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ABSTRACT 
The running-in phase is the first stage of the bearing lifespan. However, this phase is very short and extremely 
important for the future lifespan of the rolling bearing because it is what sets the stabilized state in terms of 
roughness of the parts in contact, residual geometry and surface residual stresses, which are key factors in the 
fatigue resistance of mechanical parts. Several numerical and experimental studies have highlighted the impor- 
tance of the running-in phase in two scales (macroscopic, meso and microscopic). Due to its high flexibility, the 
approach presented in this work is a numerical modeling of the running-in phase which has been based on the 
Weibull distribution. The obtained results confirm the importance of the running-in phase on the lifespan of 
bearings or other mechanism whose functioning requires an adaptation phase of parts in contact. It also con- 
cludes that if the running-in phase has been performed correctly, there is a marked improvement in reliability. 
The curves describe the useful saved time of lifespan according to the scale of the running-in phase. 
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1. Introduction 
The reliable assessments of mechanical systems are 
based on many parameters where the failure rates are the 
first considered. By default, databases are commonly 
used for reliability. For the most part are collections of 
data [1-3] and many others from the feedback experience 
of various sectors. Potential users of these are based on 
the fact that their materials are substantially similar and 
that the reliability of these databases can be transferred to 
their concerns. One can observe that the data of studied 
systems reliability are not homogeneous, as is sometimes 
suggested significant variations of the failure rates be- 
tween bases. The causes are many: Materials have their 
own characteristics. Same type of system comes in a 
range of equipments whose reliability is different; oper- 
ating conditions and operating environment vary between 
systems. Reliability of mechanical equipment is sensitive  

to loading, operating modes, stresses, failure modes con- 
sidered, maintenance politicizes… These differences are 
highlighted between the sectors; to synthesize the data 
collected for each type of system often requires regroup- 
ing irrespective equipments to various intrinsic and ex- 
trinsic properties, regardless of characteristics. The use of 
these databases as input data of reliability assessments 
will therefore result in large uncertainties about the re- 
levance of the results. The second point to be noted is 
that all the databases described above only provide con- 
stant failure rates. However, the mechanisms of degrada- 
tion of mechanical components such as fatigue, vibration, 
la corrosion and other stresses creating wear phenomena, 
therefore the system ages. To this a running-in phase that 
usually causes failures in young systems can be added. In 
what follows, the running-in phase is to be modeled in 
order to highlight its importance in the total lifetime of 
the mechanism. The example cited in this study is the 
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case of bearings that are virtually present in the majority 
of mechanical systems. Although their lifetime is rela- 
tively short compared to the entire mechanism in which 
are mounted, but their running-in phase provides a sig- 
nificant mechanical stability [4]. 

2. Failure Rate Base λ(0) 
It has been seen earlier that the mechanical equipments 
rarely respond to a constant failure rate, synonymous 
with exponential probability distribution. Here, a model 
by the Weibull distribution with two parameters has been 
proposed. The failure rate is expressed as follows: 

( )
1

0
tt

ββλ
θ θ

−
 =  
 

                (1) 

With:  
β the shape parameter, unit less; 
θ the scale parameter in units of time. Sometimes, ex-

pression (1) is found in a form that puts the parameter  
1λ
θ

= . 

This distribution is widespread in the reliability of 
mechanical systems as it allows to model three periods of 
system lifetime according to the parameter β. Figures 
1(a)-(c), show respectively the different periods of life- 
time, the corresponding behavior laws and the shape of 
the failure rates for mechanical systems. 

A running period Figure 1(c), also known as infant 
mortality, if β < 1. The failure rate is decreasing with 
time. Faults that appear in this first phase of life are typ-
ically due to faulty design or installation once the system 
started. Most of these failures can be avoided by test 
policies, before the introduction of equipment [5]. The 
running-in period may contribute substantially to the 
increase of the equipment lifetime. Some authors refer to 
the increase in wear after the running-in period [6-9]. 

A phase called useful life, if β ≈ 1. The failure rate is 
then almost constant. Defects in removed equipment, the 
system is in its main phase of life. Failures that occur 
during this period are caused by random events indepen- 
dent of time and age of system. 

A phase of wear, if β > 1. The failure rate is increas- 
ing with time. Stress, fatigue, corrosion etc. deteriorate 
the system, which increases the probability that a failure 
takes place during this period of time. The shape of the 
failure rate as represented during the three phases of life- 
time, known as “bathtub curve” given in Figures 1(a)-(c). 
Databases typically provide only the failure rate of useful 
life, assumed constant. Other distributions such as Gam-
ma, Normale, Log-Normale Birnbaum-Saunders, inverse 
Gaussian and others may also be considered in the mod-
el.  

To model the early failures, one must consider the 

specific distribution of failure times. 
Unlike the exponential distribution is used for random 

failures, these distributions must at least two parameters. 
Despite the fact that the normal distribution and normal 
log are frequently used to model the effects of aging, the 
Weibull distribution is probably the most universally 
used [10]. Using the latter, the early and random failures 
and also aging effects can be modeled. 

Thus, the rate previously defined is used in situations 
where one has to deal with early failures or the aging 
effects. This can be illustrated by considering the effect 
of accumulated operating time T0 over the probability 
that the entity can survive an additional time t. Assuming 
that it is defined R(t|T0) as the reliability of an entity that 
has operated during the time T0, the following equation 
can be written as: 
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From the equation 
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We obtain 
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Time T0 can be interpreted as the time of the run- 
ning-in phase before the system is placed in service. The 
concern is whether this time contributes to the improve- 
ment or deterioration of the system. T0 do this, Equation 
(2) was derived with respect to time T0. 

( ) ( )0 0
0 0 0

R t tT T t R
T T T

λ λ
   ∂

 = − − +    ∂    
      (5) 

So, if λ decreases with time [i.e. ( ) ( )0 0T T tλ λ> + ], 
then the system can be improved. Otherwise, is to be 
deteriorated. In the running-in phase, the failure rate is 
decreasing in general.  

The lifetime of a rolling bearing can be divided into 
two main phases which will be studied here: 
• The running-in phase: Forming the first few tens of 

thousands of cycles of the rolling bearing lifetime, 
during which the contact geometry and/or roughness, 
and surface residual stresses are stabilizing. 

• The life time phase which comes after the running-in 
phase and can last several million cycles. 

The running-in phase is the first stage of the life time 
of a bearing. However, this phase is very short and ex- 
tremely important to the future life span of the rolling 
bearing because it fixes the steady state in terms of the 
parts in contact, residual geometry and stresses which are   
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Figure 1. (a) Failure rate λ0(t); (b) Distribution law; (c) Failure rate of a mechanical system. 
 
determining factors in resisting the fatigue [4] of me- 
chanical parts. 

The reliability relationship of the running-in phase can 
be written as follows: 
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By putting t = T and solving for T we obtain: 
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        (7) 

By modeling the running-in phase according to the 
expression (7), we evaluate the importance of this phase 
on the additional useful life to the studied system. The 
results presented below clearly confirm the benefits of 
the running-in phase. Furthermore, a large enough time 
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scale and decreasing from 180 to 4 years has been consi- 
dered in order to scan a larger number of systems oper- 
ating within these limits based on a predicted reliability 
and a shape parameter β ranging from 0.5 to 3, that is to 
say running-in phase to the aging phase. 

3. Results and Discussion 
Figures 2(a)-(f) show the evolution of additional time to 
the useful life of the system. Two periods are compared, 
the running-in phase with a β value of 0.5 (running-in 
phase) and 0.9 (beginning of the useful phase for a scale 
parameter θ varying from 180 to 5 years with a reliability  

of 0.90. It can be noticed that for running-in phase when 
the time T0 = 0 lifetime is approximately 24 months. The 
addition of one month running-in gives an extra time to 
the duration of life of 12 months (Figure 2(a)). 

Figures 3(a)-(c) express the time variation added to 
the useful life depending on the essential parameter β. It 
can be noticed, for a value of 0.5β = , the opposite ef- 
fect of added time to the useful life is much more pro- 
nounced for values of β = 3. Figure 3(c) shows that as 
the lifetime becomes shorter, with a shape parameter β > 
3 (phase of wear), it can be seen that the opposite effect 
is in good agreement with the logical behavior of repair- 
able systems. 
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(e)                                          (f) 

Figure 2. (a) θ = 180 years; (b) θ = 50 years; (c) θ = 30 years; (d) θ = 10 years; (e) θ = 5 years; (f) θ = 2 years.  
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Figure 3. (a) β = 1, θ = 180 years; (b) β = 3, θ = 180 years; (c) β = 3, θ = 20 years. 
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Figure 4. (a) β = (0.3, 0.4, 0.5 and 0.9) θ = 10 years; (b) β = (1, 3, 0.5 and 0.9) θ = 10 years; (c) β = (1, 3, 0.5, and 0.9) θ = 4 years.  
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Figures 4(a)-(c) compare the evolution of additional 

time to lifespan depending on the parameter β. It can 
therefore be noticed, that the additional time to the future 
lifespan (useful) are more important with the decrease of 
coefficient β which is completely logical. When the scale 
parameter decreases (Figure 4(c)), it can be noticed that 
the running-in phase is very narrow. 

4. Conclusion 
The improved behavior of mechanical systems in contact 
and especially bearings that are almost omnipresent in 
the majority of rotating mechanical systems is condi- 
tioned by the conditions of commissioning. If the run- 
ning-in phase is properly applied, this will lead to an ap- 
preciated operating lifetime. For bearings, whose lifespan 
is very short compared to that of the entity in which are 
mounted, this phase is highly recommended because it 
creates mechanical stability between the parts in contact 
with surfaces generally have asperities (roughness) which 
disappear during running-in. This period also provides a 
high wear resistance to rotating parts and lowers signifi- 
cantly the preventive and systematic maintenance costs. 
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