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ABSTRACT 
Two extensions of stochastic logistic model for fish growth have been examined. The basic features of a logistic 
growth rate are deeply influenced by the carrying capacity of the system and the changes are periodical with 
time. Introduction of a new parameter 1>δ , enlarges the scope of investing the growth of different fish species. 
For rapid growth δ  lying between 1 and 2 and for slowly growing 2>δ . 
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1. Introduction 
Resources generated through bio-reproduction processes and through bio-chemical processes constitute a rare 
and unique gift of the nature to the human race. These resources are renewable by the very nature of biological 
processes. Fishery is a prime example of renewable resources that the human race has been exploiting for its 
survival and shelter since the time immemorial. Fresh water resources are repeatedly renewed through the na- 
ture’s recurrent activities, and in turn they renew our agricultural produces and hydro-electric power generation 
[1-2]. The problem of management is complicated by the factor that the natural populations have a tendency to 
fluctuate in response to stochastic perturbations in their physical and/or biological environment [3]. Further, it 
has been observed that models proposed for fish growth as well as other neoclassical growth models in this di- 
rection are described by a relevant first order ordinary differential equation. However, it has been recently ob- 
served that most of the fishery processes are non-linear and stochastic in nature; and during the foregoing decade 
a great deal of research work has been pursued to elucidate the role of nonlinearity and stochasticity in the evo- 
lution of the processes. Most of the work incorporating nonlinearities and stochasticity is either empirical or of 
qualitative in description. We have been motivated to make a theoretical attempt to study stochastic logistic 
models of fish growth. 

2. Deterministic Model 
As a matter of fact, after the success achieved by Pearl [4] in fitting logistic formula 

( ) ( )( ) 1
1 exp , , 0n t K r t c K r

−
 = + − − >                              (1) 

or the corresponding differential equation 

( ) 0
d 1 ,
d
n nrn n t n
t K

 = − =  
                                (2) 

where 0r >  is the intrinsic growth rate per unit, K is the carrying capacity of the system and are constants in-
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cluding c . The logistic law has been applied in biology both to experimental populations and to the growth of 
individuals. Feller [5], has demonstrated in quite clear cut terms that even a good agreement of the logistic law 
with actual observations does not in itself imply the correctness of the biological assumptions underlying the 
mathematical deduction of the logistic law. Further, it has been observed that the same logistic law is not appli-
cable to the different fish population [6].  

In the first stage of the extensions, we shall remain confined to the deterministic versions. A close scrutiny of 
Equation (2) shows that it may be immediately modified in the following ways: Faris Laham et al. [7] have ob- 
served periodic phenomena occurring in the realm of Tilapia fish. Let us also recall that the basic features of a 
logistic growth rate are deeply influenced by the carrying capacity of the system. Therefore, it is quite logical 
and natural to consider the carrying capacity K  changes periodically with time and consequently, we set 

( ) ( )0 1 cosK t K tε θ= +                                  (3) 

If T  is the period of oscillations in the carrying capacity then the frequency 1 Tξ = , and the angular fre- 
quency θ  are connected through 

( )2π 2π Tθ ξ= =                                    (4) 

The units of θ  are to be taken as radians per unit time. We shall carry out the analysis of this case in the 
following section.  

Further, it has been observed that some fish species are grow rapidly and some are very slowly. Thus, in the 
former case, the growth curve lies to the left and above of the logistic curve, while in the later case, the growth 
curve lies far to the right and below the logistic curve. Bearing these points in mind, we propose the second ex- 
tension of Equation (2) in the form 

( ) ( )
d

d
n t

n t n
t

δα β= −                                  (5) 

where ( )n t  denotes the fish population size at time t , with 0δ > . And ,α β , are constants along with 
( ) 00n n= . 

3. Deterministic Analysis of the Extension Models 
Case-I: Substituting Equation (3) into Equation (2), we obtain 

( )0

d 1
d 1 cos
n nr n
t K tε θ

 
= − 

+  
                              (6) 

Setting, 0 ,z n K rtτ= =  and rθ θ∗ =  in Equation (6), we have 

( )
d 1
d 1 cos

z zz
τ ε θ τ∗

 
 = −
 + 

                                (7) 

Further, assuming that 1ε  , Equation (7) can be approximated to 

( )d 1 1 cos
d

z z z ε θ τ
τ

∗ = − −                                (8) 

In order to convert the non-linear Equation (8) into linear equation we have to use the transformation 
1z u= ,                                        (9) 

d 1 cos
d

u u ε θ τ
τ

∗ = − − +   

or 
d 1 cos
d

u u ε θ τ
τ

∗+ = −                                  (10) 

with initial condition 
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( ) ( ) ( )
10

0 0
10
0 0

K
u K n

z n
−= = =                              (11) 

The integration of the non-homogeneous linear Equation (10) and using the initial condition Equation (11), 
we obtain 

( ) ( )
( )

( ) ( )0 22

e1 1 e cos
11

u u
τ

τ ε ετ θ τ υ
θθ

−
− ∗

∗∗
= + − + − −

++
                 (12) 

where 

( )1tanυ θ−=  

The asymptotic behavior of Equation (12) will be governed by 

( )
( )

( )
2

1 cos
1

u ετ θ τ υ
θ

∗

∗
≅ + −

+
                           (13) 

Case-II: Regarding the second extension given by Equation (5), we have already pointed out the expected qu- 
alitative changes. First of all we observe that Equation (5) is also a non-linear equation of Bernoulli type, hence 
it can be reduced to a linear equation by setting 

( ) ( )1z t n tδ−=                                   (14) 

Rearrangement of Equation (5) leads to 

1d
d
nn n
t

δ δα β− −= −  

or 

1 11 d
1 d

n n
t

δ δα β
δ

− −  = − −
                             (15) 

Combining Equations (14) and (15), we find 

( )[ ]d 1
d
z z
t

δ α β= − −                               (16) 

with initial condition, ( ) 1
0 00z z n δ−= =  

The direct integration of Equation (16) gives 

( ) ( ) ( )( )1 1
0e 1 et tz t z δ α δβ

α
− − ⋅ − − ⋅= + −  

or 

( ) ( ) ( )( )
( )1 1

1 11
0 e 1 et tn t n

δ
δ α δδ β

α

−
− − ⋅ − − ⋅− = + −  

                       (17) 

For large t , Equation (17) becomes 

( ) ( )
( )1 1

1n t t
δβ δ

α

−
 ≅ −  

                              (18) 

and 

( )
( )1 1

n
δβ

α

−
 ∞ =  
 

                                (19) 

As in the Case-I, we observe here that, in long-run the fishery process effectively forget its initial stage, how- 
ever, the choice of δ  remarkably control the growth. 

OPEN ACCESS                                                                                         OJS 



MD. A. SHAH 14 

4. Stochastic Formulation of the Extension Model (Case-I) 
Stochastic Formulation of the Extension Model (Case-I): Several stochastic versions of logistic model have been 
discussed in literature on population processes and in ecology [8-11], and only the steady-state studies have been 
made. In our problem, we shall first obtain a time dependent solution of stochastic version of the logistic version 
of the logistic model for fish growth with multiplicative fluctuations. The stochastic differential equation cor- 
responding to Equation (2) 

( ) ( ) ( ) ( ) ( )
d

1
d
n t n t

rn t n t W t
t K

σ
 

= − + 
 

                         (20) 

with initial condition ( ) 0n t n=   
where σ  is a positive constant, solely depending on the prevailing fluctuations in the reservoir and can be 
evaluated from the data on the process. ( )W t  is standard White noise with zero mean and unit intensity and is 
independent of ( )n t . For the sake of clarity and brevity, we shall rewrite Equation (20) as 

( ) ( ) ( ) ( )
d

d
n t

n t r bn t W t
t

σ= − +                           (21) 

where b r K= . 
On setting 1X n= , the non-linear Equation (21) reduces to the linear equation 

( )d
d
X b rX XW t
t

σ= − −                            (22) 

with initial condition ( ) 0 00 1X n X= =   
Using the concept of White noise, we obtain the drift and diffusion coefficients ( )M X  and ( )S X  of the 

process ( )X t . 

( ) ( )2 2 21 , .
2

M X b rX X S X Xσ σ= − + =                             (23) 

The corresponding probability density function ( )0 ,p x x t  with an initial value ( )0x xδ −  satisfies the 
Fokker-Planck Equation (FPE) 

( )
2 2 2

2
22 2

p b r x p x p
t x x

σ σ   ∂ ∂ ∂ = − − − +   ∂ ∂ ∂     
                   (24) 

Further, if we transform ,x t  to a new set of variables ,y τ  such that 
2

,
2

y x
b

σ
=  and 

2

2
tστ =  then 

( ),p x t  transforms to a new probability density function ( )
4

,
4

q y
b

σ τ
 
 
 

. Now ignoring the Jacobian 
4

4b
σ

, 

which will appear throughout, we find 

21
2

p q q
t t

τ σ
τ τ

∂ ∂ ∂ ∂
− ⋅ = ⋅

∂ ∂ ∂ ∂
                                 (25a) 

or 
2 2

2
2 2

1 2 21 1
2 2 2

y b rb r x p b r y q y q
x x y y

σ σσ
σ σ

      ∂   ∂ ∂ ∂        − − − − − ⋅ = − −               ∂ ∂ ∂ ∂                
         (25b) 

or 

( ) ( )
2 22 2 2

2 2
2 2 2 2

2y byx p q y q
xx y yσ

 ∂ ∂ ∂ ∂   − =    ∂∂ ∂ ∂     
                       (25c) 

Therefore, on substituting Equation (25a) to Equation (25c) into Equation (24), we obtain 

( ){ } ( )
2

2
21 2 1q c y q y q

y yτ
∂ ∂ ∂ = − − − + ∂ ∂ ∂

                           (26) 
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where 

2

rc
σ

=  

For the sake of compactness, we shall rewrite Equation (26) as 

( ) ( )( )
2

2

q A y q B y q
y yτ

∂ ∂ ∂
= − + ⋅  ∂ ∂ ∂

                            (27) 

where 

( ) ( )1 2 1A y c y= − −  

( ) 2B y y=  

Therefore, Equation (27) becomes 

( ),q J y
y

τ
τ
∂ ∂

=   ∂ ∂
                                 (28) 

In this setting, following Wang and Uhlenbeck [12], the function ( )B y  can be interpreted as variance of 
( )y τ , and the Equation (28) can be considered as continuity equation for the probability density, and 

( ) ( ), ,J y Bq Aq
y

τ ∂
= −
∂

                              (29) 

as the probability flux.  
Further, following Feller [13], we consider the boundaries 1 0y =  and 2y = ∞  as reflecting barriers, and we 

thus have 

( )
1 2,

, 0
y y y

J y τ
=

=                                 (30) 

Equation (28) with boundary conditions, Equation (30), can be solved either by using the method of separa- 
tion of variables or by applying the Laplace transformation technique. In the former case the partial differential 
Equation (28) is transformed into two ordinary differential equations of order one and two, whereas in the later 
case we obtain a single non-homogeneous ordinary differential equation of order two. However, the second ap- 
proach becomes tedious and involved for two reasons. Firstly, to solve the Laplace transform of Equation (28), 
we have to construct suitable Green’s functions; and secondly the Laplace inversion of the solution so obtained 
in itself is a formidable task. In our study, therefore, we shall adhere to the former method. 

5. Solution of the Problem 
We split up our probability density function ( ),q y τ  in such a way that the partial differential equation Equa- 
tion (27) transforms into two ordinary differential equations. Keeping in view that the limiting distribution 
( ),q y ∞  should result into the steady-state distribution, ( )F y , we set 

( ) ( ) ( ) ( ), ,q y T F y V y TFVτ τ= ⋅ ⋅ =                          (31) 

where T  depends on τ  and F  and V  depend on y  only. Substituting Equation (31) into Equation (27), 
we have 

( ) ( ) ( )d dd d d d d d d
d d d d d d d d d

BF BFT V VV T BFV AFV T AF VT AF T BF
y y y y y y y yτ

      
= ⋅ − = − + − +      

      
    (32) 

As we have considered ( )F y  to be the steady-state distribution, so we may write 

( )d
0

d
BF

AF
y

− =                                 (33) 

and therefore Equation (32) reduces to 
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d d d
d d d
T VFV T BF

y yτ
 

= ⋅ 
 

 

or 

1 d 1 d d
d d d
T VBF

T FV y yτ
 

= ⋅ 
 

                               (34) 

In Equation (34), the left hand side is a function of τ  alone, whereas the right hand side depends only on y , 
so the Equation (34) is a sort of paradox in the sense that, a function of τ  is equated to a function of y , but 
y  and τ  are independent variables. This independence means that the behavior of τ  as an independent va- 

riable is not determined by y . The paradox is to be resolved by setting each side equal to λ , a constant of se- 
paration. With this setting Equation (34) leads to 

d 0
d
T Tλ
τ
+ =                                    (35) 

and 

d d 0
d d

VBF FV
y y

λ
 

+ = 
 

                               (36) 

Now we have two ordinary differential equations Equation (35) and Equation (36) to replace Equation (27). 
Further, we observe that Equation (27) represents an eigenvalue problem. The boundary conditions Equation (30) 
imply 

( ) ( )
1 2,

d 0
d y y y

T BFV AFV
y

τ
=

 
− = 

 
 

or 

( )

1 2,

dd 0
d d

y y y

BFVBF V AF
y y

=

   + − =  
    

                         (37) 

Using Equation (33) in Equation (37), we obtain the required boundary conditions 

1 2,

d 0
d y y y

VBF
y =

=                                    (38) 

6. Determination of First Order pdf F(y) 
Since 0 y≤ < ∞ , the integration of Equation (33) yields 

( ) ( ) ( ) ( ) ( ) ( )1 2 1

0

d
exp d e ,

d

y
c yB u

F y C A u B u u C y
u

− + −∗ ∗  
= ⋅ − = ⋅ ⋅  

   
∫               (39) 

where C∗  is a constant of integration. Using the normalization condition, we obtain 

( ) ( )1 1 2

0

e d 1y cC y y
∞

− − +∗ ⋅ ⋅ =∫  

Substituting 1y z=  gives 

2 1

0

e d 1z cC z z
∞

∗ − − =∫  

Whence 

( )1 2C c∗ = Γ  

and 
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( ) ( )
( ) ( )1 2 11 e

2
c yF y y

c
− + −=

Γ
 

We can easily show that, treating ( )n t  as a continuous variable, its steady-state probability density function 
( )F n  will be given by 

( )
( )

( )
( )2

22
22 1

2
e ,

2

c
ncF n n

c
β σβ σ −−=

Γ
                          (40) 

With an appropriate identification of parameters, Equation (40) turns out to be an Erlang distribution and, thus 
in the steady-state the mean and variance can be directly evaluated. Thus on setting ( )2 cβ σ µ=  and 2c K= , 
Equation (40) becomes 

( ) ( )
( )

1

e .
K K

KnK n
F n

K
µµ −

−=
Γ

                           (41) 

Therefore, 

( )( )
21 cE F n σ α

µ β β
= = =  

and 

( ) ( )
222

2 2

1Var .
2 2
cn

K
ασσ β

µ β
= = =  

7. Conclusion 
In this paper, first we have investigated the logistic growth rate when it is influenced by the carrying capacity of 
the system and have analyzed the modified logistic model for fish growth. It is to be highlighted that the differ- 
ent stochastic versions of the logistic model and its extensions can be extended further in several directions. One 
may examine the threshold effect through logistic model and one can also examine the effect of stochasticity 
through the parameters β  and α  of the logistic model. In the long-run, the fishery has effectively forgotten 
its initial perturbation and the persistent behavior is completely described by the particular integral, Equation 
(13). Further, if the angular frequency of the periodic changes is low compared to the reciprocal of the natural 
time scale then the amplitude of the size variations is almost equal to the amplitude of the carrying capacity of 
the system. Beside these, a non-linear equation of Bernoulli type has been transformed to a linear equation so 
that the overall gross behavior of the simple model be adequate to provide some insight into. Splitting of proba-
bility density function provides the partial differential equation into two ordinary differential equations. 
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