outside particle cannot fall back on the black 
hole. Energy conservation requires that the particles inside, and outside the EH has the same value 
of e, and is created at equal distances from the EH, (1 – rin = rout − 1). Global energy conservations 
force then the mass of the particle below the EH to be negative, and equal to minus the mass the 
particle above the EH, i.e., the black hole looses energy as a consequence of pair production. 
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1. The Metric 
A transparent derivation of Painlevé-Gullstrand’s coordinates (used in this paper) is the following: Consider a 
radially, free-falling observer that starts at rest from infinity. For this observer, the equations for r  as a func- 
tion of the proper time τ , and the equation for the Schwarzschild time, t , as a function of r , are respectively 
(cf. [1], Equations (9.38), (9.40)), 

( ) ( ) ( )
2
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2
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1 1
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1, 1,
2 2

r rN D
M M

   = + = −   
   

                               (1c) 

where τ∗  and t∗  are two constants. The equations are written in geometrized units. It follows from Equation 
(1a) that the second term in Equation (1b) is equal to τ τ∗− . This relation suggests the following transformation 
of coordinates, 

1
2

2 2 log
2

r Nt M
M D

τ
 
  = + − +  

   

                              (2) 

the constants in Equations (1a) and (1b) have been ignored because only dt  is important. From Equation (2) 
we obtain, 

1 1
22 2d d d 1 .M Mt r

r r
τ

−
   = − −   
   

                                (3a) 

which can also be derived directly from the equations, 

( )

1
2

2

d d 1 2, , ,
d d 1

r t Mw w
r rw wτ

 = − = − =  
−  

                        (3b) 

valid for a radial plunge with no kinetic energy at infinity. The new metric can be written, 

( )
1
22 2 2 2 2 2 22 2d 1 d 2 d d d d sin dM Ms r r r

r r
τ τ θ θ φ   = − − + + + +   

   
      (4) 

The radially ingoing and outgoing light rays are found to be ( d d ;rτ  it follows from the geodesic equations 
that r  is an affine parameter), 

( ) ( )

1
21 1 2, , .

1 1
Min out w

w w r
 = − = =  + −  

                         (5) 

The condition 2 2d ds τ= −  requires that, 
1
22 22 2d 2 d d d 0M M r r

r r
τ τ   + + =   

   
                              (6) 

the value of ( )d dr wτ = −  obtained from Equation (6) agrees with Equation (1a). 

2. Particle Orbits 
2.1. Expression for a Particle’s Energy Per Unit Rest Mass 
We introduce the following change of notation: the time coordinate, τ , in Equation (4) for the metric will be 
designated hereafter by t, whereas τ  will be a particle’s proper time. For radial motions the equations for 

d dru r τ=  and d dtu t τ=  are, 

( )
1
22 22 2 21 , 1,t r rM M Mu wu k u k w

r r r
   ⋅ = − + = − = + − =   
   

u kv          (7) 

where ( ),t ru u=u , kv is the Killing vector, namely (1, 0), and k is a constant (the Killing constant). For metrics 
that are independent of t, an integral of the geodesic equation exists, that is given by the scalar product of (1, 0) 
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with u, which is Equation (7.1), namely the first equation in (7). Equation (7.2) follows then from the 
normalization condition for u, i.e., 2 1= −u . In the derivation of this equation, terms in the product rku  appear, 
but they cancel. In Equation (7.1), w  is dimensionless and it is clear that one can assign to k  the dimension 
of a velocity (if dimensions are introduced the first term would be multiplied by c .) We assume that k  and e , 
the energy per unit rest mass, are related by, 2 2 1k e= − , and find that Equation (7.2), i.e., the second equation 
in (7), can be written, 

( )2

1 .
2

ru Me
r

= + −                                        (8) 

Little need is there to praise Equation (8)! Because k  is constant it follows from 2 2 1k e= − , that e  is also 
a constant, and if 1k = , also 1e = . 

Equation (8) is an expression for the conservation of the particle’s energy as it moves along a time- 
independent space-time geometry. 

2.2. Particle Orbits for Some Important Values of k 
In this section we study particle orbits only for values of 0,1k = , because then (unlike other cases as, e.g., for 
1 0k> > , in particular) solutions can easily be found. If 0k = , and for radial motions, the equation for u is 
found to be, 

( ) ( )
1 1

2 22 21 , 1 ,0,0 , 0w w w k
−  = − − − = 

  
u                       (9) 

We expect that for physically meaningful solutions the particle’s proper time increases with the coordinate  

time, and have therefore discarded the solution with ( )
1

2 2d d 1 .t w wτ
−

= − −  Equation (9) is valid only below  

the event horizon and it follows from Equations (7.2) and (8) that the value of ru−  given by Equation (9) is  

the minimum fall velocity, and furthermore that 1
2

e = . Therefore inside the event horizon, e  must be larger 

than 1
2

. Below the event horizon, the potential energy decreases, but this decrease is compensated by the  

increase in the minimum allowed value for ru . 
We proceed now to calculate the orbits for 1k = . The value 1k = , corresponds to the orbit of a free-falling 

observer that starts at rest from infinity. The value of e  for all the solutions with 1k =  is unity. It will be 
shown that 1k = − , defines the orbit of a particle, with the same energy per unit mass as the free falling 
observer, but confined below the event horizon. It is convenient to use an orthogonal system of coordinates 
associated with the falling observer. It can be readily verified that the vectors, 

{ } { }0 11, , 0,1 ,w= − =e e                                    (10) 

form an orthonormal basis; the first one being timelike. 
Notice that in this basis, the vector u in Equation (9), for 0,k =  and the Killing vector, kv, can be written, 

( )

( )
( )0 11

2 2

,1
, 1,

1

w
w w

w
= = + =

−
u kv e e                          (11) 

where we have adopted the following convention: { }0 1v , v , and ( )0 1v , v , denote vectors in the coordinate and 
orthonormal basis respectively. It is clear that in Equation (11), 2 1= −u , and that 0k⋅ = − =u kv . 

Returning to the case 1,k =  the equations that need to be satisfied are, 

( ) ( )2 2
, 1, 1.t rk u u k⋅ = − − + = − =u kv                       (12) 

The four solutions to Equation (12) are, 
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( )
( ) ( )

2

2 2

1 2, , 1
1 1

w wk k
w w

 +
 = − =
 − − 

u                          (13a) 

( ) ( )1,0 , 1; 1,0 , 1k k= = = − = −u u                          (13b) 

We do not expect the particle’s proper time to decrease while the coordinate time increases, we are therefore 
left with only three physically meaningful solutions. In the coordinate basis the components of these three 
solutions are, 

{ }
( )
( )

2

2

1
1, , , , 1.

1

w
w w k

w

 + = − = − + = 
−  

u u                    (14a) 

( )
( )

2

2

1
, , 1.

1

w
w k

w

 + = − = − 
−  

u                              (14b) 

The solution with 1k = , in Equation (13b), shows that u is the velocity of a particle that is stationary with 
respect to the falling observer, as expected from our choice of basic vectors in Equation (10). The same 
conclusion can be reached in the coordinate basis (cf. the first equation in (14a)), because it follows from 
Equation (1a), that d dr wτ = − . 

Equation (14b) represents a sinking particle with 1e =  and has no physical meaning above the event horizon 
because there, d d 0t τ < . Conversely, the second equation in (14a) represents an outgoing particle with no  

physical meaning below the event horizon. Here, the minimum descent velocity is equal to ( )
1

2 21w −  from 

Equation (9), and w  in Equation (14b) must satisfy the inequality ( )
1

2 21w w> − , which is indeed the case. 

3. Particle Pair Creation and Hawking Effect 
The Killing vector, ( )1,0=kv , is timelike above the event horizon (out), and spacelike below (in). In the 
quantum creation of a pair of particles, energy conservation requires that [1], 

0.in out in outk k− ⋅ − ⋅ = + =u kv u kv                            (15) 

Here, inu , outu  are the four-velocities of the created pair. Above the event horizon, outk , must be positive 
because it is proportional to the particle’s energy measured by an observer with velocity kv. Therefore 

in ink = − ⋅u kv  must be negative and equal to outk− . For values of 1k = , it follows from Equation (14b), that  
the velocity of the created particle below the event horizon must be, ( ) ( ){ }2 21 1 , .in in in inw w w= + − −u  From the 
time dependence of the solutions in Equation (14a), it is apparent that outu  must then be taken equal to  

( ) ( ){ }2 21 1 , ,out out outw w w− + −  which is the outgoing solution for 1k = . The particle above the event horizon  

cannot fall back into the black hole. Because win and wout are both very approximately equal to one, it is straight- 
forward to show that t t

in outu u=  requires that Equation (16.1) below, be satisfied. Equation (16.2) follows from 
the relation, ( )2 1 2e k= + , 

1 1, ,in out in outr r e e− = − =                                   (16) 

where inr  and outr  are the radial coordinates of the particles forming the pair, an intuitively attractive result. 
In Equation (162), ine  and oute  are the energies of the respective particles divided by their mass. Because 

in oute e= , global energy conservation requires that the mass of the particle below the EH be equal to minus the 
mass of the particle above the EH, i.e., the energy of the particle below the event horizon must be negative in 
agreement with Schutz’s [2] and Carlip’s [3] interpretation of the Hawking effect. The particle with negative 
mass survives for a finite amount of time before reaching the center of the black hole. But it is an unobservable 
particle and provides the formalism with the necessary degrees of freedom that allows for the correct inter- 
pretation of an observed particle at infinity escaping from the black hole. It would of course be of great interest 
to understand what happens for values of k  such that 0 1k< <  because then the outside particle cannot 
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escape to infinity. 
We calculate now the ratio d dt τ , where t  is the Schwarzschild time, and τ  is the proper time of the 

particles at the event horizon. From Equation (3b) it follows that ( ) ( )2
metricd d 1 1 ,t t w= −  and then from Equ- 

ation (14a) we obtain for an outside particle, 

( )
( ) ( )

2

2 22

1d 1 .
d 2 11

out

outout

wt
wwτ

+
= =

−−
                            (17) 

In a theory of particle creation, the proper time should play the relevant role. Assume then that at the event 
horizon, N particle-pairs are produced in a time dτ . Equation (17) shows that for the outside observer, N par- 
ticles will have been produced in the incomparably larger time, ( )2d d 2 1 ,outt wτ= −  which suggests a weak 
observed productions of particles. However, the Hawking radiation from a black hole is also very weak. Field 
theory calculations show that black holes emits as though it were a black body with temperature, 

( )
3

,
8πb

ck T
GM

=
                                        (18) 

the notation being standard. The temperature, T , is truly the physical temperature of the black hole, not merely 
a quantity paying a role mathematically analogous to temperature in the laws of black hole mechanics (cf. [4], 
p.12). Mini black holes excepted, the emission is weak, and the creation of particles with finite mass, even 
neutrinos, must be weaker still. However, as the temperature increases, during the final stages of evaporation, 
the creation of particle-pairs with finite mass, could conceivably, become important. It is clear however that the 
answer to this issue lies far beyond the scope of this paper, and can only be obtained with the help of field 
theories capable of calculating particle creation in a curved space time (see, e.g., [5]). 
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