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ABSTRACT 
In this paper, we discuss the theoretical validity of the observed partial likelihood (OPL) constructed in a Cox- 
type model under incomplete data with two class possibilities, such as missing binary covariates, a cure-mixture 
model or doubly censored data. A main result is establishing the asymptotic convergence of the OPL. To reach 
this result, as it is difficult to apply some standard tools in the survival analysis, we develop tools for weak con-
vergence based on partial-sum processes. The result of the asymptotic convergence shown here indicates that a 
suitable order of the number of Monte Carlo trials is less than the square of the sample size. In addition, using 
numerical examples, we investigate how the asymptotic properties discussed here behave in a finite sample. 
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1. Introduction 
Although the Cox model [1] is a standard tool for the analysis of time-to-event data, in practice analysts are of-
ten confronted with some problems in handling incomplete data beyond the right-censored form, such as inter-
val-censored data [2], missing covariates [3-5] or (statistical) structural modelling. The inference for the Cox 
model under such cases of incomplete data can usually be performed based on the semiparametric profile like-
lihood (SPFL) [6] as a generalization of Cox’s partial likelihood [7]. On the other hand, as a substitute for the 
SPFL method, one can analyse the same data using the imputation method, which yields a sum of partial like-
lihoods. By describing the sum of all possible partial likelihoods more exactly, we can formulate the marginal of 
partial likelihoods [8], that is, the observed partial likelihood (OPL). In this area, the theory for the SPFL has 
been studied by many authors (e.g., [6,9]). However, to the best of our knowledge, there has not been much de-
velopment in mathematical theory for the OPL.  

In this paper, we discuss the theoretical validity of the OPL which appears in a Cox-type model under incom-
plete data beyond the right-censored form. In this area, one advantage of the OPL is that the baseline hazard 
function as a nuisance included in a Cox-type model is eliminated completely in the inferential likelihood. This 
yields a more stable computational system for optimization than that of the SPFL. For example, in a Cox-cure 
model, a computational process based the EM algorithm to obtain the SPFL easily fails to converge if a suitable 
starting value is not provided (e.g., see [10]). The main disadvantages of the OPL are, for instance, that a great 
length of time is required for the exact computation and it is not clear how much the amount of computation can 
be reduced by the Monte Carlo (MC) method. However, even if the feasible number of MC trials is smaller than 
desirable to approximate the OPL, and hence the MC approximation is quite rough, it may be sufficient for a 
starting value in the computational process of the SPFL.  
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Generally, it is difficult to investigate computationally to what extent the MC approximations of the OPL are 
valid, since the exact computation requires a huge number of summands, as the sample size and incomplete in-
formation of data are increasing. For this reason, it is worth studying the OPL theoretically. However, it is not 
easy to complete such a study in one go, because standard tools to study asymptotic properties of Cox’s partial 
likelihood or the SPFL cannot be applied directly to an objective of the OPL. Therefore in this paper, for the 
sake of simplicity, we focus on the OPL constructed in incomplete data composed of unobserved two class la-
bels. Typical cases of this type occur in a Cox-type model with incomplete data, such as missing binary cova-
riates, a cure-mixture model or doubly censored data. As a main result, we establish the asymptotic convergence 
of the OPL and derive a limit form of the OPL. This result is a foundation or precondition for applying an infi-
nite-dimensional Laplace approximation for integral on the baseline hazard. Such a Laplace approximation me-
thod will yield the other limit form of the OPL [11], which is useful in discussing the consistency and asymptot-
ic normality of the estimators. However, the method is not convenient for showing the convergence of the OPL. 
For these reasons, it is also valuable to discuss the convergence of the OPL using the arguments employed in 
this paper.  

A matter of interest in practice concerns MC approximations of the OPL. One other significant point is that 
the result for the convergence of the exact OPL can be easily tailored to the context of the MC approximations. 
Based on such an argument, we show that a suitable order of the number of MC trials is less than O(n2) Further, 
in Section 4 we investigate how the asymptotic properties discussed here behave in a finite sample.  

In Section 2 we formulate the OPL in incomplete data with two class possibilities, providing several examples 
of interest; in Section 3 we develop the tools to obtain the main result and show the convergence of the OPL, 
and in Section 4 we discuss the performances of MC approximations.  

2. Observed Full and Partial Likelihoods 
2.1. Notations and Motivated Examples 

Let ( )mini i iT T U∗= ,  and ( )i i iT U∗∆ = ≤1  be the observed survival time and right-censoring indicator of the 
-thi  individual, where , 1iT i n∗ = , ,  are continuous random variables independent of iU  and ( )⋅1  is the 

indicator function. Suppose that the individuals possess some difference between models or observations identi-
fied by the two classes. We define such a class variable by 

1 if the -th individual belongs to class 1
0 if the -th individual belongs to class 0i

i
q

i
∗ 
= .


 

In the case that iq∗  expresses the difference between models, assume that the distribution of iT ∗  follows the 
proportional hazards model formulated as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T
0 andi i i it t r r r Zλ λ β β β= = ,    0 1= , ,  

where ( )0 tλ  is the baseline hazard function, ( ) ( )r x  is the function given by 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0exp ,  either exp or 0,r x x r x x r x= = =  

( )
iZ   is the covariate vector ( ) ( ) T

1 b( )i iZ Z, ,   from the population of the class  , and β  is the regression  
coefficient vector T

1 b( ) .β β, ,  As usual, the information on ( )i iT ,∆  can be re-expressed using the counting 
processes ( ) ( )1i i it T t= ≤ ,∆ = 1  and at-risk processes ( ) ( ).i it T t= ≥ 1  

In this paper, we consider incomplete data where some of the iq∗ ’s are treated as missing. Let  

( )
( ) ( ) ( )

( )

is completely observed and

for 0 1 if 1 is complete

1 for 0 1 if 0 is missing

i i

i i i

i

i i

C q

q C q

C q
π

∗

∗ ∗

∗

=

 = = , = ,= 
= , = .


 



1

1  

Each of these is used to construct the likelihoods. Further, if the event of { }iq∗ =   can be expressed by a pro- 
bability, we use the following notation and assumption 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 T TPr   and exp 1 exp ,i i i i i iq X p p X Xα α α α∗ = = = +  
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where iX  is the covariate vector ( )T
1 a1 i iX X, , ,  related to ,iq∗  and α  is the regression coefficient vector 

( )T
0 1 a .α α α, , ,  For simplicity, we will write ( ) ( )TT T T

0 1 a b,θ θ θ θ α β+= , , = ,

 hereafter. 
Let 1( )nq q∗ ∗ ∗= , ,q   be the collection of true iq∗ ’s. In many cases of incomplete data with two class possi- 

bilities, the observed full likelihood (OFL) can be generally written as  
( ) ( ) { }

( ) ( ) ( )0 00 1 n
n n
f fL Lπθ θ

∈ ,
,Λ = ,Λ ;∑q q qs                        (2.1) 

with the elements such that  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

0 0 01 π
i

i i i in q q q qn
f i i i i i iiL p T r S Tπ θ α λ β β

∆

=
,Λ ; = ; ,Λ∏q  

and ( ) 1 ,in q
i==∏qs s  where the space { }0 1 n,  denotes the collection of all the vectors composed of 0 or 1 with 

length n, ( )1 nq q= , ,q   expresses one element of { }0 1 n, , in which there exists one true element ∗q , 
( ) ( ) ( ) ( ) ( )( )0 0exp 0 1i iS t r tβ β; ,Λ = − Λ , = ,    

is the survival function of the -thi  individual belonging to the class ,  ( ) ( )0 00
d

t
t s sλΛ = ∫  is the cumulative 

baseline hazard function, and s  is given by either of 1=s  or 1−  in advance.  
In the following three examples, we show how the form of the OFL is related to the representative cases. He-

reafter, we will often omit θ  when it is clear that a function depends on ,θ  e.g. ( ) ( ) ( ) ,i ir r β=   ( )
ip =   

( ) ( ) ,ip α  ( ) ( ) ( ) ( )0 0i iS t S t β;Λ = ; ,Λ   and so on.  
 
Example: Missing Binary Covariates. Let us assume that ( ) ( ) ( ) ( )0 1r x r x=  but ( ) ( )0 1 .i iZ Z≠  For example, the  
first covariate is binary and may be missing, ( )

1
iq

i iZ q
∗ ∗=  and ( ) , 2.iq

ij ijZ Z j
∗
= ≥  Then, we can write  

( ) ( ) ( )( ) ( ) ( )( )1 0( ) ( )T T Texp exp 1 expi iq q
i i i i i ir Z q Z q Zβ β β β

∗ ∗ ∗ ∗= = + − ,  

where b( )T
1 2 .iq

i i j ijjZ q Zβ β β
∗ ∗

=
= +∑  In this case, the OFL is  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )
0 000 11 π

inn
f i i i ii iiL p S TT rθ α βλ β

∆ 
 
 = ,=
 

,Λ = ; ,Λ .∑∏   


 

Using the binomial expansion, this can be rewritten as 

( ) ( ) { }
( ) ( ) ( ) ( ) ( ) ( )

0 0 00 1 1 π
i

i i i i
n

n q q q qn
f i i i i i iiL p T r S Tθ λ

∆  
 

∈ , =   
,Λ = ;Λ .∑ ∏q                   (2.2) 

 
Example: Cox Cure-Mixture Model. The Cox cure-mixture model [10,12-15] is presumed to hold the propor-
tional hazards model for uncured individuals and to be zero-hazard for cured ones. That is, we assume 

( ) ( )0 1
i iZ Z=  but ( ) ( )0 0,r x =  so that we can write  

( ) ( )( )1( ) Texpiq
i i ir q Zβ β

∗ ∗= .  

We observe that ( )1 . . 1i iq i e C∗ = =  if 1i∆ =  and iq∗  is missing ( ). . 0ii e C =  otherwise. The OFL is usually 
( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }11 1 1 0 1 1

0 0 0 01

i inn
f i i i i i i i i iiL p T r S T p p S Tθ λ

∆ −∆

=
,Λ = ;Λ + ;Λ ;∏                  (2.3) 

note here that ( ) ( )0
0 1iS t;Λ =  for all .t  Then, (2.3) can be rewritten in the same form as (2.2).  

 
Example: Doubly Censored Data. In doubly censored data [16,17], left-censored data may be included. Let 

iq∗
  indicate whether the -thi  observation is left-censored or not, the OFL is then  

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
* ** 11 1 1

0 0 0 01 1
i i ii

q qqnn
f i i i i i iiL T r S T S Tθ λ

∆ −

=
,Λ = ;Λ − ;Λ .∏

 

                    (2.4) 

In the phenomenal meaning, the common model is assumed regardless of the type of observations, but we do not 
define iq∗  as .iq∗

  Here we use the rule ( )0 0ir =  and ( ) ( )1 0
i iZ Z=  such that iq∗  designates the type of model 

rather than an observation. Under this rule, because we have ( ) ( )0
0 1iS t;Λ =  for all ,t  (2.4) can be expressed 

as 
( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( )0 0 00 1 1 1

i ii i i
n

n qq q qn
f i i i i iiL T r S Tθ λ π

∆  
 

∈ , =   
,Λ = ;Λ − ,∑ ∏q  
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where note that iq∗  is defined as missing data (i.e. 0iC = ) if the -thi  observation is left-censored, and as 
complete data of 1iq∗ =  (i.e. 1iC = ) otherwise. 

2.2. Observed Partial Likelihood 
Let [ ]n ⋅R  be the integral operator proposed by [18] to derive the partial likelihood in the Cox model without 
time-dependent covariates. Without loss of generality, let us suppose that there are no ties. By operating [ ]n ⋅R  
to the OFL ( ) ( )0 ,n

fL θ,Λ  we have the OPL 
( ) ( ) { }

( ) ( ) ( )0 1 ,n
n n
p pL Lπθ θ

∈ ,
= ;∑q q qs  

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
π π 0 1

1 1
π .

i
ji i i

n n qnq q qn n
p n f i i i i j ij

i i
L L p r T rθ θ α β β

∆

=
= =

 ; = ,Λ ; =  ∑∏ ∏q qR   

Let ( ) ( ) ( ) ( )( ) ( )1 1
1log log  .inn

pp n in L n nθ θ ∆− −
=

= + ∏
 To discuss an asymptotic form of ( )( ) ,p n θ  we will pre-

pare some convenient expressions. First, to pack the expression of ( )π iq
i  into ( )iq

ir  and ( )iq
ip , we define  

( ) ( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }

1 1 0 0

1 1 0 0

1

1 1 , , 0, 1,

i i
l h l hhq l q

i i i i i i i i i

l h l h

i i i i i i i

Z r C q Z r q Z r

C q Z r q Z r h l

β β β

β β

∗ ∗ = + −  
 + − + − =  





 

and      ( ) ( ) ( )( )1 1 1iq
i i i i i i iX C q X C q X∗= − + − − .  

Using these expressions, let  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )T

0 1

0 T

E     E

       and E log 1 e

i i i

i i

q q q
n n i i n n i i i

q X
n n i

t t r t t Z r

X α

β β β β

α α

   , ; = , , ; = ,   
 ; = − + ,  

q q

q



 



  


 

where [ ] 1
1E n

n i iiR n R−
=

= ∑  is an empirical version of the theoretical expectation [ ]E iR . Further, as an impor-
tant definition, let  

( ) { } ( )0 12 n
n

n x xν −
∈ ,

= ∈∑ 1  

be the n-dimensional version of Minkowski’s measure .ν∞  Then, using these notations, ( ) ( )p n θ  can be 
written as  

( ) ( ) { } ( ) ( )( ) ( ) ( ){ }1
π0 1

log exp dnn np n p nn B nθ θ ν−

∈ ,
= ; ,∫q q q q  s                  (2.5) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )0 0T
π 0 0

E d log E de eiq
n n i i n n ip n Z t t t

τ τ
θ α β β ; = ; + − , ; ,   ∫ ∫q q q

     

eτ  is the greatest follow-up time and 12 2 .ii
n Cn

nB =∑=  The quantity of 12
n

ii C=∑  is the total number that the 
same ( ) ( )πp n θ;q ’s are repeated on { }0 1 .n∈ ,q  In addition, we define  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )π πn n

p n p n p pθ θ
θ θ

; ;== q q 





 

and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ){ } ( )0 0 0 0T
π 00

+ log de
p n n n n nt t t t

τ
θ α β β β β∗ ∗ ∗ ∗; = ; , ; − , ; , ; Λ ,∫q q q q q



     

which is ( ) ( )πp n θ;q  in which ( )i t ’s are replaced by the true intensity 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0
0 00 0

 d 1  d
t t

i i i i i i it q s r s q s r sβ β∗∗ ∗ ∗ ∗ ∗ ∗ ∗Λ = Λ + − Λ ,∫ ∫   

where ( ) ( ) ( ) ( ) ( ) ( )1 E [ ],ii
qq

n n i i it t Z rβ β
∗

∗ ∗, ; =q   β ∗  and 0
∗Λ  are the true β  and 0.Λ  In the case of ( )1

iZ =  
( )0 ,iZ  such as Cox cure-mixture model or doubly censored data, we have ( ) ( ) ( ) ( )1 1 .n nt tβ β∗ ∗ ∗, ; = , ;q q    
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Remark 1. In (2.5), even if we consider a difference or quotient between ( ) ( )p n θ  and ( ) ( ) ,p n θ  we cannot 
remove the potential increasing factor n in the summands ( )π(exp ( ))npn ⋅  because of the existence of the oper-
ator {0 1} .n∈ ,Σq  Thus, it may potentially be difficult to apply some of the standard tools in the survival analysis 
to the asymptotic discussion. For these reasons, our strategy to obtain a limit of ( ) ( )p n θ  is to regard all the 
summands of {0 1}n∈ ,Σq  as a process on { }0 1 .n,  We will then derive the result of a weak convergence on 
{ }0 1 .n,    

3. Convergence of the Observed Partial Likelihood 
We will now discuss how the mean of the log OPL converges to a deterministic function and provide Theorem 1 
of the main result. The following conditions are assumed for these discussions.  
 
Conditions A. Let Θ  be a compact set of θ  which includes ( )TT T ,θ α β∗ ∗ ∗= ,  where θ ∗  and α∗  are the 
true θ  and .α  The true baseline function ( )0 t∗Λ  is continuous and non-decreasing on [ ]0 et τ∈ ,  with 

( )0 0 0.∗Λ =  
A1: ( ), , 1, ,i iX Z i n= 


 are i.i.d. vectors from the population of the class 0,1= . 

A2: ( )( )Pr 1 0.i eτ = >                              A3: ( )*
0 .eτΛ < ∞  

A4: ( ) ( ) ( )E sup ,  0,1 for 1, , b.il iZ r lβ β∈Θ
  < ∞ = =  

      A5: E  for 1, ,a.ilX l  < ∞ =    

Condition A2 means ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1E[{ } ] 0U
i i i i ip S t p S t S t∗ ∗ ∗ ∗+ >  for all [ ]0 et τ∈ ,  because of ( )Pr( 1)i t = =   

( )E[ ],i t  where ( ) ( ) ( )
0( )i iS t S t β∗ ∗ ∗= ; ,Λ   and ( ) ( ) ( )i ip p α∗ ∗=   and ( )U

iS t  is the i-th survival function of  
right-censoring time under a given ( )( ).iq

i iX Z
∗

,  By the compact condition of ,Θ  we have 0 <   
( ) ( )0E[ ] 1ip α <  on α ∈Θ  as a matter of course. However, in the case that there are no ( ) ( )ip α  as in the ex-

ample of doubly censored data, such conditions on α  are omitted because ( ) ( )0 0n α; =q  always. 
 
Theorem 1. Suppose that Conditions A are satisfied. Then, as ,n →∞  ( ) ( )p n θ  converges almost surely to a 
deterministic function uniformly on .θ ∈Θ  
 
Theorem 1 is proved in Section 3.3. We prepare useful tools for such a proof in Sections 3.1 and 3.2 below. In 
Section 3.1, we discuss a relation needed to show that two OPL’s converge to the same limit, determining a plan 
(Lemmas 1 and 2) to obtain Theorem 1. In Section 3.2, following the plan, we provide a tool (Lemma 3) to give 
a weak convergence of all possible partial-sum processes. 

3.1. Relations between Two Observed Partial Likelihoods 

Note that the OPL is constructed by an integral on { }0 1 n,  with the measure .nν  Thus, to give two OPL’s with 
the same limit, it is predicted that the difference between the integrands of two OPL’s should converge weakly 
to zeros on { }0 1 ,n,  for example, by analogy of the dominated convergence theorem. Let  

( ) ( ) { } ( ) ( )( ) ( ) ( ){ }1
π0 1

log d for andnn n np pn B A B nθ ϕ θ ν−
ℵ ℵ∈ ,

= ; = , ℵ = ,∫q q q q     s  

be functions that exist around ( ) ( ) ,p n θ  where ( ) ( )expn x nxϕ =  for simplicity. Then, we have the following 
lemma about some ( ) ( )π

A
p θℵ ;q  and ( ) ( )π .B

p θℵ ;q  
 
Lemma 1. Suppose that  

{ } ( ) ( ) ( ) ( )( )π πlim sup 0 1 0    for all 0n A B
n p pn θ

ν θ θ ε εℵ ℵ→∞ ∈Θ
∈ , : ; − ; > = > ,q q q             (3.1) 

with probability 1. Then, as ,n →∞  

( ) ( ) ( ) ( ) assup 0,A B
p pθ θ θ∈Θ ℵ ℵ− → 

 

where as→  denotes almost sure convergence. 
(Proof of Lemma 1). Using Taylor expansions of 

( ) { } ( )1 11 1 1 1
1 0 0 1 0 1 0 0 1 0log log , nn nf f f f f g g n g g g−− −− = − − = −

  and ( )0 01
1 0e e enh nhnh n h h− = −

 , 
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the difference between ( ) ( )A
p θℵ  and ( ) ( )B

p θℵ  is derived as  

( ) ( ) ( ) ( )
{ }

{ } ( ) ( ) ( ) ( ) ( ){ } ( ) ( )
1

2
30 1

1 2

dn

n

A B A B
np p p pπ πθ θ θ θ νℵ ℵ ℵ ℵ∈ ,

− = ; − ;∫ qq
q q q q







   



 

 

s  

where, with some ( ) ( )1 2 3, 0 1ξ ξ ξ, ∈ ,q  on { }0 1 n∈ ,q  and ( )( )1 1 2 3 ,l l lξ ξ′ = − = , , q  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1 1 2 2 2

3 3 3

exp exp

                 and 

A B A B
n np p p p

A B
n p pπ π

ξ θ ξ θ ξ ϕ θ ξ ϕ θ

ϕ ξ θ ξ θ

ℵ ℵ ℵ ℵ

ℵ ℵ

′ ′= + , = +

′= ; + ; .q q qq q

 

     



  

 

Let us assume that ( ) ( ) ( ) ( )0 B A
p pθ θℵ ℵ< <   without loss of generality. Then, { }1

2 1

n
 

 
 and  

( ) ( ) 23 d nν∫ q q 

   are bounded on θ ∈Θ  by some finite values 1b  and 2.b  In fact,  

{ }1

2 1 11
n

ξ< 

 
 and ( ) ( ) 2 23 d 1nν ξ<∫ q q 

   

are shown by ( ) ( )( ) ( ) ( )( )exp exp 1.B A
p pθ θℵ ℵ < 

 Therefore, we have  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ } ( ) ( )

{ } ( ) ( ) ( ) ( )( )

3

2
1 π π

1 2 π π

sup sup d

                                         sup 0 1 0 .

A B A B
np p p p

n A B
n p p

b

b b

θ θ

θ

θ θ θ θ ν

ν θ θ

ℵ ℵ ℵ ℵ

ℵ ℵ

− ≤ ; − ;

≤ ∈ , : ; − ; >

∫ q

q
q q q q

q q q






   





 

s
 

Applying (3.1) to the above inequality, this lemma is proved.   
Using Lemma 1, for several patterns of ( )π

A
p ℵ  and ( )π

B
p ℵ  we can investigate whether they converge to the 

same limit. The important problem is how to show the condition (3.1). For this purpose, we make the use of 
meaning that a convergence in -probabilitynν  implicated in (3.1), since nν  is a probability measure on 
{ }0 1 .n,  We have the following lemma to establish the condition (3.1). 
 
Lemma 2. Suppose that  

{ } ( ) ( ) ( ) ( ) p0 1
sup 0n

A B
p pπ πθ

θ θℵ ℵ∈Θ, ∈ ,
; − ; → ,

q
q q 

                      (3.2) 

where p→  denotes convergence in probability. Then, (3.1) is established.  
 
Remark 2. For simplicity, letting 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) and sup ,A B
n n np pG f Gε

θπ πθ θ θ θ ε∈Θℵ ℵ, = ; − ; = , >q q q q q  1  

denote 

{ } ( )( ) { } ( ) ( )
0 1

0 1 1 dn
n

n n n n nQ f fε ε εν ν
∈ ,

= ∈ , : = = ∫qq q q q  

as the area of ( ) 1nf
ε =q . We can immediately show that (3.2) provides a version of convergence in probability 

of (3.1), i.e.  

( )lim Pr 0 1 for all 0n nQε ε→∞ = = > ,                           (3.3) 

because it is always satisfied that  

{ } ( )( ) { } ( )( ) { } ( )
0 1

sup 0 1 0 1 sup sup n
n n

n n n n nG G Gθ θ θ
ν θ ε ν θ ε θ

∈Θ, ∈ ,
∈ , : , > ≤ ∈ , : , > ≤ , .

q
q q q q q  

Thus, we show that the operators of lim  and Pr  are mutually exchangeable in (3.3) in a proof of Lemma 2.   
(Proof of Lemma 2). Note that  

{ } ( )( ) { } ( ) ( ) ( )
0 1

0 1 1 d 1n n nQ f fε ε εν ν∞

∞
∞ ∞∈ ,

= ∈ , : = = ≤∫qq q q q  

because ( )nf
ε q  is independent of ( )1 2n nq q+ +, ,  due to the n-dimensional projection to { }0 1 n,  from { }0 1 .∞,  

From condition (3.2), limits of ( )nf
ε q  are zeros almost everywhere on { }0 1 ,n∈ ,q  which can be eventually 

written as ( ) ( )lim 1n n Pf oε ≤q  independently of { }0 1 .∞∈ ,q  The dominated convergence theorem provides  
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{ } ( ) ( ) ( )
0 1

lim lim d 1n n Pn n
Q f oε ε ν∞ ∞∈ ,→∞ →∞

= ≤ .∫q q q  

This shows ( )Pr lim 0 1n nQε = =  via Markov’s inequality such that  

( ) ( ) ( ) 2Pr lim E lim dn n n nQ fε εη ν η∞ ≥ ≤ . ∫q q q  

Therefore, condition (3.2) gives (3.1).   

3.2. All Possible Partial-Sum Processes 
Note that, by the portmanteau theorem, (3.2) is equivalent to, as n →∞,  

( ) ( ) ( ) ( ) ( ) { }Dπ π 0 on 0 1 ,A B
p pθ θ θ ∞
ℵ ℵ; − ; → , ∈Θ× ,q q q 

 

where D→  denotes convergence in distribution. In this section, we develop a tool to show such a weak conver- 
gence on { }0 1 .∞∈ ,q  

For simplicity, let 1 ,i iC C′ = −  1i iq q∗ ∗′ = −  and 1 .i iq q′ = −  An important key to obtaining (3.2) or a limit of  

( ) ( )p n θ  is a convergence result of ( ) ( ) ( ) ( ) ( ) ( )0 1 0, andn n nt tβ β α∗, ; , ; ;q q q    on { }0 1 .n∈ ,q  As representa- 

tions of more essential terms to consider in the convergence on { }0 1 ,n∈ ,q  we denote 

( )( ) ( ) ( )( ) ( )1 1 and  n n
n i i n i ii iY t q Y t Y t q Y tθ θ θ θ

= =
′ ′; , = ; ; , = ; ,∑ ∑q q   

where examples of ( )iY t θ;  are ( ) ( ) ( ) ( ) ( ) ( )1 1 0 0, ,h h
i i i i i i i i i iC t Z r C t Z r C X′ ′ ′   and so on. Then, ( )( )1 ; ,nn Y t θ− q   

can be regarded as ( )En i iY t qθ ∗ ; q , which is the empirical version of the conditional expectation on a unique  
∗q  but is calculated letting q  be fixed. Let  

( )( )
( )
( )

E  0 if 0

E  1 if 1i

i i i

iq
i i i

Y t q q
Y t

Y t q q

θ
µ θ

θ
∗

∗ ∗

∗ ∗

  ; = = ,  ; = 
 ; = = ,  

 

which is the conditional expectation of ( )iY t θ;  on given .iq∗  Although iq∗  is treated as unknown in many 
incomplete problems, this is not the case for terms included in the observed partial likelihood. Hence, for a fixed  

{ }0 1 ,n∈ ,q  the conditional expectation of ( )( )n Y t θ; ,q  on ∗q  is ( )( ) ( )( )1E  .
i

n
n i ii q

Y t q Y tθ µ θ∗
∗

=
 ; , = ;  ∑q q  

So, letting ( ) ( ) ,l
n t β, ;s q  ( ) ( )1

n t β, ;s q  and ( ) ( )0
n α;s q  be means to centralize ( ) ( ) ,l

n t β, ;q  ( ) ( )1
n t β, ;q  and 

( ) ( )0
n α;q , then  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1 1 0 0

1 1 0 01 1
1 1

E

                   
i i

l l l
n i i i i i i i i

n nl l
i i i i i i i i i ii iq q

t C t q Z r q Z r

n q C t Z r n q C t Z r

β β β

µ β µ β∗ ∗

∗ ∗

− −
= =

 ′, ; = + 

′ ′ ′+ + ,∑ ∑

s q 

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 1 1 0 0

1 01 1
1 1

E

                    i i

i i

n i i i i i i i i

q qn n
i i i i i i i i i ii iq q

t C t q Z r q Z r

n q C t Z r n q C t Z r

β β β

µ β µ β
∗ ∗

∗ ∗

∗ ∗

− −
= =

 ′, ; = + 

′ ′ ′+ + ,∑ ∑

s q 

 
 

( ) ( ) ( ) ( )T0 T T 1
1E E log 1 e  and   i

i

nX
n i i i i i ii q

C q X n q C Xαα α α µ ∗
∗ −

=
  ′ ′ ′; = − + + .     ∑q s  

Example: Missing Binary Covariates. For simplicity, we assume that 1iC =  or 0 occurs independently of  
.iq∗  Letting ( ) ( )( )Pr iq

i i i iw C X Z
∗

= = ,  , then  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0

1 1 0 0 1
0 1

E E Pr 1 1 E

E E

iq
i i i i i i i i i i i

l l l U
i i i i i i i i i i i i i i

C q X X C q X Z X w p

C t q Z r q Z r Z r w p S t S t

∗
∗ ∗

∗ ∗∗ ∗
= ,

     ′ ′= = , = , = ,       
   ′+ = ,   ∑    




 



T. SUGIMOTO 

OPEN ACCESS                                                                                         OJS 

125 

while the expectations of terms which may form all possible partial-sums in ( ) ( )0 ,n α;q  ( ) ( )l
n t β, ;q  and 

( ) ( )1
n t β, ;q  are  

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0 0 0 0

0 1 10

E Pr 0

E 0 E E if 0,
                 

E E if 1,E 1

E Pr 1

i

i

i

i i i i i i iq

i i i i i i i i

i i i i ii i i

ql h l h
i i i i i i i i i iq

C X X C X q q

X w q X w p p q

X w p p qX w q

C t Z r Z r C t X Z

µ

µ

∗

∗

∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗∗

 ′ = = , 
       = =       = = 

      = =     

′ ′= = , ,    

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0

0

0 1 1

(1)

E
if 0

E
                  0 1.

E
if 1

E[ ]

i i

l h U
i i i i i i

i
i

l h U
i i i i i i

i
i

q q

Z r w S t S t p
q

p

Z r w S t S t p
q

p

∗ ∗

∗ ∗

∗

∗

∗ ∗

∗
∗

  
  

  
  

  = ,
    = = ,
  

  = ,


 

 


 

In these calculi, note that the Bayes rule is used, such as  

( ) ( ) ( ) ( ) ( )
( )
( )

0 0 0
Pr

E d Pr d Pr .
Pr

i i
i i i i i i i i i i

i

q j X
X w q j X w X q j X w X

q j

∗

∗ ∗
∗

=
 = = = =  =∫ ∫  

Example: Cox Cure-Mixture Model. In this model, i iC = ∆  is usually assumed. The expectations of terms  
which may form all possible partial-sums are ( ) ( ) ( )( )0 0 0

i

l
i i i iq

C t Z rµ ∗ ′ =  and  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 0 1 10

0 01 1

E Pr 1 1

E 1 E E if 1

E E if 0E 0

i

i

ql l
i i i i i i i i i i i iq

l l
i i i i i i i i i i

l Ul U
i i i i i ii i i i

t Z r Z r t X Z q q

Z r Q t q Z r Q t p p q

Z r S t p p qZ r S t q

µ

β

β

∗

∗
∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗∗

  ′∆ = − ∆ = , ,  
  

       = =       = = , 
      = =     

 

 

where ( ) ( )( ) ( ) ( ) ( )1 10 Pr 0 1 d .e U
i i i i i i i it

Q t t T X Z q S s S s
τ ∗∗= ≤ ,∆ = , , = = −∫  Similarly, we have  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 10

0 0

E 0 E if 1
E Pr 0

E E if 0
i

i

i i i i iq
i i i i i i iq

i i i i

X Q p p q
X X Z q q

X p p q
µ

∗

∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

     =       ′∆ = ∆ = , = .  
       =    

 

 
On Weak Convergence. Let ( ) ( ) ( )( ).

i
i i iq

Y t Y t Y tθ θ µ θ∗; = ; − ;  In our application, note that centred  
( ) , 1iY t i nθ; = , ,

  are zero-means and mutually independent but are not sampled from an identical distribution. 
We will therefore discuss the partial-sum processes about ( )iY t θ;  sampled from two populations. Lemma 3 
shows that  ( )( )1

nn Y t θ− ; ,q  converges in probability to zero uniformly on [ ] { }0 0 1eτ
∞, ×Θ× , ; recall that an 

n-dimensional element { }0 1 n∈ ,q  means marginal collection of elements of { }0 1 .∞,  In advance, let 

( ) ( ) ( ){ }0 0 0 0E .t i iK t Y t Y tδ
θ θ θ θ δ,

 = , : ; − ; < 
   

 
Remark 3. For example, if ( )2E ,iY t θ ; < ∞ 

  by Chebyshev’s inequality, we immediately have  

( )( )( )1lim sup Pr 0n nn Y t θ ε−
→∞ ; , > = .q q  

However, a result of interest here is whether Pr  and supq  can be exchanged, that is, about 

( )( )( )1lim Pr supn nn Y t θ−
→∞ ; ,q q . 
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Incidentally, we cannot obtain the almost sure convergence in this problem, since  

( )( ) ( )( ) ( )1sup E 0n n i in Y t Y t Y tθ θ θ−  ; , = ; ≥ ; q q   1  

is always apart from zero.    
 
Lemma 3. Let ( ) , 1iY i nθ⋅; = , ,

  be random elements on [ ]0 eD τ,  sampled from one of two distributions 
(populations) with ( )E 0iY t θ ; = 

  at every ( ) ,t θ,  where the population to which the -thi  element ( )iY θ⋅;  
belongs is known and indexed by 0iq∗ =  or 1. Suppose that ( ) ( )1 nY Yθ θ⋅; , , ⋅; 

  are mutually independent and 
have ( )E 0iY t θ ; = 

  at every ( ).t θ,  If the following three conditions are satisfied, 
(i) The class of functions ( ) ( ) [ ]{ }0i eY t tθ θ τ; : , ∈ , ×Θ  is Glivenko-Cantelli,  
(ii) [ ] ( )0E sup

e it Y tτ θ θ∈ , , ∈Θ
 ; < ∞ 

  and  

(iii) ( ) ( ) ( ) ( )
0 0

0 0E sup 1
t

i it K
Y t Y t Oδ

θθ
θ θ δ

,, ∈
 ; − ; ≤  

   for every [ ]0 ,t eK δ
θ τ, ⊂ , ×Θ   

then, as n →∞   

( )( ) ( ) [ ] { }1
D 0 on 0 0 1n en Y t tθ θ τ ∞− ; , → , , ∈ , ×Θ× , .q q  

Lemma 3 is proved in Appendix A.1. The following examples show that the conditions needed in Lemma 3 are  
satisfied for ( ) ( ) ( ) ( ) ( )1 1, l h

i i i i i i i iY t C X Y t C t Z rα β′ ′; = ; =   and ( ) ( ) ( ) ( ) ( )0 0 0 1 .l h
i i i i iY t C t Z r l hβ ′; = , = ,  

Example 1. Let ( ) ( ).
i

i i i i iq
Y t C X C Xθ µ ∗′ ′; = −  From Condition A5, we have Condition (ii). Since ( )iY t θ;  is 

independent of ( )t θ, , Conditions (i) and (iii) are clearly satisfied.  
Example 2. Let ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ,

i

l h l h
i i i i i i i i iq

Y t C t Z r C t Z rβ µ ∗′ ′; = −

     0 1.= ,  Conditions (i) and (ii) are shown 
by Conditions A1 and A4. Arbitrary ( )0 0 tt K δ

ββ ,, ∈  satisfies ( )0 1Oβ β δ− ≤  by Condition A4 and  
( ) ( ) ( )0 0 0E ; ; 1i iY t Y t Oβ β δ − ≤   by Condition A3, where ⋅  means the Euclidean norm for vectors. Hence, 

Condition (iii) is satisfied.  

3.3. Proof of Theorem 1  
Consider ( ) ( ) ( ) ( ) ( ) ( )†, andp n p n p nθ θ θ

    in which the random quantities are reduced less than that of ( ) ( ) ,p n θ  
where ( ) ( )p n θ

  and ( ) ( )†
p n θ  are ( ) ( )p n θ  in which ( ) ( )p nπ θ  is replaced by ( ) ( )p nπ θ;q



 and ( ) ( )†
p nπ θ;q ,  

i.e. ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
†

†
π ππ πn nn n

p n p n p n p n
p pp pθ θ θ θ

θ θ θ θ
; ; ; ;= =

= , =
q q q q  





  



 and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

0 1 0T (0)
0π 0

0 1 0 0† T
0π 0

log d

log d .

e

e

n n n np n

n n n np n

t t t t

t t t t

τ

τ

θ α β β β β

θ α β β β β

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 ; = ; + , ; − , ; , ; Λ , 
; = ; + , ; − , ; , ; Λ 

∫

∫

q s q s q q s q

q s q s q s q s q








 

( ) ( )p n p n πandπ : It is satisfied that  

( ) ( ) ( )(0)
0 as0 0

sup E d 0
s s

s n i nd t t tβ∗ ∗ ∗− , ; Λ →  ∫ ∫ q  

and 
{ }

( ) ( ) ( ) ( ) ( )T T 1
0 as0 1 0 0

sup E d d 0i
s sq

nn i is
Z t t t

β
β β β∞

∗ ∗

, , ∈ ,
  − , ; Λ → ∫ ∫q

q   

by Conditions A1 and A4, similar to the standard Cox model (see [19]). Thus,  

{ } ( ) ( ) ( ) ( ) asπ π0 1
sup 0p n p nθ

θ θ∞∈Θ, ∈ ,
; ;− →

q
q q 

 

is obtained as .n →∞  

 
( ) ( )p n p n



 andπ π : We have 

{ }
( ) ( ) ( ) ( )0 0

p0 1
sup 0n nθ

α α∞∈Θ, ∈ ,
; − ; →

q
q s q  

using Lemma 3 in Example 1 and applying the strong law of large numbers (SLLN) to 
( ) ( )1log ip α  and 

T
i i iC q Xα ∗′  by Conditions A1 and A5. For the latter application, note that ( )1 TE[|log |] log 2 E[| |]i ip Xα≤ +  be- 

cause of ( ) ( ) ( )log 1 log 2 1 log 0 .x x x x+ ≤ + ≥ ≥1  Also, it is shown that 
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( ) ( ) ( ) ( )0 0
assup 0nt n t tβ β∗ ∗ ∗ ∗, ; − , ; →q qs  

by applying the SLLN on [ ]0 eD τ,  (see [1]) from Conditions A1 and A4. In addition, we have 

{ }
( ) ( ) ( ) ( )1 1

p0 1 ,
sup 0n nt

t tβ β∞
∗ ∗

∈ ,
, ; − , ; →

q
q s q  

using Lemma 3 in Example 2. Hence,
 { } ( ) ( ) ( ) ( )

0 1
sup p n p nπ πθ

θ θ∞∈Θ, ∈ ,
; − ;

q
q q

 
 converges in probability to zero 

as n →∞ .  

 
( ) ( )p n p n



 

†andπ π : It satisfies that 
( ) ( ) ( ) ( )0 0

psup log log 0t n nt tθ β β, , , ; − , ; →q q s q  

using Lemma 3 in Example 2 and the continuous mapping theorem about log-function. For the latter application, 
note that ( ) ( )0

n t β, ;s q  is bounded away from zero on [ ] { }0 0 1eτ
∞, × , ×Θ  by Condition A2. Hence,  

{ } ( ) ( ) ( ) ( )†
π π0 1

sup ; ;p n p nθ
θ θ∞∈Θ, ∈ ,

−
q

q q

 
 

converges in probability to zero as .n →∞   
Applying the above three results to Lemmas 1 and 2, therefore, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )†
( ) as as assup ( ) 0,   sup 0  and sup 0,p n p n p n p n p n p nθ θ θθ θ θ θ θ θ− → − → − → 

     
  

respectively, so that we conclude  

( ) ( ) ( ) ( )†
assup 0 asp n p n nθ θ θ∈Θ − → →∞. 

                        (3.4) 

Although (3.4) shows that the limit of ( ) ( )p n θ  is equivalent to that of ( ) ( )†
p n θ , ( ) ( )†

p n θ  still depends on n 
and iq∗ ’s. We will therefore investigate the limit form of ( ) ( )†

p n θ  further.  
In discussing a convergence about the form ( )1

1 i

n
ii q

n q µ ∗
−

=
⋅∑  and ( )1

1 i

n
ii q

n q µ ∗
−

=
′ ⋅∑  included in ( )0

ns  and 
( )1
ns  of the partial sums, note that they can be written as  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 01

1
1 01

E 1 1 E 1 0
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i
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i n i i n i ii q
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i n i i n i ii q

n q q q q q

n q q q q q
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=

   ⋅ = = , = ⋅ + = , = ⋅ ,   

   ′ ⋅ = = , = ⋅ + = , = ⋅ .   

∑

∑

1 1

1 1
 

Let ( ) ( ) ( )E , 0 1.h i iv q h q h∗ = = , = , = , q 1    Similarly to Lemma 3 (proof of s2), we show that 

( ) ( ) ( )pE asn i i hq h q l v n∗ = , = → →∞  q1   

at arbitrary point { }0 1 .∞∈ ,q  In particular, because of 

( ) ( ) ( )Pr Pr Pr ,i i i i i i i iq h q X q X q h X q∗ ∗ ∗= , = = = = , =    

note that  
( ) ( ) ( ) ( ) ( )E E E Prh i i i i i i iv q h q X p q h X q∗∗ ∗    = = , = = = , =     

q 1    

and then ( ) ( ) ( ) ( ) ( )
1 0 E iv v p∗ + =  q q   . We have the following lemma.  

 
Lemma 4. ( ) ( )1 1

1 1and
i i

n n
i ii iq q

n q n qµ µ∗ ∗
− −

= =
′⋅ ⋅∑ ∑  converge in probability to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0 0
1 1 1 0 0 1 0 0andv v v vµ µ µ µ⋅ + ⋅ ⋅ + ⋅q q q q  

uniformly on { }0 1 .∞∈ ,q  
 
A proof of Lemma 4 is provided briefly in Appendix A.2 since it is similar to Lemma 3. Now, applying Lemma  
4 to ( ) ( ) ( ) ( ) ( ) ( )0 1 0and, ,n n nt tβ β α, ; , ; ;s q s q s q  we obtain their limits as  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T0 1 0T T T
0 1 0 0and E E log 1 e iX

i i i i i i iC q X v C X v C Xαα α α µ α µ∗   ′ ′ ′; = − + + + .    
  s q q q  

Let ( ) ( )†
p θ;q   be ( ) ( )†

p n θ;q , in which ( ) ( )†
πp n θ;q  is replaced by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )0 1 0 0† T
0π 0

log de

p t t t t
τ

θ α β β β β∗ ∗ ∗ ∗ ∗; = ; + , ; − , ; , ; Λ . ∫q s q s q s q s q      

( ) ( )
†

p n p
† and  π π : We obtain ( ) ( ) ( ) ( )0 0

psup log log 0, t n t tθ β β, , , ; − , ; →q s q s q
( ) ( ) ( )1 1sup ( )t n t tβ β∗ ∗

, , ; − , ;q s q s q  

p 0→ ( ) ( ) ( ) ( )0 0
pand  sup log log 0nθ α α, ; − ; →q s q s q  by Lemma 4 and the continuous mapping theorem about 

log-function. Therefore, 
{ } ( ) ( ) ( ) ( )† †
0 1

sup p n pπ πθ
θ θ∞∈Θ, ∈ ,
; − ;

q
q q   converges in probability to zero as n →∞ . 

Hence, using Lemmas 1 and 2, we can show ( ) ( ) ( ) ( )† †
assup 0p n pθ θ θ∈Θ − → ,    so that a triangle combi- 

nation of this result and (3.4) yields  

( ) ( ) ( ) ( )†
assup 0 as .p n p nθ θ θ∈Θ − → →∞                             (3.5) 

 
On a Limit Form. The result of (3.5) shows only that the limit of ( ) ( )p n θ  is equivalent to that of ( ) ( )† .p θ    
Here we discuss a limit form of ( ) ( )† .p θ   To consider the case of 1= −s , let { }0 1 n

+
,  and { }0 1 n

−
,  be the sub-  

sets of { }0 1 n,  such that ( ) 1=qs  if { }0 1 n
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∈ ,q  and ( ) 1= −qs  if { }0 1 .n
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Then, 

( ) ( )( )† 1exp n
np Bθ =  { } ( ) ( ){ †

0 1
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+∈ ,∫q q q
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Because of ( ) ( )( )†exp 0p θ >  , we have 

{ } ( ) ( ) { } ( ) ( )† †
0 1 0 1

1 d d 0n n
n n

n nf fν ν
− +∈ , ∈ ,

> ≥∫ ∫q q
q q q q , 

so that, via the general binomial theorem, we can show that 

{ } ( ) ( )
{ } ( ) ( ){ }1† †

0 1 0 1
d dlim 1 1n n

nn n
n n

n
f fν ν

− +
∈ , ∈ ,→∞

− = .∫ ∫q q
q q q q  

Also, ( ) [ ]1 1 E
as 2 .in C

nB B −→ =  Therefore, because of { }( )0 1 1,n
nν +

, ≤  and similar to the derivation of the 
-norm∞

  on the Banach space which results in the essential supremum, we conclude  
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∫q

q
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                (3.6) 

In addition, (3.6) is derived in the case of 1=s . Results (3.5) and (3.6) show that Theorem 1 is complete.   
A limit function of ( ) ( )p n θ  is concretely provided by (3.6), which is summarized as follows.  

 
Corollary 1. If Theorem 1 holds, then a limit expression to which ( ) ( )p n θ  converges almost surely as 
n →∞  is { } ( ) ( )†

0 1 πlog ess sup pB θ∞
+∈ ,+ ; .. q q   
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4. Additional Considerations 
4.1. Monte Carlo (MC) Approximations 

It usually takes a long time for the exact computation of the OPL. So, another subject of interest is the perfor-
mance of its MC approximations. Let 1 2 2n, , ,q q q  be all the elements of { }0,1 n  labelled in order such that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1π π π2 2n np n p n p nθ θ θ; ≤ ≤ ; ≤ ; .q q q q q q     s s s  

We assign a point ( ]2 0 1nj ∈ ,  to jq  using ( )2n
jjζ = q  and let ( )( )n tν ζ  denote the distribution 

{ } ( )( )10,1 .n
n tν ζ −∈ : ≤q q  Using these notations, we redefine ( ) ( )( )exp p nn θ

 as  

( ) ( )( ) ( ] ( ) ( )( )( ) ( )( ) ( )( )π0 1
( ) exp exp dn n np n p nt

n B n t t tθ θ θ ζ ζ ν ζ
∈ ,

= = ; .∫  s  

Given fixed data ( ) ( )( )0 1 , 1 ,i i i i i iT C X Z Z i n,∆ , , , , = , ,  let 1 k, ,q q 

  be k  random elements from { 1 2, ,q q  
}2

,n,q
 where ( )1 jnj j qq= , ,q  


 and jiq  is either 1 or 0 with an equal probability 0.5 if 0iC =  and  

ji iq q∗=  if 1.iC =  An MC approximation of ( )n θ  is  
( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )( ] π0 1

exp dk k
n n np nt

B n t t tθ θ ζ ζ ν ζ
∈ ,

= ;∫



 s  

using { }1, , kq q 

  and the corresponding empirical measure  
( ) ( )( ) ( )( )1 1

1
kk

n jjt k tν ζ ζ− −
=

= ≤ .∑ q
1  

By the standard asymptotic theory, as ,k →∞  it follows that  
( ) ( ) ( ) ( ) ( ) ( ){ } ( )( )as Dand 0 ,k k
n n n n nk Nθ θ θ θ θ→ − → ,                    (4.1) 

provided ( )n θ  exists and ( ) ,n θ < ∞  where  

( ) ( ] ( ) ( )( )( ) ( )( ) ( )22
π0 1

exp 2 dn n n np nt
B n t tθ θ ζ ν ζ θ

∈ ,
= ; − .∫    

To evaluate the quantity of ( )n θ  in the case of n →∞ , consider ( )1 n
n θ , then, as n →∞  

( ) ( ]
1 2

as 0 1ess supn
n tBθ ∈ ,→ .  ( ) ( )( )( )†

πexp 2 p tθ ζ; ,   

similar to the discussion for (3.6). As this result means that ( )n θ  may increase exponentially according to n, 
direct use of (4.1) is not particularly productive. Therefore, although (4.1) is the rationale in this context, it will 
be modified, as ,k →∞  to  

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ){ } ( ) ( )

as

22
D

                        log log

and log log 0

kp p
n n

kp p
n n n n

n n

kn N n

θ θ

θ θ θ θ

− −

 −
  
 

→

− → ,





 

   
             (4.2) 

using the delta method. Now consider the other aspect of (4.2) under 1.p =  Applying Theorem 1 and Corol-
lary 1 to such a problem, we obtain the following results  

( ) ( )( ) { }1

1
aslog log ess sup

k

k
n t t tn Bθ−

∈ , ,→ + .


  ( )
†
πp  ( )( ) ast nθ ζ; → ∞,  

             ( ) ( ) ( )( )†
as 0 1 πlog asess sup t pB t kθ ζ∈ ,→ + ; → ∞,.    

where ( )1 .n
j jt Qζ −=   This means ( ) ( ) ( )22lim 1n n nn Oθ θ→∞ ≤   from the point of view of the k-asymp- 

totic variance in the second line of (4.2). Hence, we can show that the order of ( ) ( )2
n nθ θ   is less than 

2( )O n  in (4.2) under 0.p =  That is, using the MC method, a computational load of (2 )nO  needed in the ex-
act computation can be reduced to one of at most 2( ).O n  

4.2. Numerical Examples 
We will investigate two circumstances in the finite samples using the Cox cure-mixture model. One is how a re-
lation such as (3.6) obtained as n →∞  is located in the finite samples. The other is to observe numerically the 
practical size of the error in MC approximations, ( ) ( )2 ,n nkθ θ   which was shown to be less than 
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( )2O n k  in the previous section. 
 
Ovarian Cancer Data: For the first purpose, we use survival data of ovarian cancer patients [20]. We set the 
covariates as ( )iX Treat Age Rdisease= , ,  and ( )1 ,i iZ X=  1 26,i = , ,  where Treat is the type of chemothe-
rapy (0 = single, 1 = combined), Age is the age of the patient (in years) and Rdisease is the extent of residual 
disease (0 = complete, 1 = incomplete). The maximum of the OPL ( ) ( )p n θ  is achieved approximately at 

( ) ( )TT Tˆ ˆˆ , 1 702 1 020 0 054 9 276 1 643 0 158 2 277 .θ α β= = . , . ,− . ,− . ,− . , . ,− .  

Here, let ( ) ( ) ˆ5 , 1 5.j j jθ θ= × = , ,  Figure 1 shows plots of  

( ) ( ) ( ) ( )( )( ) ( ]1
πexp on 0 1n

n p ny t B t tθ θ ζ; = ; ∈ ,
 

and ( )1 n
n θ  at ( ) ,jθ θ=  where 142nB =  and the y-axis is drawn in exponential scale. Although the total 

number of ( ) ( )πp n θ;q  is 262 ,  in fact ( ) ( )πp n θ;q ’s of 142  are sorted on ( ) ( )1 0 1 .t ζ −= ∈ ,q  This data are 
small in size ( )26 .n =  However, circumstances close to the relation in (3.6) are observed at least at 

( ) ( )5 4θ θ θ= ,  and ( )3 .θ  
 
Simulated Data: For the second purpose, we prepare simulated data with ( )0 1 0log 0 6 0 4 , 1, 1α α β∗ ∗ ∗= . . = − =  
and ( )1 ,i iX Z=  where iX  follows the standard uniform distribution. The latent distribution of iT ∗  is standard 
exponential and the censoring follows a uniform distribution [0 3 65]., .  Under these settings, the simulated 
means of cure and censored rate are about 48% and 58%, respectively. We generate 100 pairs of simulated data 
of size n. We perform m MC approximations for each simulated data set. Let ( ) ( )j k

n θ  be the -thj  element 
of  m ( ) ( )k

n θ ’s. For each simulated data set, we estimate ( )log n θ  and ( ) ( )2
n nkθ θ   by 

( ) ( )( )log k
n m θ,  and ( ) ( ) ( ) ( )2k k

n m n mV θ θ, , , where  

( ) ( ) ( ) ( ) ( ) ( )1
1  andmk j k k

n m n n mjm Vθ θ θ−
, ,=

= =∑   ( ) ( ) ( ) ( )( )21
1

m j k k
n n mjm θ θ−

,=
− .∑    

We use these to observe a better estimation performance than 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )21 1

,1 1
ˆ log  and log log .m mk j k j k k
n m n n n mj jl m mθ θ θ θ− −
, = =

= −∑ ∑     

Figure 2 shows simulated averages and standard errors (SEs) of 100 pairs of  

( ) ( ) ( )( ) ( ) ( )ˆlog , log andk k
n n m n mlθ θ θ, ,   

computed at ( )jθ θ=  in simulated data of 30n =  under 5k n=  and 1000,m =  where ( ) ( )2 10j jθ θ ∗= ×  
( )1 10 .j = , ,  Although k  is considerably smaller than the 2 iin C−∑  needed in the exact method, 

( ) ( )( )log k
n m θ,  approximates ( )log n θ  well enough. 

Further, even if the approximations were reduced to 30,m =  the simulated average of ( ) ( ) ( ) ( )2
30 30

k k
m mV θ θ, ,  

would still yield sufficiently good approximations of ( ) ( )2
30 30 .kθ θ   Based on these empirical findings, 

 

 

Figure 1. Plots of ( ) ( ) ( )( )( )n
n p nB t1 exp  θ ζπ ;  on ( ]t 0,1∈  (solid curves) and ( ) n

n
1θ  (horizontal dotted lines) at 

( )j j 1 5θ θ= , = , , , in ovarian cancer data ( -axisy : exponential scale). 
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we set 30 100 300 500 1000, 5n k n= , , , , =  and 30.m =  Figure 3 shows  
( ) ( ) ( ) ( ) ( )2 at , 2,5,8k k j

n m n mV jθ θ θ θ, , = =   

computed under these settings. Although ( ) ( ) ( ) ( )25 5
30 30
n n

n nV θ θ, ,  increases over an initial domain of n, Figure 3 
shows that the rate of such an increase is smaller as n increases. This provides a conjecture that 

( ) ( )2
n nθ θ   may be bounded by some order smaller than 2( ),O n  such as ( ),O n  for a sufficiently large 
.n  We leave further investigation of this to future research. 

5. Concluding Remarks 
A main result of this paper was to show the almost sure convergence of the OPL constructed in incomplete data 
with two class possibilities. To obtain this result, we discussed the principle of formulating this type of structure 
of the OPL, and then developed the tools based on a partial-sum processes argument. The limit function of the 
OPL resulting finally (Corollary 1) is the essential supremum of partial likelihoods obtained based on all the 
forms of complete data included in incomplete data, which is similar to -norm∞

  on a Banach space. In Sec-
tion 4.2, we showed numerically how an essential supremum approximates the OPL in real data for the Cox 
cure-mixture model.  

Unfortunately, it will be difficult to show consistency and asymptotic normality of the maximum OPL esti-
mator (MOPLE) using the limit function of the OPL provided in Corollary 1. However, if the consistency is 
 

 

Figure 2. Plots of averages (polygonal lines) and SEs (horizontal whiskers) of ( )nlog θ , ( ) ( )( )k
n mlog  θ,  and 

( ) ( )ˆ k
n ml θ,  at ( )jθ θ= , j 1 10= , ,  obtained from 100 simulated data sets of n 30=  ( k n5=  and m 1000= ). 

 

 

Figure 3. Plots of averages of ( ) ( ) ( ) ( )k k
n mn mV

2
,, θ θ  at ( )jθ θ=  j = 2,5,8  obtained from 100 simulated data sets of n 

= 30, 100, 300, 500 and 1000 ( k n5=  and m 30= ).
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achieved (as almost expected), the global essential maximum will be accomplished around true complete data 
under a true regression parameter. On the other hand, for the purpose of showing the consistency of the MOPLE, 
there will be other convenient limit expressions, although not discussed in this paper. A future paper on this top-
ic is based on an infinite-dimensional Laplace approximation for integral on the baseline hazard function [11]. 
However, in applying such a Laplace approximation to the OPL, a precondition that the OPL converges to a de-
terministic function is necessary. Hence, in order to obtain this precondition and for the reason that it is general-
ly difficult to show the convergence result directly using the Laplace approximation, it is meaningful to discuss 
the asymptotic convergence of the OPL using the argument employed in this paper.  

The results on the convergence of the exact OPL could easily suit the context of MC approximations. For 
example, at the end of Section 4.1 we show that, by applying Theorem 1 and Corollary 1, the size of the MC er-
ror is less than 2( )O n k． This suggests that the MC method, for which the number is at most 2( )O n , achieves 
an appropriate approximation and can reduce the vast computational load of (2 )nO  implied by the exact me-
thod up to a feasible level. Further, in Section 4.2 we performed numerical experiments to investigate the prac-
tical size of the error in MC approximations using the Cox cure-mixture model. These experiments indicate that 
the exact OPL may be sufficiently approximated with the number of MC trials smaller than 2( )O n , such as 
( )O n , as n  is larger.  
In future study, it is important to derive the other expression of the limit function based on an infinite-dimen- 

sional Laplace approximation for integral on the baseline hazard and then to discuss the consistency and asymp-
totic normality of the MOPLE, since the asymptotic convergence of the OPL is given in this paper. Further, it is 
an interesting issue how the discussion of the OPL of the binary class as considered here could be extended to 
that under continuous class possibilities, such as the Cox frailty model. 

Acknowledgements 
The author is grateful to anonymous referees for their careful reading. This work is financially supported by 
JSPS KAKENHI grant number 23700336. 

REFERENCES 
[1] D. R. Cox, “Regression Models and Life Tables (with Discussion),” Journal of the Royal Statistical Society, Series B, Vol. 34, 

No. 2, 1972, pp. 187-220. 
[2] J. S. Kim, “Maximum Likelihood Estimation for the Proportional Hazards Model with Partly Interval-Censored Data,” Journal 

of the Royal Statistical Society, Series B, Vol. 65, No. 2, 2003, pp. 489-502. 
http://dx.doi.org/10.1111/1467-9868.00398 

[3] M. C. Paik and W.-Y. Tsai, “On Using the Cox Proportional Hazards Model with Missing Covariates,” Biometrika, Vol. 84, No. 
3, 1997, pp. 579-593. http://dx.doi.org/10.1093/biomet/84.3.579 

[4] H. Y. Chen and R. J. A. Little, “Proportional Hazards Regression with Missing Covariates,” Journal of the American Statistical 
Association, Vol. 94, No. 447, 1999, pp. 896-908. http://dx.doi.org/10.1080/01621459.1999.10474195 

[5] A. H. Herring and J. G. Ibrahim, “Likelihood-Based Methods for Missing Covariates in the Cox Proportional Hazards Model,” 
Journal of the American Statistical Association, Vol. 96, No. 453, 2001, pp. 292-302. 
http://dx.doi.org/10.1198/016214501750332866 

[6] S. A. Murphy and A. W. van der Vaart, “On Profile Likelihood (with Discussion),” Journal of the American Statistical Associ-
ation, Vol. 95, No. 450, 2000, pp. 449-465. http://dx.doi.org/10.1080/01621459.2000.10474219 

[7] D. R. Cox, “Partial Likelihood,” Biometrika, Vol. 62, No. 2, 1975, pp. 269-276. http://dx.doi.org/10.1093/biomet/62.2.269 
[8] R. Gill, “Marginal Partial Likelihood,” Scandinavian Journal of Statistics, Vol. 19, No. 2, 1992, pp. 133-137. 
[9] M. R. Kosorok, “Introduction to Empirical Processes and Semiparametric Inference,” Springer, Berlin, 2008. 

http://dx.doi.org/10.1007/978-0-387-74978-5 
[10] J. P. Sy and J. M. G. Taylor, “Estimation in a Cox Proportional Hazards Cure Model,” Biometrics, Vol. 56, No. 1, 2000, pp. 

227-236. http://dx.doi.org/10.1111/j.0006-341X.2000.00227.x 
[11] T. Sugimoto, “A Large Sample Study of Marginal Partial Likelihood in a Cox Cure-Mixture Regression Model,” Unpublished. 
[12] A. Y. C. Kuk and C.-H. Chen, “A Mixture Model Combining Logistic Regression with Proportional Hazards Regression,” 

Biometrika, Vol. 79, No. 3, 1992, pp. 531-541. http://dx.doi.org/10.1093/biomet/79.3.531 
[13] Y. Peng and K. B. G. Dear, “A Nonparametric Mixture Model for Cure Rate Estimation,” Biometrics, Vol. 56, No. 1, 2000, pp. 

237-243. http://dx.doi.org/10.1111/j.0006-341X.2000.00237.x 

http://dx.doi.org/10.1111/1467-9868.00398
http://dx.doi.org/10.1093/biomet/84.3.579
http://dx.doi.org/10.1080/01621459.1999.10474195
http://dx.doi.org/10.1198/016214501750332866
http://dx.doi.org/10.1080/01621459.2000.10474219
http://dx.doi.org/10.1093/biomet/62.2.269
http://dx.doi.org/10.1007/978-0-387-74978-5
http://dx.doi.org/10.1111/j.0006-341X.2000.00227.x
http://dx.doi.org/10.1093/biomet/79.3.531
http://dx.doi.org/10.1111/j.0006-341X.2000.00237.x


T. SUGIMOTO 

OPEN ACCESS                                                                                         OJS 

133 

[14] W. Lu and Z. Ying, “On Semiparametric Transformation Cure Models,” Biometrika, Vol. 91, No. 2, 2004, pp. 331-343. 
http://dx.doi.org/10.1093/biomet/91.2.331 

[15] T. Sugimoto, T. Hamasaki and M. Goto, “Estimation from Pseudo Partial Likelihood in a Semiparametric Cure Model,” Jour-
nal of the Japanese Society of Computational Statistics, Vol. 18, No. 1, 2005, pp. 33-46. 

[16] B. W. Turnbull, “Nonparametric Estimation of a Survivorship Function with Doubly Censored Data,” Journal of the American 
Statistical Association, Vol. 69, No. 345, 1974, pp. 169-173. http://dx.doi.org/10.1080/01621459.1974.10480146 

[17] B. W. Turnbull, “The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data,” Journal of the 
Royal Statistical Society, Series B, Vol. 38, No. 3, 1976, pp. 290-295. 

[18] J. D. Kalbleisch and R. L. Prentice, “Marginal Likelihoods Based on Cox’s Regression and Life Model,” Biometrika, Vol. 60, 
No. 2, 1973, pp. 267-278. http://dx.doi.org/10.1093/biomet/60.2.267 

[19] P. K. Andersen and R. D. Gill, “Cox’s Regression Model for Counting Processes: A Large Sample Study,” Annals of Statistics, 
Vol. 10, No. 3, 1982, pp. 1100-1120. http://dx.doi.org/10.1214/aos/1176345976 

[20] D. Collett, “Modelling Survival Data in Medical Research,” 2nd Edition, Chapman & Hall/CRC, London, 2003. 
[21] A. W. van der Vaart and J. A. Wellner, “Weak Convergence and Empirical Processes,” Springer-Verlag, New York, 1996. 

http://dx.doi.org/10.1007/978-1-4757-2545-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

http://dx.doi.org/10.1093/biomet/91.2.331
http://dx.doi.org/10.1080/01621459.1974.10480146
http://dx.doi.org/10.1093/biomet/60.2.267
http://dx.doi.org/10.1214/aos/1176345976
http://dx.doi.org/10.1007/978-1-4757-2545-2


T. SUGIMOTO 

OPEN ACCESS                                                                                         OJS 

134 

Appendix 
A.1. Proof of Lemma 3 

For notational simplicity, we let ( ) [0 ] ,etτ θ τ= , ∈ , ×Θ  then write 

( ) ( )i iY t Yθ τ; =   and ( ) ( )( )1 1 .n nn n Yτ τ− −, = ,q q   

It is immediately clear that ( )1
nn τ− ,q  is almost surely bounded. In fact,  

( ) ( )( ) ( ) ( )1 1 1
as1 En

n n i iin n Y n Y Yτ τ τ τ− − −
=

 , ≤ , ≤ → < ∞, ∑q q     

where the last part is obvious from Conditions (i) and (ii).  
Therefore, under a condition that ( )1

nn τ− ,q  is bounded, to prove the weak convergence of this lemma, the 
following results are needed (see [21]):  
• s1: 1

nn−   is asymptotically tight,  
• s2: The marginals ( ) ( )( )1 1

1 1n n k kn nτ τ− −, , , ,q q   converge weakly to a limit for every finite subset 
( ) ( )1 1 .k kτ τ, , , ,q q  

 
(Proof of s2). First, we show the pointwise version of the convergence. If ( )τ ,q  is fixed at one point on 
[ ] { }0 0 1 ,eτ

∞, ×Θ× ,  ( )1
nn τ− ,q  is a random variable on .R  Let ( ) { }0 1e ∞⊂ ,q  be an equivalent class of q  

such that a success rate 1
11lim n

n iin q−
→∞ =∑  obtained by every ( )1 e∈q q  is the same quantity as  

1lim n
n ii q n

=∑  gained from q  (exactly as *, 0lim
in ii q q n
=∑  and *, 1lim

in ii q q n
=∑  which depend on two po- 

pulations). Then, q  is regarded as a random element sampled from ( )e q : all elements ( )1 2q q, ,  included in 
( )( )e∈q q  are binominal random variables with the success rate 1lim .n

n ii q n
=∑  Consequently, by applying 

the simple SLLN based on the facts that ( )E i iY qτ  < ∞ 
  and ( ) , 1 ,i iY q i nτ = , ,

  are i.i.d. samples of  
two known distributions with zero means, we have ( )1

as0 0 as .nn nτ− , − → →∞q  From this result,  

( ) ( )( )
( )

( )( ) ( )( )
1

1 1
1 1 11 lim Pr 0 lim Pr Pr 0n nn n e

n e e nτ τ− −

∈

= , = = , =∑
q q

q q q q q q   

is satisfied, which provides  

( )( )1lim Pr 0 1n nn τ−
→∞ , = =q q                            (A1) 

by two properties of the probability measure,
 ( ) ( )( ) ( )

1 1 1Pr 1 and Pr 1.e e
∈

= ⋅ ≤∑q q q q q  Thus, (A.1) is the weak 
convergence result under ( )τ ,q  fixed at one point.  

Once the result of pointwise convergence at each point is obtained, by the -ε δ  method we can show how 
the -variatekR  1

nn−   converges on every ( ) ( )( )1 1 k kτ τ, , , ,q q  because k  is finite. Using the pointwise con- 

vergence under a fixed ( ) [ ] { }0 0 1 ,l l eτ τ ∞, ∈ , ×Θ× ,q  there exists a sufficiently large lM  for 0lε∀ >  such that 

( )( )1Pr 1 forn l l l l l ln n Mτ ε ε− , ≤ ≤ − ≥q q . 

Letting ( ) ( )1 1andmax max ,k k
k kM M M ε ε ε+= , , = , ,   it is then satisfied that  

( )1
11

for Pr max 1k k k
n l l kl k

n M n τ ε ε−
+ += , ,

 ≥ , , ≤ , , ≤ − 
 

q q q


  

on ( ) ( )( )1 1 .k kτ τ, , , ,q q  The more kM  increases, the closer kε+  approaches to zero. Then, by tanking 
kM →∞  on both sides, we obtain  

( )( )11
lim Pr max 0 1k

n l l kn l k
nτ ε+→∞ = , ,

, ≤ ↓ , , = .q q q


  

Hence, the marginals ( ) ( )( )1 1
1 1n n k kn nτ τ− −, , , ,q q 

 
converge weakly (in probability) to zeros.  

 
(Proof of s1). The asymptotically tightness is shown by the following results (see [21]):  
• s11: ( )n τ ,q  is asymptotically tight in R  for every ( )τ ,q ,  
• s12: n  is asymptotically uniformly equicontin s- uouρ  in probability,  
• s13: [ ] { }( )0 0 1eτ ρ∞, ×Θ× , ,  is totally bounded.  
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(Proof of s11). In the proof of s2, we show that ( )1
nn nτ− ,q  is almost surely bounded. Because this boun-

dedness is equivalent to the compact property in ,R  ( )1
nn τ− ,q  is covered almost surely by a compact set.  

 
(Proof of s12). We define a semimetric ρ  as  
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, = , = −∑q q q q  is the Hamming-type metric and we note that  

( ) ( ) ( ) ( ) ( )E E Pr 0 E 0 Pr 1 E 1i i i i i i iY q Y q q Y qτ τ τ∗ ∗ ∗ ∗      = = = + = = .      
    

By a triangle inequality, we have  
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and ( ) ( )1 2E i iY Yτ τ δ − < 
   under 12 .ρ δ<  Thus, using Markov’s inequality, we have  
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where the final inequality follows from Condition (iii). To evaluate ( )( )
12
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let ( )nI δ  be an index set that holds  

( ) ( )1 2 1 20 if and 0 ifi i n i i nq q i I q q i Iδ δ− ≠ ∈ − = ∉ ,  

and let ( )nI δ  be the number of elements of ( ).nI δ  We have ( ) ,nI nδ δ≤  because ( )1 2Hρ δ, <q q  is sa-
tisfied if 12ρ δ< . Then, using Markov’s inequality, we have  
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For example, we can take ( )( )1 1Oδ ηε< +  independently of n, ( )1 2τ τ,  and ( )1 2,q q  for every 0.η ε, >  
Therefore, since 1EQ  and 2EQ  are asymptotically uniformly -equicontinuousρ  in probability, n  
bounded by these sums is also so.  
 
(Proof of s13). Here we show that [ ] { }( )0 0 1eτ ρ∞

× ×, Θ , ,  is covered by a finite number of -balls.ε  First, un-
der a given [ ]0 ,eτ τ∈ , ×Θ  we show that { }( )0 1τ ρ∞× , ,  is totally bounded.  

Let nDq  be the collection of all the functions such that  

( ) ( )(π if 1 1is q s i n i n i n= ∈ − , , = , , ,   

which has either 0 or 1 at each n  partition point i n  on [ ]0 1, . The space { }0 1 n,  is identifiable to nDq , 
which is easier to see geometrically than { }0 1 .n,  Let Φ  be the onto-mapping map { }0 1 π D∞Φ : ∈ , ∈ qq  , 
where Dq  is nDq  obtained as .n →∞  Since ( )1 2nHρ ,q q  is identical to 

( ) ( ) ( )1
1 20
π π dx x xµ−∫  

using the Lebesgue measure µ  on [ ]0 1 ,,  ( )lim
nH n Hρ ρ→∞=  can be expressed as the 1L -norm in Dq ,  

( ) ( ) ( ) ( )1
1 2 1 20

dH x x xρ π π µ, = − .∫q q  

To consider the number of partitions of Dq  with -band,ε  let , 1 2 1lg l ε= , , ,  be representative elements 
such that 
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Figure 4. An illustration of the neighbourhoods ( ),
H lN gρ ε  and their elements lf  in qD . 
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All elements π  of Dq  are included in the combination ( )1
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, where 
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As illustrated in Figure 4, for every π,  we can put 1 2 1π f f f ε= ⊕ ⊕ ⊕
 by selecting every element lf  in-

cluded in a cylinder-type neighbourhood ( )
H lN gρ ε,  ( )( ) , 1 1

Hl lf N g lρ ε ε∈ , = , ,  and connecting such 
lf ’s. These facts imply  
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so that { }( )0 1 Hρ
∞, ,  is totally bounded.  

The remainder of the discussion is that [ ]( ) [ ]( )0 0e e Gτ ρ τ ρ, ×Θ× , = , ×Θ,q  is totally bounded under a given 

{ }0 1 ,∞∈ ,q  where ( ) ( ) ( )1 2 1 2EG i iY Yρ τ τ τ τ , = − 
  . Because ( )1 2Gρ τ τ,  is the same as the 1L -norm based on 

the probability measure, the result to be proved here is equivalent to verifying whether the class of functions 
( ) ( ) [ ]{ }0i eY t tθ θ τ; : , ∈ , ×Θ  is Glivenko-Cantelli. Consequently, Condition (iii) provides that [ ]( )0 e Gτ ρ, ×Θ,  

is totally bounded.  
Because the projection spaces { }( )0 1 Hρ

∞, ,  and [ ]( )0 e Gτ ρ, ×Θ,  are totally bounded, the product space 
[ ] { }( )0 0 1eτ ρ∞, ×Θ× , ,  is also so.    

A.2. Proof of Lemma 4 
(Proof of Lemma 4). Since the convergence in probability at each point is obtained similarly to Lemma 3 (proof 
of s2), a weak convergence of the arbitrary marginals on { }0 1 ∞∈ ,q  is also shown by the -ε δ  method similar 
to Lemma 3. Further, the asymptotic tightness is also shown similarly to the proof of s1 in Lemma 3. In the lat-
ter, a more simple proof may be provided based on the fact that { }0 1 ∞,  is homomorphism to the Cantor set.   
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