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ABSTRACT 
Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interfe- 
rence (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture 
is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a 
combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering 
and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise 
only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those 
based on Kalman filtering approach. 
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1. Introduction 
It is well known that the mobile communication system 
performance is degraded by thermal noise, Intersymbolic 
Interference (ISI) and fading. Assuming that the thermal 
noise is Additive White Gaussian Noise (AWGN chan- 
nel), its effects can be minimized using matched filter at 
the receiver and equalizers can be employed to combat 
ISI effects and fading. Most papers in the scientific lite- 
rature deal with time-invariant channels, but nowadays 
the majority of channels are time-variant, which diminish 
system performance and their effects are difficult to mi- 
tigate. Recent works [1-3] analyse systems involving slow 
fading channels but do not propose robust solutions to 
fast fading.   

Artificial Neural Network (ANN) has been largely us- 
ed in equalization problems where equalizers based on 
perceptrons are applied to improve performance of some 
nonlinear channels [4,5]. In the present paper, two inde- 
pendent recurrent perceptrons are applied, separating the 

processing of real and imaginary parts of the signal, pro- 
viding a more accurate solution by avoiding the appro- 
ximation ( ) ( ) ( )tanh tanh tanhx j y x j y+ ⋅ + ⋅  present 
in previous works [6,7] and analysed by [8].  

The Recurrent Neural Network (RNN) proposed in [1] 
and [2] cannot cope with fast fading channels. The first 
one presents a slow convergence rate due to complexity 
of its structure, which leads to high computational cost, 
whereas the second one has a training algorithm capable 
of producing convergence instability. It is well known 
that Gauss-Newton (GN) algorithm, proposed in [2] for 
training ANN, is a quasi-Newton optimization method 
that does not guarantee convergence. This may raise some 
concerns when it is applied to severe time-variant chan- 
nels. 

To reduce the unstable behavior of the GN algorithm, 
in this work we propose to use the Levenberg-Marquardt 
(LM) approach, a well-known modification of the GN al- 
gorithm, which includes the convergence guarantee of 
Gradient techniques. However, the replacement of algo- 
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rithm is not enough to solve the fast fading equalization 
problem, and other subsystems must be added to the 
transmitter and receiver front-ends in order to improve 
signal quality, before being processed by the equalizer 
(Figure 1). In practical mobile communication systems, 
a matched filter is usually employed to accomplish this 
task, but here we decide to include a pulse shaping filter, 
which behaves like a matched filter in base band. The 
results presented here show that this filter helps reduce 
the ISI and AWGN distortion effects on the signal before 
being treated by the equalizer. Using both approaches, it 
is possible to better equalize fast fading channels and out- 
perform systems such as those presented in [1,2], usually 
applied to slow fading channels. 

2. System Modeling 
In practical communications systems, it is necessary to 
implement a scheme capable of mitigate signal distor-
tions caused by ISI and AWGN in fading channels. In 
this work the proposed scheme is composed by an equa-
lizer and a pulse shaping filter that together can deal bet-
ter with distortions in 4-QAM signals. The equalizer is a 
RNN with two perceptrons, each one as proposed in [2], 
and a pulse shaping filter is added to limit the transmit-
ted/received signal and noise bandwidth. In our under-
standing, the equalizer alone is not sufficient to accom-
plish a better equalization of fast fading channels.  

The proposed RNN equalizer is equivalent to a Deci-
sion Feedback Equalizer (DFE) based on perceptrons and 
implemented with parameters m = 3, n = 2 and d = 2 [1]. 
The DFE is a kind of nonlinear equalizer that uses a 
feedback filter with n inputs together with a forward fil-
ter with m inputs. It means that the previous symbols 
decisions are taken into account in the current symbol 
estimation, with a time delay d between the current and 
the last estimated symbol. A DFE is generally applied for 
channel with severe ISI. 

The activation function chosen for the DFE-LM train- 
ing is the hyperbolic tangent function, whereas the hard 
decision sign function is implemented during testing. The 
present work does not use the well-known approximation 

( ) ( ) ( )tanh tanh tanhx j y x j y+ ⋅ + ⋅  which leads to 
errors in the synaptic weight updating. To improve the 
accuracy, the 𝑡𝑡𝑡𝑡𝑡𝑡ℎ function was implemented separating  
 

 
Figure 1. System modeling. 

the real and imaginary parts of 4-QAM symbols. 

3. Pulse Shaping 
At the transmitter, it changes the signal shape by using a 
raised cosine filter which limits the pulse spectral com- 
ponents. The roll-off factor defines the transmitted signal 
bandwidth. Roll-off factor of 0.2, which was chosen by 
trial and error, provided the best system perform. 

On the order hand, the Pulse Shaping filter limits the 
amount of the noise spectrum that is passed on to next 
stages at the receiver and correlates the transmitted and 
received signals. In this paper were consider two samples 
per symbol, the minimum amount to allow the pulse sha- 
ping filter to work properly and make possible to reach 
higher transmission rates. 

4. Learning Algorithm 
A GN algorithm modification, proposed by Levenberg- 
Marquardt, is implemented in this work to update the sy- 
naptic weights during the DFE-LM training. In the LM 
algorithm the synaptic weights are updated according to 
Equation (1). 

( ) ( ) ( ) ( ) ( ) ( )
1

1 T Tw k w k J k J k I J k e kλ
−

 + = − +   (1) 

The LM differs from GN algorithm by the λI term. 
The new term improves the convergence stability of 

the GN algorithm. The λ factor must increase in Equation 
(1) as the error e(k) increases, making the algorithm be-
haves like a Gradient algorithm. If the error decreases for 
each update step, then the λ factor must decrease in Equ-
ation (1) as well, leading to a GN type solution. There is 
a trade-off between convergence assurance of the Gra-
dient algorithm and fast convergence rate of the GN al-
gorithm.  

The error is a function of several local minima. Some-
times, after the training phase, the algorithm converges to 
a set of weights that does not satisfy an acceptable Bit 
Error Rate (BER). To avoid this possibility, we decided 
to introduce, in the algorithm, a BER evaluation before 
start the test phase. If the BER is greater than a threshold, 
then the algorithm initial value is changed and the train-
ing phase is run again. This approach enables the algo-
rithm to escape from local minimum solutions and allow 
it to carry on searching for a better minimum, capable of 
satisfying the best BER requirement. 

5. Channel Model 
The system performance was evaluated over different 
time-variant channels, modeled by the transfer function 
in Equation (2). 

( ) ( ) ( )1 2
0 0 1 1 2 2H c a t c a t z c a t z− −= + + + + +            (2) 
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When 0 2 10.3482, 0.8704c c c= = =  and 
( ) ( ) ( )0 1 2 0,a t a t a t= = =  the transfer function H(z) 

becomes a typical fixed channel recommended by ITU 
for simulations. This type of channel has been largely us- 
ed in literature [9,10] and it is considered as a nonmini- 
mum-phase linear channel that causes severe distortions 
to communication signals. The time-variant coefficients 
have been proposed in [1,2] to make the fixed channel 
behaves like time-variant one. These time-variant coeffi- 
cients are generated in such way to be statistically inde- 
pendents, as proposed in [11]. 

The time-variant coefficients are independently gener- 
ated by passing white noise signal through a low pass 
second-order Butterworth filter, with normalized cut-off 
frequency at 0.1 [11].  

6. Performance Evaluation 
Figure 2 shows the BER versus Signal-to-Noise Ratio 
(SNR) performance for the proposed DFE-LM and other 
equalizers. All of them have been evaluated over the chan- 
nel model (Equation (2)) with standard deviation coeffici- 
ent (σ) of 0.1, using 400 symbols for training and 400,000 
for testing. Each BER waterfall curve is the result of an 
average over 10 statistically independent trials, keeping fro- 
zen the weights during test phase. The DFE-LM present- 
ed the best performance for lower SNR, whereas the 
DFE-GN and DFE-UKF outperformed it at higher SNR, 
which may suggest a failure of the DFE-LM algorithm to 
cope with this situation. However, this behavior may be 
explained by the presence of pulse shaping filters at re-
ceiver and transmitter ends, which lead to larger noise 
power reduction in low signal-to-noise ratios. 

It may seem unfair compare systems with different 
structures. The pulse shaping filters could improve the 
DFE-EKF and DFE-UKF results, but due to its high 
computational cost, they do not seem to be suitable for 
mitigation of fast fading channel ISI in practical applica-
tions. Furthermore, the GN algorithm convergence issues 
cannot be solved by adding the pulse shaping filter. 

Finally, Figure 3 shows the performance of the DFE- 
 

 
Figure 2. Performance comparison for different DFE equa-
lizers. 

 
Figure 3. DFE-LM behavior for different channel condi-
tions. 
 
LM over the channel model (Equation (2)) with coeffici- 
ent standard deviation 0.1, 0.3 and 0.5, keeping the same 
simulations conditions described before. The BER perfor- 
mances are acceptable even for channels with standard de- 
viation of 0.5 (fastest fading) and SNR of 6dB. This last 
result shows that the proposed equalization system is a 
promising alternative to deal with a severe fast fading 
channel ISI. 

Both of Figures 2 and 3 show the recurrent neural 
structures performance applied to the equalization prob-
lem. From the literature [12], it is known that recurrent 
neural architectures are suitable to deal with channels 
with deep spectral nulls. The results suggest that smaller 
neural structures outperform the complex ones in fast 
fading channels equalization problem. These results may 
be explained by the overfitting problem in bigger struc- 
tures [13,14], which present a greater number of parame- 
ters than the necessary. The fit of the parameters to track 
the signal, which vary rapidly, is a hard work in bigger 
structures, like the DFE-EKF or DFE-UKF. 

7. Conclusion 
A RNN based on the DFE structure was proposed to mi- 
tigate 4-QAM signal distortions over fading channels. A 
pulse shaping filter was added to overcome the equalizer 
limitations in this task. The synaptic weights were upda- 
ted during the training phase by the LM algorithm. The 
approach was evaluated in traditional time-varying chan- 
nels mentioned in the literature, and the signal was sub- 
mitted to different levels of fading. The proposed struc- 
ture has been able to deal with severe time-varying con- 
ditions and outperform previous works [1,2] in low SNR. 
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