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ABSTRACT 
In the work, we propose an approach to “smart design” of heterostructures (quantum wells and superlattices) 
based on the combination of Inverse Scattering Problem Method and the direct solution of the eigenvalue prob- 
lem for the Schrödinger equation with reconstructed potentials. Potential shape reconstructed in this way can be 
substituted then by some approximation, so that the output spectrum obtained by solving the Schrödinger equa- 
tion with such approximated potential, differs only slightly from the input one. In our opinion, the approach can 
be used in many applications, for instance, for developing the new electronic devices such as tunable THz detec- 
tors. 
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1. Introduction 
In recent years, we have been witnessing the rapid pro- 
gress in nanoelectronics which is already on the way to 
continue the outstanding successes of microelectronics. 
This became possible among others, due to the develop- 
ment of technologies and techniques, such as, Molecular 
Beam Epitaxy (MBE), which enables depositing thin lay- 
ers of different materials, one on the top of another, with 
almost atomic precision. The last one in its turn, gives the 
possibility to produce a variety of low-dimensional struc- 
tures which are the basis for constructing a great many 
novel devices.  

Recently, step by step, the approach to the semicon- 
ductor heterostructures design comes into being, which 
perhaps could be termed as smart design and whose aim 
is to tailor the heterostructure shapes in order to obtain 
the predetermined characteristics (see [1-3]). In some of 
the cases, the “smart design” approach is based on the In- 
verse Scattering Problem Method (ISP) (see [2] and es- 
pecially [4]). In others, when the space dependence of 
charge carriers effective mass is also taken into account,  

it is based on different techniques [5]. The paper [4], and 
then [6], in which the main ideas of [4] were implement- 
ed, were devoted mainly to the design of quantum filters 
with the predetermined reflection and transmission prop-
erties. On the other hand, the “palette” of quantum well 
(QW) potentials which are in use, is still limited to a few 
most popular ones, rectangular, parabolic or at most, se- 
miparabolic or triangular [7,8] and this circumstance ob- 
viously restricts the possibility to choose and control the 
energy spectrum of QWs and the devices based on them. 
Meantime, in different areas of possible applications of 
the low-dimensional structures, one often needs to have a 
specific kind of spectrum known beforehand and a ques- 
tion arises: how to produce the QW with a predetermined 
spectrum? At least from the theorist’s point of view, the 
question can be reformulated as follows: suppose that the 
spectrum of QW is known, and that is to say one knows 
the number of quantum levels and the energy distances 
between them (remember that the spectrum is not neces- 
sarily equidistant as in the case of parabolic QW or simi- 
lar to the spectrum of rectangular well); can one recon- 
struct the QW-potential which supports this spectrum? 
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An affirmative answer to this question would make quan- 
tum engineering more flexible and provide the opportu- 
nity to develop multitude of novel devices. 

The already cited papers [4,6] tackled the difficult pro- 
blem of complex transmission and reflection coefficients 
reconstruction, if the potential does not support the bound 
states. As it was stated in [4], if bound states are present, 
knowledge of the accessible scattering data is not suffi- 
cient for unique recovery of the potential. One can notice, 
however, that, if from the very beginning, one restricts 
the searching for the shape of the potentials to some de- 
finite class of possible potentials, the uniqueness of po- 
tential reconstruction can be restored. As a matter of fact, 
this is the consequence of the theorem proved by B. M. 
Levitan and M. G. Gasymov [9,10]. This fact was redis- 
covered later by a group of theorists from Fermi Lab at 
Batavia (USA), who dealt with numerical simulation of 
quarkonium [11,12]. Surprisingly, it turns out that if one 
tries to solve the inverse problem with the aid of reflec- 
tionless Bargmann potentials which, above all, are sym- 
metric, which is V(x) = V(−x), it suffices to know only 
the positions of energy levels, without knowing the nor- 
malizing constants of wave functions. There is also ano- 
ther problem with the QW potential reconstruction: this 
problem, as most of inverse problems, is ill-posed; this 
fact was emphasised also in [4] (However, there is cer- 
tain well-posedness of the ISP in one dimension, in the 
sense that the mapping from the scattering data to poten- 
tial is continuous in proper topology). 

In our particular case, it means that if the “input” spec- 
trum of QW changes even slightly, the potential shape 
can change essentially and in unpredictable manner. But 
if the potential of QW is already established to a first ap- 
proximation by means of, saying ISP-method, the prob- 
lem of finding the “proper” potential can be reduced to 
well-posed problem.  

So, in the present work, we address the following is- 
sues. At first, using the “smart design” approach and ISP- 
method, we reconstruct the shape of symmetric QW with 
pre-determined energy spectrum, and then using the di- 
rect approach based on the numerical solution of eigen- 
value problem for corresponding Schrödinger equation, 
we find more realistic potential shapes of QW and cou- 
pled-QW, which in our opinion can be produced by means 
of existing fabrication techniques. The paper is organized 
as follows: in Section 2, for the reader’s convenience, we 
outline briefly the ISP-method in its relation to the QW- 
potential reconstruction; in Section 3, we present the re- 
sults of numerical simulations. The discussion is summed 
up in Conclusion which ends the paper. 

2. ISP Method and Reconstruction of  
Quantum Well Potentials 

As we already mentioned, one often needs to know, how 
to reconstruct the QW-potential provided that the spec- 

trum supported by this potential is known beforehand. 
One can look at the problem also as follows: suppose we 
have a set of “scattering data”, whatever it means; we do 
not define them precisely right now. Can we find a po- 
tential which produces this set of data? An affirmative 
answer to this question was obtained for the first time by 
mathematicians I. M. Gel’fand, B. M. Levitan [10,13] and 
V. A. Marchenko [14] (see also [15]). They elaborated a 
method of potential reconstruction by means of spectral 
or scattering data which is now known under the name of 
Inverse Scattering Problem Method (ISP). We shall term 
their method or approach also as a GLM-method (ap- 
proach). In a particular case of QW, the question is re- 
duced to the following: suppose we have a number of 
quantum levels with the given distances between them; 
what potential shape (or which form of) QW should be in 
this case; or in other words, can we find the potential of 
QW, if the spectrum and the depth of QW are given? As 
we mentioned in the Introduction, the provisional posi- 
tive answer to this question was obtained by means of the 
ISP-method in [2]. Here, for the sake of consistency and 
reader’s convenience, we outline the main ideas of GLM- 
approach only very briefly. Our basic physical model is 
the single-particle model of the electron trapped in a po- 
tential (QW) which supports a number of bound states, 
while its dynamics is described by single-band (conduc- 
tion band) effective mass approximation for the envelope 
wave function. 

Consider the eigenvalue problem of the Schrödinger 
equation with the potential V(x) in one space dimension 
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2
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(here we assume 12/2 =m ). The GLM-method may be 
viewed as a dispersion theory for the Schrödinger wave 
function of (1). From the solution to (1) with k complex, 
one can define Jost functions 1f
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and construct a meromorphic function Φ(x,k) as 
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where a−1(k) is a conventional transmission coefficient. 
Thus, Φ(x,k) is completely determined by its singular- 

ity structure which consists of a cut along the real k-axis 
and some number, say, N of bound-state poles on the pos- 
itive imaginary axis. The spectral weight of the cut is es- 
sentially the scattering-state wave function multiplied by 
the reflection coefficient, both evaluated at real k. Simi- 
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larly, the pole residues are essentially constants times 
bound-state wave functions. Upon Fourier transformation 
the dispersion relation for Φ becomes the Marchenko in- 
tegral equation [16] (see also [15] for details) which de- 
termines the wave functions. The inverse problem of the 
potential reconstruction by means of scattering data can 
be reduced, generally speaking, to solving an integral equ- 
ation 

( ) ( ) ( ) ( ), , , , 0
x

K x x Q x x K x x Q x x dx
∞

′ ′ ′′ ′′ ′ ′′+ + =∫  

and thereupon, to a simple differentiation of its kernel 

( ) ( )d2 ,
d
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which is given entirely in terms of the reflection coeffi- 
cient and 2N bound-state parameters. Here 
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where S(k), En and 2
nM  are scattering data: S(k) is a 

scattering matrix, En = (iκn)2 are bound-state energies and 
2
nM  are its normalization constants. 
If the reflection coefficient can be represented by ra- 

tional functions of k, the Marchenko equation can be solv- 
ed exactly by algebraic technique. The most simple case 
corresponds to a reflection coefficient vanishing for all 
real k(S(k) = 1); then the expression for Q(x, x') contains 
only the sum over the bound states, and the integral equa- 
tion reduces to a system of N linear algebraic equations 
with respect to the kernel K(x, x'). The potential V(x) also 
can be reconstructed by means of 2N parameters. Half of 
the parameters are N bound-state energies En, n = 1, 
2,··· N, while the others are the normalizing constants 

2
nM  which in Nuclear Physics are assumed to be ob- 

tained from scattering data as ( )2 Resn k i nM i S k κ=
= . This 

choice corresponds to the transparent and symmetric po- 
tentials. These 2N numbers supply a complete set of the 
parameters for the solution of inverse problem to exist 
and be unique. Obviously, in the case of QWs a second 
half of the scattering data (the normalizing constants) is 
inaccessible. It turns out however, that the way out ac- 
tually exists. The possibility to reconstruct the infinitely 
deep and symmetric potentials solely by means of bound- 
ed states was established for the first time by B. M. Levi- 
tan and M. G. Gasymov who proved the so called Two 
Spectra Theorem [9,10]. The meaning of this theorem in 
brief is the following: to reconstruct symmetric potentials 
V(x) = V(−x), it suffices to know only the positions of 
energy levels without knowing the normalizing constants. 
This fact was re-discovered later by H. B. Thacker, C. 
Quigg and J. L. Rosner [11] who modeled the confining 
potentials binding massive quarks and antiquarks in me- 

son systems. They were able even to fit approximately 
the lower parts of infinitely deep wells (parabolic, har- 
monic oscillator, linear and rectangular wells) by means 
of a limited number of levels whose positions are known, 
using some additional technical trick which is termed a 
stabilizing parameter. 

In accordance with what was said above, one has to 
search for the solution of our problem among the poten- 
tials of a special class of reflectionless and symmetric po- 
tentials V(x) = V(−x). Suppose that one-dimensional po-
tential V(x) can be represented by the function  

( )*
0, ,NV x m E  which obeys the following conditions: 

• VN supports precisely N bounded states of the quan- 
tum system with the effective mass m*. The bound- 
state energies coincide with the energies ε1, ε2, ···, εN, 
of the levels within the QW; 

• limx→∞VN = E0. The last value can be considered as a 
depth of QW. 

Arranging the binding energies k2 = E0 − εn in a des- 
cending order so that k1 > k2 >··· > kN, and 2

1 0 1E kε = −  
refers to the ground-state energy, one can use for QW po- 
tential reconstruction the technique developed by Scho- 
nefeld et al. [12] for studying the convergence of the re- 
flectionless approximation to the confining potentials. 
Omitting the intermediate calculations, we give here only 
the final results: 
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Here the sum ranges over all subsets S of {1, 2, ···, N} 
including the empty set and the full set, while S~  de- 
notes the complement of the set S. Notice that in spite of 
apparent simplicity, these formulae possess the compli- 
cated inner structure; thus, due to the sum which runs 
over all subsets of a set of N elements, the calculations 
become practically impossible without use of computer 
already at N = 4. 

3. Results of Numerical Calculations and  
Discussion 

To aim at doing corresponding calculations, the computer 
program was elaborated in the MatLab environment, which 
enables to reconstruct the QW potential based on the pre- 
set energy spectrum.  

The implemented algorithm enables to calculate the 
potential for the arbitrary number N of quantum levels in 
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accordance with the formulae (2). As the input parame- 
ters of the applet one has to choose the width and depth 
of QW, the number of quantum levels and the effective 
mass of charge carriers, while in the output one gets the 
reconstructed potential. The software includes the addi- 
tional algorithm for the solution of eigenvalue problem 
for Schrödinger equation with the potential V(x), recon- 
structed in previous step. Due to this, one can imme- 
diately and directly check the correctness of the obtained 
results. To sum up, the software works according to the 
following scheme: 

1) At the input one should define the desirable energy 
spectrum, the charge carriers effective mass and to the 
first approximation, the width and depth of QW; 

2) On the base of these data, an implemented algori- 
thm calculates the shape of the potential; 

3) In the next step we solve the eigenvalue problem 
(direct problem) for the Schrödinger equation with the 
potential V(x), reconstructed in previous step; 

4) One calculates the relative error, i.e. is the differ- 
ence between the preset energy spectrum and the one ob- 
tained in the step 3). 

It turns out, that the depth and width of QW defined as 
input parameters, play the role of germ and are not suffi- 
cient for the difference between the input spectrum and 
that obtained after potential reconstruction to be suffi- 

ciently small. That is why the software is equipped with 
the algorithm whose task is to minimize this difference. It 
goes through the nearest vicinity of the given parameters 
(the width and depth of QW) with some tolerance, simul- 
taneously determining the minimum of relative errors in 
accordance with the chosen measure.  

As an example of the of simulations made by means of 
the program, in Figure 1 the shape of the QW potential is 
presented, which supports two energy levels, while in 
Figure 2 the potential of the two coupled QW is shown. 
Such double-QW structure can be considered as the base 
of super-lattice, since the energy splitting due to tunne- 
ling determines the sub-band width in the super-lattice. 

In Figure 1 and Figure 2 it is seen that the QW poten- 
tial shapes are not trivial and another question immedi- 
ately arises: is it possible to produce these QWs by means 
of available techniques (say, MBE-technique)? Very pro- 
bable, that the answer to this question is also affirmative. 

The point is, that as it was already mentioned in In- 
troduction, ISP like the most inverse problems is ill- 
posed. There are two definitions of ill-posedeness, the 
one is belonged to J. Hadamard [17] and another to A. Ti- 
khonov [18]. Since these two definitions in some circum- 
stances coincide and the difference is of no importance 
for our discussion, let us recall the first of them.  

Let we have two metric spaces (Z, U) equipped with  
 

 
Figure 1. Example of QW-potential with predetermined spectrum reconstructed by means of ISP method. Black solid curve- 
potential reconstructed by ISP-method; dashed line-step-like approximation. Colored lines and curves (in red and blue) are 
the energy levels and corresponding wave functions (For the values of energies see Table 1). 
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Figure 2. Double-quantum-well structure constructed on base of the QW depicted in Figure 1. The splitting due to tunneling 
is clearly seen in case of excited level, while for the ground state the splitting is practically negligible (for the numerical values 
see Table 1). 
 
the corresponding metrics ρZ and ρU. Following Hada- 
mard, we call the problem well-posed on the pair of spa- 
ces (Z, U), where Z is the “solution space” and U is the 
“initial condition space”, if: 
• for every u U∈  there is the solution z Z∈ , 
• the solution is unique, 
• for every ε > 0 such δ(ε) exists, that for any u1, u2 ∈ 

U from the condition ρU(u1, u2) ≤ δ(ε) another one, 
namely ρZ(z1, z2) ≤ ε immediately follows. 

Violation of any of these conditions renders the prob- 
lem ill-posed. In our particular case that means that if the 
initial (input) spectrum of QW changes even slightly, the 
potential shape can change essentially and in unpredicta- 
ble manner. But if the potential of QW is already estab- 
lished by ISP procedure, the problem of finding the “pro- 
per” potential can be reduced to well-posed problem. In- 
deed, substituting the reconstructed by the ISP-method 
potential by its step-like (or other desirable) approxima- 
tion, we could hope that the output spectrum of QW 
should not change too much with respect to input one. In 
this work we have found the step-like approximation for 
the initial potentials and as it is clearly seen from Figures 
1-4, the changes in input and output spectra are indeed 
almost negligible, but the potential shapes become more 
realistic to be produced by existing fabrication techni- 
ques. 

To our opinion, the developed approach can have nu- 

merous applications, one of them is the construction of 
tunable detectors for THz radiation. For instance, the au- 
thors of [19] proposed the intersubband transitions in 
GaAs coupled-quantum-wells for use as such detector for 
the range of 2 - 5 THz. Our results (see Figure 4) show 
that intersubband transitions in double-quantum-well 
structure can be used for detection the radiation of about 
19 THz as well as a hundred times higher frequencies of 
about 230 THz; the full account will be published else- 
where, here we only mention the main features of such 
device. As it can be easily shown, some transitions be- 
tween two-split states (ground and excited) resulted from 
the tunneling between coupled symmetric wells are pari- 
ty forbidden. However, in the external electric field these 
transitions become allowed. They correspond to the fre- 
quency region of about 19 THz. The transitions between 
ground state (whose splitting is negligible) and the two- 
split excited states of corresponding parity are allowed 
even in zeroth external electric field. Their frequencies 
are just in the range of about 230 THz. Varying the elec- 
tric field across the structure, one can make the detector 
tunable for a wide range of THz frequencies. Since our 
software enables to calculate not only the energy spec- 
trum of the structure in question, but the wave functions 
of the charge carriers too, we can calculate the other im- 
portant characteristics of the device as well, for instance, 
the oscillator strengths of the transitions. 
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Figure 3. Another example of QW-potential with predetermined spectrum reconstructed by means of ISP method. Denota-
tions are similar to that ones in Figure 1. 
 

 
Figure 4. Double-quantum-well structure constructed on base of the QW depicted in Figure 3.    



“Smart Design” of Quantum Wells and Double-Quantum Wells Structures 

OPEN ACCESS                                                                                      WJCMP 

30 

 
Table 1. Energy spectrum of QWs and double-QW struc- 
tures presented in Figures 1-4. First column—input energy 
spectrum (predetermined); second column—energy spec- 
trum obtained as a result of making optimization; third co- 
lumn—output energy spectrum obtained after step-like ap- 
proximation (all energies are in eV). 

ε Input energies Output energies Approximation 

Figure 1 

ε1 0.1600 0.1563 0.1588 

ε2 0.3100 0.3099 0.3111 

Figure 2 

ε1 - 0.1558 0.1585 

ε2 - 0.1565 0.1565 

ε3 - 0.2990 0.3002 

ε4 - 0.3107 0.3123 

Figure 3 

ε1 0.1000 0.0980 0.0993 

ε2 0.2200 0.2207 0.2229 

Figure 4 

ε1 - 0.0965 0.0969 

ε2 - 0.0982 0.0985 

ε3 - 0.2087 0.2096 

ε4 - 0.2215 0.2227 

As another example of possible applications of the 
technique developed in the work, consider the next situa- 
tion. It is well-known that one of the most attractive fea- 
tures of the devices based on QWs, for instance resonant 
tunneling transistors or more general, resonant tunneling 
structures (RTS), is the discreteness of their energy spec- 
trum. Very often however, it can be revealed only at very 
low temperature of about few K. The point is that the 
energy distances between the quantum levels are of the 
order of ~meV, while the quantum level width can be 
also of the same order at higher temperature (room tem- 
perature, for instance) and hence, for the levels not to 
overlap, one should have the temperature of about few K. 
Only at such temperatures the peak-to-valley ratio of so 
called I-V-characteristic of RTS is sufficient to resolve 
the tunnel current peaks. So, for the different applications 
it is desirable to have RTS which could operate at higher 
temperature (ideally, at room temperature). 

Suppose now that we have the desirable spectrum of 
QW, in other words, we simply set the number of quan- 
tum levels with the distances between them in such a 
way that they do not overlap at higher temperature. It 
means that the spacings between the levels are chosen to 
be about ~2.5 kBT. Of course, having in mind real struc- 
ture, we should restrict the number of quantum levels to 
some reasonable value, say 3, 4 to 6 at most, since the 
depth of QW can be about 0.2 - 0.4 eV. 

The effective potentials reconstructed by means of ISP 
procedure and satisfying these requirements at 77 K and 
130 K are shown in Figures 5 and 6. 

 

 
Figure 5. Example of QW-potential supporting 4 energy levels which do not overlap (see the text) at 77 K. The colored lines 
and curves (in blue, red, crimson and green) correspond to the energy levels and wave functions (for all numerical values see 
Table 2). 
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Figure 6. Example of QW potential supporting 4 energy levels which do not overlap at 130 K (all numerical values are in 
Table 2). 
 
Table 2. Energy spectrum of QWs presented in Figures 5 
and 6. All denotation are similar to that ones in Table 1. 

ε Input energies Output energies Approximation 

Figure 5 

ε1 0.016 0.016 0.016 

ε2 0.033 0.032 0.032 

ε3 0.050 0.048 0.049 

ε4 0.066 0.066 0.067 

Figure 6 

ε1 0.028 0.027 0.028 

ε2 0.056 0.054 0.054 

ε3 0.084 0.080 0.081 

ε4 0.112 0.111 0.110 

4. Conclusion 
In this work, we propose an approach to “smart design” 
of nanostructures (quantum wells and superlattices) bas- 
ed on the combination of Inverse Scattering Problem Me- 
thod and the direct solution of the eigenvalue problem for 
the Schrödinger equation with reconstructed potential af- 
terwards. The problem of potential reconstruction of QWs 
with predetermined spectrum for the class of Bargmann 
symmetric potentials can be solved directly, if one knows 
solely the energies of quantum levels without possessing 
the knowledge of normalizing constants of the wave 

functions. The obtained potential shapes are often too 
complicated to be produced by means of even very ad- 
vanced technique such as MBE. It turns out however, that, 
reconstructed in this way, potential shape can be substi- 
tuted by some approximation (say, step-like approxima- 
tion), and thus the output spectrum obtained by the direct 
solving of corresponding Schrödinger equation with such 
approximated potential differs only slightly from the in- 
put one. This is the consequence of the simple fact that 
direct problem in most of the cases is well-posed prob- 
lem, while the inverse problem of potential reconstruction 
is ill-posed. We illustrated developed approach by vari- 
ous numerical results. In our opinion, it can be used in 
many practical applications, for instance, developing the 
new electronic devices such as tunable THz detectors, as 
well as many others. 
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