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ABSTRACT 
New advances within the recently rediscovered field of Compressed Sensing (CS) have opened for a great variety of 
new possibilities in the field of image reconstruction and more specifically in medical image reconstruction. In this 
work, a new approach using a CS-based algorithm is proposed and used in order to solve limited-angle problems 
(LAPs), like the ones that typically occur in computed tomography or electron microscope. This approach is based on a 
variant of the Robbins-Monro stochastic approximation procedure, developed by Egaziarian, using regularization by a 
spatially adaptive filter. This proposal consists on filling the gaps of missing or unobserved data with random noise and 
enabling a spatially adaptive denoising filter to regularize the data and reveal the underlying topology. This method was 
tested on different 3D transmission electron microscope datasets that presented different missing data artifacts (e.g, 
wedge or cone shape). The test results show a great potential for solving LAPs using the proposed technique. 
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1. Introduction 
A common problem in Transmission Electron Micro-
scope (TEM) is the limited-angle view, where large gaps 
of missing data are present in the acquired volume. An 
LAP occurs when having missing or corrupted data from 
a certain angle, which makes the acquisition unreliable 
and therefore you cannot trust the results. This group of 
LAPs is due to various technical and fundamental limita-
tions on the minimum and maximum attainable tilt an-
gles of the instrumentation that are used to acquire the 
data. Therefore, the data is confined to a limited-angular- 
range acquisition which prevents its appropriate visuali-
zation and rendering. 

The goal of our work is to estimate the missing or cor- 
rupted data from TEM datasets by applying a new strat- 
egy instead of the classically used techniques, such as 
POCS (Projection Onto Convex Sets), [1-3], which is 
widely used due to its easy implementation but offers poor 
results, or the more sophisticated ones like PICCS (Prior 
Image Constrained Compressed Sensing) or TV (Total 
Variation) [4], which are more complicated solutions. 

In this paper, we study a new variant of the already 
mentioned method of Egiazarian, [5]. We present and 
explain how the technique has been adapted and applied, 
and present the obtained results and a brief discussion 
along with the conclusions extracted from the results. 

2. Method 
In [6-8], it is shown that under CS assumptions, stable 
reconstruction of partly unknown data is possible and 
that in some cases the reconstruction can be exact. These 
techniques typically rely on convex optimization with a 
penalty expressed by the l0 or l1 norm, which is exploited 
to enable the assumed sparsity [9]. Therefore, it results in 
parametric modelling of the solution and in problems that 
are commonly solved by mathematical algorithms. In [5], 
it is proposed to replace the traditional parametric model-
ling used in CS by a non-parametric one. This non-para- 
metric modelling is implemented by the use of a spatially 
adaptive filter. The regularization imposed by the l0 or l1 
norm is essentially only a tool to design some non-linear 
filtering. This implicit regularization is replaced by ex-
plicit filtering, exploiting a spatially adaptive filter, which 
is sensitive to the features and details of the image. If this 
filter is properly designed, there is a chance to achieve 
better results than those obtained by the common method 
based on formulation of imaging. In imaging, the regula-
rization with global sparsity penalties (e.g, lp norms in 
some domain) often results in an inefficient filtering. It is 
known that a higher quality result can be achieved when 
the regularization criteria are local and adaptive. 

The applied method to reconstruct the “dead zones” 
(e.g. with corrupted or missing data) is carried out by a 
recursive algorithm based on spatially adaptive denoising *Corresponding author. 
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filtering [5]. Each iteration consists of providing data to a 
block-matching and a spatially adaptive 3D filtering al-
gorithm, called BM3D, by the injection of random noise 
in the unobserved portion of the data in frequency do-
main. To carry out block-matching and block-filtering, 
the filter implemented in [10] was used with some modi- 
fications such as the removal of the Wiener filter in order 
to speed up the algorithm and using Haar wavelet for the 
third-dimension transform. In addition, some parameters 
of the block hard-thresholding (HT) were optimized to 
speed up the computations, such as N1 = 4, N2 = 12, Ns = 
31 and tau_match = 1800. This peculiar filter works in the 
image domain. It attenuates the noise and reveals new 
details and features of the corrupted image at each itera-
tion. The process ends when a specific number of itera-
tions are performed. 

The algorithm is ruled by the following recursive sys-
tem: 

( )

( ) ( ) ( ) ( )
( )( )( )( ) ( )

0
2

1 1
2 2 2 2

11
1 2

ˆ 0, 0

ˆ ˆ ˆ ˆ 1 *

ˆ 1 * , 1

k k k

k
k

y k

y y y y S

y y S kη

− −

−−


 = =
 = = − ϒ − − ⋅ 


ϒ Φ ϒ + + − ⋅ ≥ 

  (1) 

where: Φ  ≡ filtering block 
2ŷ  ≡ estimation of unknown data in Fourier domain  

y1 ≡ known data in Fourier domain 
γ ≡ speed step of the algorithm 
(1 − S) ≡ mask to select the region of the unknown da-

ta 
ϒ  ≡ Fast Fourier Transform 

1−ϒ  ≡ Inverse Fast Fourier Transform 
kη  ≡ Gaussian noise 

Image data (denoted as y) is divided into a known por-
tion (denoted as y1) and an unknown portion (denoted as 
y2) as follows: 
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The procedure of [5] was applied to reconstruct 2D 
images (e.g. the data in Figure 1(b)) and achieve a per-
fect reconstruction, while we apply the method to 3D 
TEM volume images (e.g. the data in Figure 2) by split-
ting the 3D problem into a number of different 2D prob-
lems and solve them separately using a different con- 
figuration for each case due to the variability of the dead 
zone from slice to slice. For example, for the case pre-
sented in Figure 2, when taking horisontal slices in the 
xy-plane in Fourier domain. 

3. Datasets 
Three different datasets were used in this work. 

 
Figure 1. 2D limited-angle example. 

 

 
Figure 2. 3D limited-angle example in the image domain. 

3.1. Hansandrey Crystallography Dataset 
It consists of a 3D artificial crystallography of size 100 × 
100 × 100 voxels in.mrc format, [11]. It was created by a 
simulator-software to evaluate the performance of TEM 
reconstruction algorithms [12]. In this case, we simulated 
a missing wedge and a missing cone in Fourier domain 
(as shown Figure 3) to apply the reconstruction proce-
dure and evaluate the quality of the result. 

3.2. Viral DNA Gatekeeper Dataset 
It consists of a 3D model of a viral DNA gatekeeper, of 
size 100 × 100 × 100 voxels in.mrc format, obtained by 
cryoelectron microscopy technique. For this case, we 
only simulated a missing cone in the data to be able to 
apply the reconstruction method and evaluate its perfor-
mance of filling up the missing cone. 

3.3. Philip’s Crystallography Dataset 

It is a 3D model of a protein molecule acquired by a 
TEM but suffering from an LAP since it was not possible 
to tilt the specimen more than 45 degrees. Therefore, the 
3D model has (in Fourier domain) a missing/corrupted 
cone with a vertex angle of 90 degrees. The size of this 
3D model is 80 × 80 × 80 voxels in.mrc format. 

4. Experimental Results 
The peak signal-to-noise ratio (PSNR) is used as an eva- 
luation parameter to compare the test results. The PSNR 
is defined as follows: 
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where maxI  is the maximum voxel value of the 3D 
model, I is the original 3D model, and Î  is the recon-
structed 3D model. 

PSNR values of 47.6 dB, 36.5 dB and 46.2 dB were 
obtained for the 3D reconstruction of the Hansandrey 
dataset in the cases of missing wedge, missing cone when 
considering xy-plane slices (i.e. horizontal slices in Fig-
ure 3) and missing cone when considering xz-plane slic-
es (i.e. radial slices in Figure 3), respectively. We can 
visually evaluate the quality of the best reconstructed 
result in Figure 4 (an open-source 3D visualization soft- 
ware called Chimera was used). Regarding the result of 
the case of missing cone when using xy-plane slices, we 
attribute this poor PSNR value to the large “dead zones” 
(i.e. empty discs) present in the slices at the edges of the 
3D model. The algorithm has a limitation and fails in 
filling these large gaps of missing data. 

 

 
(a) 

 
(b) 

Figure 3. Hansandrey dataset. (a) Missing wedge; (b) Miss-
ing cone. 

For the viral DNA gatekeeper dataset, the reconstruc-
tion ran as expected and a PSNR value of 45.9 dB was 
obtained. Visual comparison between the original 3D 
model and the reconstructed one, shown in Figure 5, 
assures that this high PSNR value corresponds to good 
visual similarity. The differences between the original 
3D model and the reconstruction are almost negligible. 

In the case of Philip’s crystallography dataset, the re-
construction result and the original 3D acquisition are 
presented in Figure 6. In this case, there is no reference 
3D model that can be used to verify whether the recon-
struction result is satisfactory or not. 

Visually speaking, we cannot detect large differences 
 

 
(a)                         (b) 

Figure 4. Reconstruction of the Hansandrey dataset with 
missing wedge. (a) Original; (b) Reconstructed. 
 

 
(a)                         (b) 

 
(c) 

Figure 5. Reconstruction of the viral DNA gatekeeper data-
set. (a) Original model; (b) Missing cone; (c) Reconstruc-
tion. 
 

 
(a)                              (b) 

Figure 6. Reconstruction of Philip’s crystallography dataset. 
(a) Acquisition; (b) Proposed reconstruction. 
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between the original model and the reconstructed one, 
but the difference in terms of a calculated PSNR value of 
21 dB is quite considerable. But this doesn’t mean that 
the method doesn’t work properly. It reflects that new 
details appear in the reconstructed volume which could 
be closer to the real 3D model without missing data. 

5. Discussion and Conclusions 
The purpose of our work was to apply a new method to 
solve LPAs (e.g. with a missing cone or a missing wedge 
of the acquired image-data volume) in TEM data. The 
method was applied to different datasets and the resulting 
reconstructed image volumes were evaluated. Good 3D 
reconstruction results were obtained. The PSNR values 
were calculated for all resulting reconstructed images. 
These PSNR values were better than those obtained us-
ing existing commonly used techniques, such as POCS. 
The approach proposed in our work can be considered as 
a great breakthrough, because for data acquisitions li-
mited to [45˚, −45˚], POCS results in an error-rate around 
40%, while our approach achieves an error-rate lower 
than 1% for the Hansandrey and the viral DNA gatekee-
per cases when 50% of the acquired data is missing. 

However, different acquisition technique and proce-
dures will produce data with different sparsity characte-
ristics in frequency domain, which in its turn will affect 
the performance of our method. For example, if a large 
portion of the high frequency zones of the acquired data 
is missing or corrupted, then it gets much more difficult 
to reconstruct the missing part of the 3D model because 
the algorithm doesn’t have enough prior information. 

Therefore, we have to take under consideration that a 
test measure is needed to determine which datasets, with 
the presence of missing data, are valid or not to apply the 
proposed method and get good 3D reconstruction results. 
If such a test is performed, it will be possible to know if 
the obtained 3D reconstruction result is supposed to be 
similar to the real original model (i.e. without missing 
data) or not. Then it will be possible to know if the 3D 
reconstruction of Philip’s crystallography dataset (pre-
sented in Figure 6) is correct or not. 

One of the most exciting research projects that could 
emerge from our work is the possibility to develop a new 
optimized acquisition technique or procedure for TEM. 
In addition, achieving a considerable reduction of radia-
tion dose applied to the specimen. Another possibility is 
to adapt the proposed method and apply it to other kinds 
of modalities like Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), astronomy, geophysical 
exploration or other type of electron microscope tech-
niques. Since a complete reconstruction of the Hansand-
rey model took 32 hours in a common laptop (4-core 2.0 
GHz and 4 Gb RAM), it would be necessary to speed up 
the algorithm by implementing it using GPU techniques 
(e.g. CUDA, OpenCL). 
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