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ABSTRACT 
This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the 
correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code 
Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal; 
where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts 
that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into 
its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting 
waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, loss- 
less and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like 
to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it 
makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, re- 
construct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the 
correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the 
NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used 
for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved 
by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative exam- 
ples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coeffi- 
cients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression 
ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 
117 of MIT-BIH database. The obtained results revealed that the proposed technique possesses higher compres- 
sion ratios and lower PRD compared to the other wavelet transformation techniques. The principal advantages 
of the proposed approach are: 1) the deployment of different compression schemes to compress different ECG 
parts to reduce the correlation between consecutive signal samples; and 2) getting high compression ratios with 
acceptable reconstruction signal quality compared to the recently published results. 
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1. Introduction 
In technical literatures, numerous ECG compression al- 
gorithms have been developed in the last thirty years. 
They may be defined either as reversible methods (offer- 
ing low compression ratios but guaranteeing an exact or 
near-lossless signal reconstruction), irreversible methods  

(designed for higher compression ratios at the cost of a 
quality loss that must be controlled and characterized), or 
scalable methods (fully adapted to data transmission pur- 
poses and enabling lossy reconstruction). Choosing one 
method mainly depends on the use of the ECG signal. In 
the case of diagnosis, a reversible compression would be 
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most suitable. However, if compressed data has to be 
stored on low-capacity data supports, an irreversible 
compression would be necessary. The scalable tech-
niques clearly suit data transmission. ECG compression 
techniques can be categorized into: direct time-domain 
techniques; transformed frequency-domain techniques 
and parameters optimization techniques.  

1) Direct Signal Compression Techniques: Direct me- 
thods involve the compression performed directly on the 
ECG signal. Many of the time domain techniques for 
ECG signal compression are based on the idea of ex- 
tracting a subset of significant signal samples to repre- 
sent the original signal. The key to a successful algorithm 
is the development of a good rule for determining the 
most significant samples. Decoding is based on interpo- 
lating this subset of samples. The traditional ECG time 
domain compression algorithms all have in common that 
they are based on heuristics in the sample selection pro- 
cess. This generally makes them fast, but they all suffer 
from sub-optimality [1]. 

2) Transformed ECG Compression Methods: Trans- 
form domain methods, operate by transforming the ECG 
signal into another domain. These methods mainly utilize 
the spectral and energy distributions of the signal, and 
properly encoding the transformed output. Signal recon- 
struction is achieved by an inverse transformation pro- 
cess. This category includes traditional transform coding 
techniques applied to ECG signals such as the Karhunen- 
Loève transform [2], Fourier transform [3], Cosine trans- 
form [4], subband-techniques [5], vector quantization 
(VQ) [6], and more recently the wavelet transform (WT) 
[7]. The wavelet decomposition splits the signal into ap- 
proximation and detail coefficients, using finite impulse 
response digital filters. Wavelet-based ECG compression 
methods have been proved to perform well. The ability 
of DWT to separate out pertinent signal components has 
led to a number of wavelet-based techniques which su- 
persede those based on traditional Fourier methods. 

3) Optimization Methods for ECG Compression: More 
recently, many interesting optimization based ECG com- 
pression methods, the third category, have been devel- 
oped. The goal of most of these methods is to minimize 
the reconstruction error given a bound on the number of 
samples to be extracted or the quality of the recon- 
structed signal to be achieved. In [8], the goal is to mi- 
nimize the reconstruction error given a bound on the 
number of samples to be extracted. This leads to the best 
possible representation in terms of the number of ex- 
tracted signal samples, but not necessarily in terms of 
bits used to encode such samples. In [9], the bit rate has 
been taken into consideration in the optimization process. 

The key issue is to choose the most suitable method 
for the ECG signals application. What is intended 
through this paper is to obtain the highest data reduction 

by preserving the clinical characteristics of the signal. 

2. Algorithm Description 
The QRS complex of an ECG cycle occupies a relatively 
low percentage of the whole cycle, but it is the most im- 
portant portion from a diagnostic point of view for many 
diseases. If this portion suffers from high error and other 
ECG cycle portions do not have errors, artificially wrong 
diagnostic decisions may happen. Hence, a given distor- 
tion in one portion does not inevitably have the same 
influence as the same distortion in another portion. For 
these reasons the proposed compression algorithm fo- 
cuses on the provision of different compression ratios for 
different portions of the heart cycle, where the RoI is 
selected according to context information (disease/car- 
diac event to detect status of the patient). 

Ideally we would like to compress the signal losslessly, 
but in many applications this is not an option. Thus, for a 
given fixed bit budget, it makes sense to spend more bits 
to represent those parts of the signal that belong to a spe- 
cific clinically relevant parts, while allowing other parts 
to suffer larger distortion. Consequently, the performance 
assessment of the proposed methodology should take this 
into account. In general, the main goal for any compres- 
sion procedure consists in reducing as much as possible 
the bit-rate of the signal by keeping an acceptable quality 
or, equivalently, by improving as much as possible the 
quality for a fixed assigned bit-rate. Thus, the two most 
important parameters are the compression ratio and the 
quality of the signal. The framework of the compression 
process is summarized in the following. 

2.1. Patient Side 
1) Capture the ECG signal from the patient or prepare 

an uncompressed signal from a database. 
2) If the signal is captured from a patient, clean it from 

artifacts and remove the signal mean and normalize it. In 
case of picking the signal from a database, remove its 
mean and normalize the resulting mean-removed signal. 
In this paper, all signals considered are extracted from 
MIT-BIH database. 

3) Segment the signal into RoI part (QRS-complex and 
possibly P- T- and U-waves) and the NonRoI part (the 
remaining parts representing the difference between the 
original ECG signal and the RoI part). 

4) Compress the RoI part using DPCM lossless com- 
pression method and applying proper quantization. 

5) Encode the resulting quantized residuals into binary 
stream by run-length coding algorithm. 

6) Compress the NonRoI part using DWT lossy com- 
pression technique and applying proper thresholding and 
quantization. 

7) Encode the resulting quantized wavelet coefficients 
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into binary stream by run-length coding algorithm. 
8) Packetize the data and prepare the data header. 

2.2. Transmission Side 
1) Guarantee network connection (Intranet or Internet) 

and/or wireless transmission facilities. 
2) Transmit the data header, the binary stream of the 

RoI part and that of the NonRoI part consecutively. 

2.3. Reception Side 
1) Depacketize the received binary stream into the 

header, binary stream of the RoI and that of the NonRoI 
parts respectively. 

2) Convert the binary streams of the header into the 
basic information important for ECG signal reconstruc- 
tion such as length of RoI stream, length of NonRoI 
stream, start and end of each wave in RoI and NonRoI 
parts. 

3) Convert the binary streams of both RoI and NonRoI 
parts into their equivalent decimal numbers. 

4) Apply inverse DPCM for RoI part and apply inverse 
wavelet transform for NonRoI part. 

5) Decompose the resulting time-domain RoI and 
NonRoI parts into QRS-waves, T-waves, P-waves, U- 
waves and isoelectric-waves. 

6) Use the obtained data in the above steps to recon- 
struct the ECG signal. 

7) Calculate the compression ratio and the error meas- 
ures for evaluation and comparison. 

8) Output the reconstructed ECG signal for medical 
investigation. 

3. Features Extraction and Locating ECG 
Signal Critical Points 

The significant features of the ECG signal, such as the R 
point, RR interval, and amplitude of R point, average RR 
interval, QRS duration and existence of QRS should be 
extracted for the next compression stage. The significant 
features are shown in Figure 1; where each heartbeat 
signal starts by the P wave and ends at the next P wave of 
the following heartbeat. Moreover, the heartbeat can be 
divided into a crucial part and a plain part [10]. 

The QRS complex wave is the most important part of 
the cardiology system to determine arrhythmia. The P 
and T waves also have high level of information and the 
remaining plane parts contain less information. Therefore, 
in this work, the ECG signal is segmented into parts and 
the number of bits is assigned differently according to the 
importance of each part. For example, more bits are as- 
signed to the RoI part, and fewer bits are assigned to the 
NonRoI part. The critical points of the ECG signal are 
very important in defining its RoI and NonRoI parts. 
These critical points are namely; the P, Q, R, S, T and U  

 
Figure 1. Significant features of one beat ECG signal. 

 
points. In the following a robust algorithm for the detec- 
tion of the locations of these points using the properties 
of the real time analysis of the ECG signal is described.  

The R-wave detection is the most important process in 
the segmentation algorithm because all coming processes 
are based on the locations of the R-peaks. This has been 
carried out by adaptive thresholding the ECG signal. The 
threshold levels used in this work are not constant for all 
ECG signal beats. This overcomes the error in detecting 
the R-wave as a result of the unexpected changes in the 
ECG signal from beat to beat. Each beat is defined by the 
R-R interval that has a length from about 0.14 sec up to 
1.2 sec (corresponds to 144 samples to 432 samples). To 
carry out the R-peak detection process, a window of 
length greater than 432 samples should be used. The 
width of the widow must be selected carefully to avoid 
error detection of the R-wave of the ECG signal. In this 
study a window of width 500 samples is selected. Then 
the maximum value of the ECG signal within this win-
dow is calculated. 

The window is slide to the right by one sample and the 
maximum value within the new window is calculated. 
This process is repeated until the left edge of the window 
reaches the last sample of the signal. This process yields 
to the upper threshold levels of each beats. The lower 
threshold levels are calculated as a factor of the upper 
threshold levels. It has been found that a factor of half is 
suitable for detecting the R-peaks. The next step is the 
thresholding of the ECG signal with the resulted thre-
shold levels and finding the maximum points of the re-
sulting signal that represents the R peaks.  

Detecting the Q and S waves is basically based on the 
detection of the R-peaks locations. The Q- and S-peaks 
locations are obtained by searching for the minimum 
points surrounding the R peaks. The duration of the QRS 
complex is 0.04 - 0.11 sec (15 - 40 samples). Similar 
search process to that described before for finding the 
R-peaks is made in the 40 samples before and in the 40 
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samples after the location of the R-peak has been carried 
out for detecting the Q- and S-peaks.  

The T-, U- and P-peaks are located between the Q- and 
next S-peaks. Firstly, we define the SQ segment as the 
region from the location of the current S-peak up to the 
location of the following Q-peak. The of maximum and 
minimum points in the SQ segment are determined by 
adopting the same method used to find the R-peaks 
where the sliding window width used is selected to be 
equal to one-tenth the width of the SQ segment. The 
points of the maximum of the windows is picked and 
considered as the T-, U- and P-peaks after avoiding mul- 
tipoint problems. According to the morphology of the 
ECG signal and after the consultations with cardiologists, 
the detected peaks are considered as the peaks of the T-, 
U- and P-waves according to the following rules. 
• If there are no peaks detected, then no T-, U- or 

P-peak exists. 
• If there is only one peak detected, then this peak will 

be the T-peak and there is no U-peak or P-peak. 
• If there are two peaks detected, the first peak will be 

the T-peak and the next peak will be the P-peak and 
there is no U-peak. 

• If there are three peaks or more detected the first peak 
will be the T-peak and the next peak will be the U- 
peak and the last peak will be the P-peak. 

Figure 2 illustrates the ECG signal with P, Q, R, S, T 
and U points indicated. 

4. Segmentation of ECG Signal into Waves 
The ECG segment is defined as the period between the 
end of a wave to the start of the next wave. After finding 
the P-, Q-, R-, S-, T- and U-peaks locations, the segments 
PQ, ST, TU, and UP are defined as the portions of the 
ECG signal between the two adjacent peak locations. In 
each of these segments, an isoelectric wave exists. If the 
 

 
Figure 2. It illustrates the ECG signal with P, Q, R, S, T and 
U points indicated. 

start and end locations of each isoelectric wave is deter- 
mined, the starts and ends locations of all other waves 
can be determined. The idea of finding the start and end 
locations of isoelectric waves is centered in finding the 
longest period with lowest standard deviation (STD) in 
each segment. This is carried out as follows: 
• Locate the interval V between the two adjacent 

points defining the segment, (i.e. P and Q, S and T, 
T and P). 

• Calculate the STD of the regions whose start is the 
first sample of the interval V and whose ends are 
points after the first point; e.g. Std(1) = STD(V(1:2), 
std(2) = STD(V(1:3)), std(3) = STD(V(1:4)), ... std(n) 
= STD(V(1:n + 1)). 

• Repeat the last step for the next sample of the interval 
V and so on until the last sample of the interval V.  

The decomposition of the ECG signal into its waves is 
illustrated in the flowchart shown in Figure 3. As a result, 
the start and end locations of the ECG waves are de- 
tected. 

Pwave_st=Waves{1}; Pwave_ed=Waves{2}; 
QRSwave_st=Waves{3}; QRSwave_ed=Waves{4};  
Twave_st = Waves{5}; Twave_ed= Waves{6}; 
Uwave_st= Waves{7}; Uwave_ed  = Waves{8}; 
isoelectric_st = SEG{1}; and isoelectric_ed = SEG{2}; 
After finding the region that achieves lowest STD and 

longest length; the start and end of each isoelectric wave 
is determined. Consequently, the starts and ends of all 
other waves are determined. To illustrate the importance 
of the ECG signal’s components, the energy and the 
number of samples (wave length) of each component are 
calculated. Table 1 includes the calculated energies and 
wave lengths of different ECG components for 1460 
samples from record 103. From this table it can be ob- 
served that the longest component is the isoelectric wave 
in which about 45% of the ECG signal energy and num- 
ber of samples are concentrated. Fortunately, these waves 
have no clinical importance. Thus, it will be considered 
as the main component of the Non-RoI part. In contrary 
to that the energy of the QRS-complexes is about 36% of 
the signal energy with smallest number of samples (about 
8%). This part of the signal is very important from clini- 
cal point of view. So, it will be considered as the main 
component of the RoI part. The T- and P-waves contri- 
buted by 5.8% and 8.1% of the energy respectively; 
however the length of the T-waves is 1.7 times that of the 
P-waves. Thus, P-wave is a candidate for RoI part and 
T-wave is a candidate for NonRoI part. Considering ei- 
ther of them in RoI or NonRoI depends on the patient’s 
case and the patient’s heart disease [10]. Table 2 in- 
cludes the 74 start and end indices of all the ECG signal 
waves. Investigation of this table reveals that, among 
these 36 indices are for isoelectric-waves and there exists 
an isoelectric-wave between each two other waves. Since   
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Figure 3. The decomposition of the ECG signal into its waves. 



M. M. ABO-ZAHHAD  ET  AL. 

OPEN ACCESS                                                                                       IJCNS 

58 

Table 1. Energy distribution and wave lengths of ECG components for 1460 samples of record 103. 

Wave Name Wave Length Percentage of Wave Length to Total Length Wave Energy Percentage of Wave Energy to the Total Energy 

QRS-Complex 120 8.21917% 20.4169 35.8297% 

T-Wave 317 21.7123% 3.3204 5.8270% 

P-Wave 190 13.0136% 4.5984 8.0697% 

U-Wave 165 11.3013% 3.6721 6.4442% 

Isoelectric Wave 668 45.7534% 24.9754 43.8294% 

Complete Wave 1460 100% 56.9831 100% 

 
Table 2. The start and end indices of all ECG signal waves. 

Beat Number 
T-Wave Isoelectric-Wave U-Wave Isoelectric-Wave 

Start End Start End Start End Start End 

1 1 89 90 125 126 153 154 191 

2 331 387 388 422 423 455 456 500 

3 635 689 690 721 722 757 758 802 

4 936 992 993 1034 1035 1069 1070 1107 

5 1240 1299 1300 1336 1337 1369 1370 1410 

Beat Number 
P-Wave Isoelectric-Wave QRS-Wave Isoelectric-Wave 

start end Start end start end start end 

1 192 225 226 251 252 285 286 330 

2 501 536 537 562 563 591 592 634 

3 803 837 838 863 864 892 893 935 

4 1108 1142 1143 1167 1168 1195 1196 1239 

5 1411 1460       

 
the start of each wave is less than the end of the preced- 
ing wave by one, the start of the next wave can be di- 
rectly determined. The only two exceptions are the start 
index of the first wave that is 1 and the end index of the 
last wave that is the signal length. Using these facts, the 
74 entries of Table 2 can be obtained from only 36 en- 
tries. 

From the above discussion, it can be deduced that only 
the 36 entries need to be included in HeaderW and no 
need to transmit the start and end of isoelectric waves. It 
should be noticed that the starts and ends of isoelectric 
waves are generated in the receiver side using the fol- 
lowing Matlab code.  

n = length (HeaderW); SortedHW = sort (HeaderW); k 
= 0; 

for i = 2 : 2 : n − 1 k = k + 1; startiso (k) = SortedHW 
(i) + 1; endiso(k) = SortedHW (i + 1) − 1; end 

Running the above code results the following starts 
and ends of the isoelectric waves. 

startiso = [90 154 226 286 388 456 537 592 690 758 
838 893 993 1070 1143 1196 1300 1370] 

endiso = [125 191 251 330 422 500 562 634 721 802 
863 935 1034 1107 1167 1239 1336 1410] 

These indices will be deployed in the reconstruction of 
the signal in the receiver side. To finalize this section, the 
preparation for ECG signal segmentation into RoI and 
NonRoI parts is summarized in the following: 

1) The ECG signal is decomposed into its waves and 
these waves are stored in the vectors: Twaves, Uwaves, 
Pwaves, and QRSwaves. These waves will be grouped 
into RoI and NonRoI parts. 

2) The numbers of sub-waves are included in the first 
part of the header (Header1) that includes No_of_Twaves, 
No_of_Uwaves, No_of_Pwaves, and No_of_QRSwaves. 
Each is represented by 4-bits. Since each ECG beat has 
only one of these waves, the 4-bits can accommodate a 
signal of length 15 beats. For longer ECG signals, this 
number should be increased. 
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3) The starts and ends of all sub-waves are defined and 
stored in HeaderW, e.g. the first QRS sub-wave starts at 
EQwave1 and ends at EQwave1. Each value is repre- 
sented by 11-bits. The 11-bits can accommodate a signal 
of length 2048. For longer ECG signals, this number 
should be increased. 

4) The starts and ends of the isoelectric waves are de- 
duced from HeaderW using the Matlab code described 
above. 

5. Compression of ECG Signal Based on 
Segmentation into RoI and NonRoI Parts 

5.1. Signal Segmentation into RoI and NonRoI 
Parts 

In the previous section segmentation of ECG signal into 
its waves has been discussed. For the purpose of signal 
compression, the following three cases of constructing 
the RoI and NonRoI parts from these waves are: 

1) QRS-waves are considered in RoI and the remain- 
ing waves are in NonRoI. 

[ ]
[ ]

RoI QRSwave and

NonRoI TwaveUwavePwaveisoelectricwave

=

=
 (1) 

2) QRS- and T-waves are considered in RoI and the 
remaining waves are in NonRoI. 

[ ]
[ ]

RoI QRSwaveTwave and

NonRoI UwavePwaveisoelectricwave

=

=
   (2) 

3) QRS-, T- and P-waves are considered in RoI and 
the remaining waves are in NonRoI.  

[ ]
[ ]

RoI QRSwaveTwavePwave  and

NonRoI Uwaveisoelectricwave

=

=
       (3) 

Since the RoI is the most important part of the signal 
for medical diagnostic purposes, it must be coded with a 
lossless compression algorithm. The NonRoI part of the 
ECG signal has not had a considerable effect of medical 
diagnostic. For this reason, this part is compressed by 
using lossy compression technique. For this purpose DP- 
CM technique is used for compressing the ROI part of 
the signal. However, the NonRoI part of the signal is 
compressed using wavelet based compression technique. 
To send the information related to the compression stage, 
the number of signal samples in the RoI (Len_RoI) and 
the number of signal samples in the NonRoI (Len_ 
NonRoI) should be added to Header1 and each is repre- 
sented by 11-bits. In the following subsections the algo- 
rithms developed for the compression of RoI part using 
DPCM and NonRoI part using DWT are presented. Al- 
though the discussion presented in the following subsec- 
tions is limited to the first case described by Equation (1), 
all algorithms that will be discussed can be adopted by 

reconstructing RoI and NonRoI vectors according to Eq- 
uations (2) and (3). Figure 4 illustrates the ECG signal 
after its decomposition into RoI and NonRoI parts, where 
all P waves, QRS waves, T waves, U waves, and isoelec- 
tric waves are arranged in groups. 

5.2. Compression of RoI Part Using Differential 
Pulse Code Modulation 

Amongst the different direct data compression tech-
niques, which are based on the detection of redundancies 
on the original signal, pulse code modulation (PCM) pro- 
vides simple and fast compression schemes. In PCM 
technique each sample of the waveform is encoded inde- 
pendently of any other sample. An encoding scheme that 
exploits the redundancy in the samples will result in 
higher compression ratio and a lower bit rate for the 
source output. A relatively simple solution is to encode 
the differences between successive signal samples rather 
than the samples themselves, rendering the differential 
pulse code modulation (DPCM) technique. The equation 
for calculating a DPCM sequence is 

( ) ( ) ( )1e n x n x n= − −            (4) 

where, e(n) is the prediction error. Since differences be- 
tween samples are expected to be smaller than the actual 
sampled amplitudes, fewer bits are required to represent 
the differences. A block diagram of a DPCM encoder 
and decoder used in this subsection is shown in Figure 
5(a). A natural extension of the DPCM operation is to 
predict the value of the current sample based on the pre- 
vious m samples using Linear Prediction (LP) technique, 
as shown in Figure 5(b).  

( ) ( )1
ˆ m

kkx n a x n k
=

= −∑            (5) 

where, ( )x̂ n  is the estimate of the current sample 
( )x n  at discrete time instant n and { }ka  is the predic- 

 

 
Figure 4. Signal decomposition into RoI and NonRoI parts. 



M. M. ABO-ZAHHAD  ET  AL. 

OPEN ACCESS                                                                                       IJCNS 

60 

 

x [n] 

+ 
− 

x [n] e [n] 

e [n] 

x [n − 1] 

Quantizer 

Quantizer 

Predictor 

+ 
− 

[ ]e n

[ ]e n

[ ]x n

∑

∑

 
Figure 5. DPCM-First order linear prediction model (b) mth 
order linear prediction model. 
 
tor weights. The samples of the estimation error sequence 
( ) ( ) ( )( )ˆe n x n x n= −  are less correlated with each other 

compared to the original signal, ( )x n  as the predictor 
removes the unnecessary information which is predicta- 
ble portion of the sample, ( )x n . The coefficients of the 
LP model are determined by minimizing the error be- 
tween the original and estimated signal in the least 
squares sense. The block diagram of the LP implementa- 
tion is shown in Figure 5(b). In both of the above DPCM 
systems, ( )e n  is normally quantized using a predefined 
number of bits. If the calculated difference between the 
current sample and the predicted value of the current 
sample is too large to be represented by the number of 
bits chosen for quantization, then data loss occurs. For 
this reason DPCM is normally considered to be a nearly 
lossless coding scheme. Therefore, in order to keep the 
DPCM operation completely lossless, the output would 
need more predefined bits to guarantee that there will not 
be data loss. In [11], Jalaleddine showed that for ECG 
signals, a first order linear predictor (DPCM) yields bet-
ter results compared to LP models of higher orders. 
However, for other set of signals, a second order predic-
tion model achieved best results. Figure 6 illustrates the 
ROI signal before and after DPCM. 

5.3. Compression of NonRoI Part Using DWT 
As it is mentioned before, the NonRoI part is compressed 
using DWT-based compression technique. For all signals 
considered through the paper, signals are decomposed up 
to the 6 levels using Daubitches “db6” wavelet filters. 
Then the wavelet coefficients are thresholded, quantized 
and coded using run-length coding technique. The appro- 
ximation and details coefficients obtained by wavelet 
transformation must be quantized for the purpose of 
compression. The quantization process on the subbands 
of the ECG signal gives a small number of bits (short 
codewords) to represent the small numbers when they 
mostly occur and a larger number of bits (long code-  

 
(a) 

 
(b) 

Figure 6. The ROI signal before and after DPCM; (a) The 
original signal (b) After DPCM. 
 
words) to represent the less probable large numbers. For 
the run-length coding of the thresholded wavelet coeffi-
cients of NonRoI part, each coefficient is represented in 
the forum of (counts, values). Then, each non-negative 
value is represented by “1” concatenated with nbitsNo- 
nRoI binary representation of that value and each nega- 
tive value is represented by “0” concatenated with nbits- 
NoRoI binary representation of that value. Here, nbits- 
NonRoI is determined such that the absolute value of the 
maximum thresholded wavelet coefficient is represented 
correctly. Consequently, counts are again run-length 
coded. 

6. Data Packetization Process 
From the above discussion it can be observed that it is 
necessary to prepare a header to be sent to the receiver 
before transmitting the coded signal. The header is con- 
structed from four parts. The first part of the header 
(Header1) defines the number of T-, P-, QRS- and 
T-waves. Table 3 illustrates the construction of the first 
part of the header including the required number of bits. 
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The second part of the header (Header2) packetize the 
number of bits required for representing the length of RoI 
residuals (Len_of_RoI), the value of the first sample, the 
number of bits for RoI residual (nbitsRoI) as shown in 
Table 4. Before quantizing the residuals of the theRoI 
part, each residual element is multiplied by a scale factor 
of value 100. The required number of bits necessary to 
represent each element of the scaled ( )e n  depends 
mainly on the maximum value of ( )e n . 

6.1. Packtization of Transmitted Signal 
Before quantizing the DWT coefficient of the NonRoI 
part, each coefficient is multiplied by a scale factor of 
value 100. The third part of the header (Header3) pack- 
etize the number of bits required for representing the 
NonRoI scaled DWT coefficients. In this case, the cod- 
ing process using run-length algorithm is applied twice. 
The first, results in values and counts of the scaled DWT 
coefficients. The required number of bits necessary to 
represent each value depends mainly on the maximum 
absolute value the scaled DWT coefficient. The Matlab 
function dec2bin is adopted for determining nbitsvalue. 
This function is also used to define the number of bits 
required to represent the number of these values (nbitsv- 
length). The resulting counts vector may have too many 
successive zeros. So, another run-length coding round for 
counts is adopted. This results in values and counts of 
counts. Thus we have to define the number of bits re- 
 
Table 3. The construction of the first part of the header 
(Header1). 

bits assigned for the number of T-waves 4-bits 

bits assigned for the number of U-waves 4-bits 

bits assigned for the number of PT-waves 4-bits 

bits assigned for the number of QRS-waves 4-bits 

 
Table 4. The construction of the second part of the header 
(Header2). 

bits assigned for the length of 
RoI residuals (Len_of_RoI) 8-bits 

bits assigned for the first sample 10 bits + 1 sign bit 

bits assigned for each RoI residual (nbitsRoI) 5 bits + 1 sign bit 

quired for representing the length and the value of values 
of the scaled DWT coefficients, together with the value 
and count of their counts. The last count value that re- 
presents the number of zeros at the end of scaled DWT 
coefficients vector is high; thus it will be represented by 
more bits. Table 5 illustrates the number of bits assigned 
for NonRoI coded DWT coefficient. The fourth part of the 
header (HeaderW) contains the start and end indices of all 
ECG waves except the isoelectric waves; where each is 
represented by 11-bits (See the formula in the bottom). 

Following the four header parts, the binary stream of 
the coded RoI residuals and the binary stream of the 
coded DWT coefficients are packetized consequently. 
Table 6 summarizes the bit allocation, which is trans- 
mitted (stored) for every ECG signal block. The gray 
areas in the table denote the parameters that are not al- 
ways transmitted. 

6.2. Illustrative Example of Packetization 
Process 

To illustrate the packetization process, consider the 
above mentioned ECG signal (1460 samples from record 
103). The signal contains 5 T-waves, 5 U-waves, 5 P- 
waves, and 4 QRS-waves. So, the binary stream of the 
first part of the header is Header1 = [0101 0101 0101 
0100]. 

The signal also has 120 RoI residuals and a first sam- 
ple of value −0.237 The absolute value of the maximum 
element of the RoI residual is 30, so nbitsRoI = 6-bits. 
Thus, the binary stream of the second part of the header 
is Header2 = [01111000 10100010 00111100110 11110 
000011110]. For the considered signal the number of 

 
Table 5. Number of bits assigned for scaled NonRoI DWT 
coefficient (Header3). 

Parameter 
Bits assigned for each 

Value Length 

Values of coded DWT Coefficients 
(nbitsvalue, nbitsvlength) 10-bits 7-bits 

Count-value of coded DWT 
(nbitscount-value, nbitscvlength) 7-bits 5-bits 

Count-count of coded DWT 
(nbitscount-count, nbitscclength) 5-bits 5-bits 

Last count-value (nbitslast) 11-bits  

 

( ) ( )
( ) ( )
( ) ( )
( )

- - - -

- - - -

- - - -

1 1 Num of Twaves Num of Twaves

1 1 Num of Twaves Num of Twaves

1 1 Num of Twaves Num of Twaves

1 1

HeaderW STwave ,ETwave , , STwave ,ETwave

SUwave ,EUwave , , SUwave ,EUwave

SPwave ,EPwave , , SPwave ,EPwave

SQwave ,EQwave , , S

=  





 ( )- - - -Num of Twaves Num of TwavesQwave ,EQwave .    
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NonRoI samples is 1340. Among them, 318 samples re- 
present the T-waves, 165 samples representing the U- 
waves, 190 samples representing the P-waves and 667 
samples representing the isoelectric-waves. When wave- 
let transformed using “db6” up to the 6th level, 1403 
wavelet coefficients result. These wavelet coefficients 
are thresholded using 0.0485 threshold level, where those 
less than this value are set to zero. This level is calcu- 
lated using the energy packing efficiency principle de- 
scribed in [18]. As a result of this step, only 80 coeffi- 
cients from the 1403 wavelet coefficients are non-zeros 

 
Table 6. The packetized bit stream of the compressed signal. 

Header1 16-bits 

Header2 25-bits 

Header3 49-bits 

HeaderW 11-bits * length of HeaderW 

Bit stream of RoI 6 bits * length of RoI 

Bit stream of NonRoI 

9 bits * length of coded values vector + 
7 bits * length of count values vector + 
5 bits * length of count counts vector+ 

11 bits 

and the remaining 1323 coefficients are zeros. However 
these zeros are distributed between the non-zero coeffi- 
cients. Using the run-length encoding, all the wavelet 
coefficients are grouped into 81 values with 81 counts. 
Thus, the 1403 wavelet coefficients are coded to 162 
values and counts. 

Table 7 includes the 162 run-length codes of the 
NonRoI wavelet coefficients. In this table the wavelet 
coefficient of value −231 with count zero means that 
there are no zeros between this coefficient and the pre- 
ceding coefficient (−225). However, the wavelet coeffi- 
cient of value 74 with count 5 means that there are 5 ze- 
ros between this coefficient and the preceding coefficient 
(−213). Investigations of Table 7 reveal that, the counts 
have many repeated successive zeros. Consequently, the 
run-length method is adopted once again for counts vec- 
tor. As a result, the 81 counts are coded into 23 counts_ 
values and 23 counts_counts. Moreover the values of the 
resulting representation are much smaller than that of 
counts. Thus, the 1403 wavelet coefficients are coded by 
81 coefficient values, 23 counts values and 23 counts 
counts. Table 8 includes the run-length coding of the 
coefficients counts; which is counts_counts and counts_ 
values. The last counts_values (1105) represents the  

 
Table 7. The run-length codes of the NonRoI wavelet coefficients. 

values −225 −226 −226 −226 −225 −225 −231 −209 −265 −76 −46 −77 

counts 0 0 0 0 0 0 0 0 0 0 0 0 

values −79 −53 −174 −188 −163 −185 −194 −161 −222 −232 −223 −271 

counts 0 0 0 0 0 0 0 0 0 0 0 0 

values −216 −282 −204 −249 −228 −206 −213 74 55 −20 −50 −39 

counts 0 0 0 0 0 0 0 5 0 0 0 0 

values 26 −17 28 −14 33 −15 13 −30 −8 29 −10 −28 

counts 0 0 3 0 0 0 0 0 1 1 0 2 

values −12 21 −31 62 −78 67 −67 44 −19 −9 −12 16 

counts 1 7 0 0 0 0 0 0 6 0 0 1 

values 19 −10 13 −10 11 −10 8 10 −10 12 10 −8 

counts 0 0 0 2 3 0 0 4 2 6 10 0 

values 8 −7 −7 8 11 −8 −9 −8 0    

counts 5 0 16 7 2 15 11 107 1105    

 
Table 8. The run-length codes of the counts. 

counts_counts 31 6 5 0 1 0 0 6 2 3 0 2 

counts_values 5 3 1 1 2 1 7 6 1 2 3 4 

counts_counts 0 0 0 1 1 0 0 0 0 0 0  

counts_values 2 6 10 5 16 7 2 15 11 107 1105  
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number of zeros at the end of the thresholded NonRoI- 
coefficients. In fact this value is the maximum value of 
the vector counts_values and needs 11 bits for binary 
representation. Excluding this value from vector counts_ 
values yields that the maximum value of the remaining 
elements is 107, so only 7 bits is enough for representing 
each element in counts_values. Thus, Header3 is [(10, 81) 
(7, 23) (5, 22) 11] which is equivalent to [1010 1010001 
0111 10111 0101 10110 1011]. 

The fourth part of the header is devoted to the binary 
stream of the start and end locations of the 5 T-waves, 5 
U-waves, 5 P-waves, and 4 QRS-waves. These locations 
are respectively at the indices [1 331 635 936 1240 89 
387 689 992 1299 126 423 722 1035 1337 153 455 757 
1069 1369 192 501 803 1108 1411 225 536 837 1142 
1460 252 563 864 1168 285 591 892 1195]. Represen- 
ting each index by 11-bits, yield HeaderW =  
[00000000001 00101001011  

01001111011 ··· 01101111100 10010101011]. 
Following the transmission of the four header parts, 

the binary stream of the scaled RoI residuals is transmit- 
ted. The number of these elements is 120 and each is 
represented by 6 bits including the sign bit. Thus the 120 
residual elements are represented by a binary stream of 
length 720 bits. The first 10 residual elements after scal- 
ing are [0 −3.0 −2.0 −1.0 2.0 3.0 5.0 9.0 15.0 19.0] and 
the corresponding binary stream is [100000 000011 
000010 000001 100010 100011 100101 101001 101111 
110011].  

Following the transmission of the RoI residuals, the 
binary stream of the coded NonRoI part is transmitted. 
Adding the 11-bits required for the last counts value 
(1105), a sum of 165 bits represents counts-values vector. 
For counts-counts vector, the maximum element is 31, so 
5 bits are enough to represent each element. Conse- 
quently 110 bits represents the counts-counts vector. 
Thus, 275 bits are needed after run-length encoding of 
counts vector. The maximum absolute value of the values 
vector is 282. This value is represented by 9 bits plus one 
more bit for sign. The last element of the vector values is 
zero and the remaining 80 elements need 800 bits for 
binary representation. Summing up all together, the 1403 
thresholded DWT coefficients are represented by 1082 
bits. 

7. Numerical Results 
In this section, the performances of the proposed compres- 
sion algorithm is presented and will be compared with 
other known compression algorithms. Records from MIT- 
BIH Arrhythmia database is used for evaluating the pro- 
posed compression algorithm. The performance of com- 
pression algorithms is tested by means of the quantitative 
performance measures; namely, in terms of the compres- 
sion ratio and the distortion metrics. The compression 

ratio (CR) is defined as the ratio of the number of bits 
representing the original signal to the number required 
for representing the compressed signal. So, it can be cal- 
culated from: 

HW RoI NonRoI

cLsbCR
N N N+ +

=          (6) 

where, cb  is the number of bits representing each orig- 
inal ECG sample. For MIT-BIH database, cb  is 11 bits. 

HWN , RoIN , and NonRoIN  are the number of bits repre- 
senting HeaderW, RoI stream and NonRoI stream re- 
spectively. It should be noted that 1 2,H HN N  and 3HN  
are the lengths of the binary streams representing Head- 
er1, Header2 and Header3. They are not included in (6), 
since they are fixed and send to the receiver once. To be 
able to compare different compression algorithms, it is 
imperative that an error criterion is defined such that it 
will measure the ability of the reconstructed signal to 
preserve the relevant diagnostic information. The distor- 
tion resulting from the ECG processing is frequently 
measured by the percent root-mean-square difference 
(PRD).  

( ) ( )( )

( )

2

1

2

1

% 100

N

n
N

n

x n x n
PRD

x n

=

=

−
= ×
∑

∑



       (7) 

where, ( )x n  is the original signal, ( )x n  is the recon- 
structed signal and N is the length of the window over 
which the PRD is calculated. 

7.1. Illustrative Example of Compression 
Algorithm 

As an illustrative example, consider the compression of 
2000 samples extracted from record 100 of MIT-BIH da- 
tabase. Thus, these samples are represented by 22000 bits. 
The signal is segmented into RoI and NonRoI parts. Con- 
sidering the RoI part to include the QRS-waves and the 
NonRoI part to include the remaining waves, the length 
of RoI part is 180 samples and that of NonRoI part is 
1820 samples as shown in Figure 7. In this case, the R- 
peaks locations and the QRS starts and ends locations are 
required to be determined. Those are: R-peaks = [266 
577 878 1182 1484 1796], QRS-starts = [252 563 864 
1168 1470 1781] and QRS-ends = [285 591 892 1195 
1497 1812]. Each QRS start and end value is represented 
by 11-bits yielding HW 132-bitsN = . The RoI part is de- 
correlated using DPCM and this yields first-sample = 
−0.2375 and the residual waveform shown in Figure 8(a). 
The NonRoI part is wavelet transformed up to the 6th 
level using Daubechies (db6) wavelet and the resulting 
waveform coefficients (1884) are shown in Figure 8(b). 

The threshold level is calculated such that 99.7% of  
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(a) 

 
(b) 

Figure 7. The RoI part before and after DPCM. (a) RoI part (QRS-complexes); (b) NonRoI (remaing part of the ECG signal). 
 

 
(a) 

 
(b) 

Figure 8. The RoI part after DPCM and the wavelet coefficients of the Non-RoI part. (a) RoI part after DPCM; (b) Wavelet 
coefficients of NonRoI part.  
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energy of the NonRoI part is reserved. The maximum 
absolute value of the residuals of the RoI part after scal- 
ing and rounding is 15. Thus, length of the RoI stream is 

RoIN  = 900 bits. The wavelet coefficients whose abso- 
lute values are less than the resulting threshold level 
(0.0592) are set to zero. As a result, among the 1884 
waveform coefficients, only 84 coefficients are non-zero. 
However, they are distributed between the waveform 
coefficients. 

After running the first round run-length coding algo- 
rithm, 85 values and 85 counts results. Concerning the 85 
values, the maximum absolute value is 185. Thus each 
value is represented by 9-bits including the sign bit and 
the binary stream of the values is of length 765 bits. Af-
ter the second round of run-length coding algorithm on 
the 85 counts, the following 20 values and 20 runs result 
respectively; 

Counts_values = [5 6 3 1 1 1 2 7 2 6 3 2 6 2 3 1 12 10 
48 1678] 

Counts_counts = [0 0 0 1 0 0 0 0 0 0 3 1 8 0 0 1 3 1 8 
39] 

The maximum value of the first 19 counts-values is 48 
and each can be represented by 6-bits yielding 114-bits 
for representing the counts-values stream. The last 
counts-values is 1678 which is represented by 11-bits. 
Similarly, the maximum value of the first counts-counts 
is 8 and each can be represented by 4-bits yielding 76- 
bits for representing the counts-values stream. The last 
counts-counts is 39 which is represented by 6-bits. Sum- 
ming all together, NonRoI 207-bitsN =  and 

HW RoI NonRoI 1239-bitsN N N+ + = . Thus, from Equation 

(6), the compression ratio is 17.76CR = . 
Reconstructing the ECG signal from the header and 

the binary streams representing the RoI and NonRoI 
parts follows reverse processes. This is namely, decoding 
of header, RoI and NonRoI streams. Then, the RoI and 
NonRoI parts are reconstructed using inverse DPCM and 
inverse DWT respectively. The QRS-starts, QRS-ends 
and the reconstructed RoI and NonRoI parts are used to 
reconstruct the ECG signal. Figure 9 illustrates the orig- 
inal and reconstructed RoI part of the signal. This figure 
shows that the original and the reconstructed QRS-waves 
are almost identical. Figure 10 illustrates the original and 
reconstructed T-, P-, U- and isoelectric waves together 
with the reconstruction error of the NonRoI part. Figure 
11 illustrates original and the reconstructed ECG wave- 
forms results from inserting the RoI and NonRoI parts in 
their prober positions.  

7.2 Effect of Selecting the Wavelet Family 

The Wavelet Toolbox™ software includes a large num- 
ber of wavelets that you can be used for ECG signal 
compression. Examples include: orthogonal wavelets 
(Daubechies’ and Symlets wavelets) and biorthogonal 
wavelets. The choice of wavelet is dictated by the signal 
characteristics and the nature of the application. The 
wavelet families adopted in this paper are listed in Table 
9. Table 10 depicts the wavelets used for testing the ef- 
fect of varying the wavelet filters on the compression 
performances. Figures 12 and 13 illustrate the dependence 
of the CR and PRD on the adopted wavelet filters. These 

 

 
Figure 9. The original and reconstructed RoI part (QRS waves). 
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Figure 10. Original and reconstructed T-, P-, U- and isoelectric waves. 

 
Table 9. Wavelet families adopted for ECG signal compression. 

Wavelet Family 
Example 

Short Name Name 

“db” Daubechies wavelets 

 

In dbN wavelets N refers to the 
number of vanishing moments. 

“sym” Symlets wavelets 

 

In symN wavelets, N is the number 
of vanishing moments (symN is more 

symmetrical than dbN) 

“bior” Biorthogonal wavelets 

 

In Biorthogonal wavelets, the pair (Nr .Nd) 
indicates the orders of the filters. Nr for  

signal reconstruction and Nd for  
signal decomposition 
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Table 10. Daubechies, Symlets and Biorthogonal filters used in the ECG compression. 

Filter number 1 2 3 4 5 6 7 8 9 10 

Daubechiesfilter name db 1 db 2 db 3 db 4 db 5 db 6 db 7 db 8 db 9 db 10 

Symlets filter name sym 2 sym 3 sym 4 sym 5 sym 6 sym 6 sym 7 sym 8   

Biorthogonal filter name bior 1.1 bior 1.3 bior 1.5 bior 2.2 bior 2.4 bior 2.6 bior 2.8 bior 3.1 bior 3.3 bior 3.5 

Filter number 11 12 13 14 15 16 17 18 19 20 

Daubechiesfilter name db 11 db 12 db 13 db 14 db 15 db 16 db 17 db 18 db 19 db 20 

Biorthogonal filter name bior 3.7 bior 3.9 bior 4.4 bior 5.5 bior 6.8      

 

 
Figure 11. Original and reconstructed ECG signal and reconstruction error. 

 

 
Figures 12. Dependence of the CR on the adopted wavelet filters. 
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Figures 13. Dependence of the PRD% on the adopted wavelet filters. 

 
figures show that as the filters order increase, the CR 
increases. However, this increases the compression errors. 
They also show that Daubechies’ and Symlets families 
outperforms biorthogonal family; where higher CRs and 
lower reconstruction errors result. 

7.3. Comparison with Other Methods 
In technical literatures, many interesting ECG signal 
compression algorithms have been introduced. In this 
section the result of several experiments of the proposed 
method are compared with other ECG compression algo- 
rithms already realized [12-21]. In addition, the ECG 
signals used should be sampled with the same sampling 
rate and each sample is quantized by the same number of 
bits. The proposed algorithm was tested and evaluated 
using actual data from MIT-BIH arrhythmia database; 
where the sampling rate is 360 Hz, and the resolution is 
11-bit. The performance of the algorithm is measured 
and compared with other methods used the same records 
according to its PRD and CR for each experiment. The 
dataset adopted consist of 10 seconds of data from 
records 100 and 117. Tables 11 and 12 depict the com- 
parison of performance results of CR and PRD with 
those in literature for record 117 and 100 respectively. 
From this table, it can be deduced that the proposed me- 
thod got higher compression ratios compared to the other 
wavelet transformation techniques. Moreover, the pro- 
posed method possesses lower PRD. This is due to the 
fact that the proposed method is combined approach of  

Table 11. Comparison with other methods in compressing 
record 117. 

Algorithm PRD (%) CR 

Donoho [12], 1995 3.90 8.0:1 

Djohan et al. [13], 1997 3.90 12.5 

Hilton [14], 1997 2.60 14.9 

Al-Shrouf et al. [15], 2003 5.30 11.6:1 

Tohumoglu and Sezgin [16], 2007 5.83 14.9:1 

Boukhennouf et al. [17], 2009 2.43 14.3:1 

Abo-Zahhad et al. [18], 2011 1.60 19.2:1 

Hossain and Amin [19], 2011 2.50 15.1:1 

Chouakri et al. [20], 2013 4.75 14.01 

Proposed Algorithm-Daubechies 2.81 15.6:1 

Proposed Algorithm-Symlets 2.90 13.69:1 

Proposed Algorithm-Biorthogonal 2.82 14.48:1 

 
lossy compression (DPCM) and lossless compression 
(DWT) techniques. 

8. Conclusions 
This paper presents a hybrid technique for the compres- 
sion of ECG signals based on DWT and exploiting the 
correlation between ECG samples; where lossless com- 
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Table 12. Comparison with other methods in compressing 
record 100. 

Algorithm PRD (%) CR 

Istepanian et al. OZWC [21], 2001 0.5778 (NRMSE) 8.16:1 

Istepanian et al. WHOSC [21], 2001 1.7399 (NRMSE) 17.5:1 

Chouakri et al. [20], 2013 19.35 13.8:1 

Proposed Algorithm-Daubechies 2.77 16.2:1 

Proposed Algorithm-Symlets 2.78 14.7:1 

Proposed Algorithm-Biorthogonal 2.82 15.1:1 

 
pression is adopted for clinically relevant parts and lossy 
compression is adopted for other parts. The ECG signal 
is segmented into P-waves, QRS-complexes, T-waves, 
U-waves and isoelectric waves. They are grouped into 
Region of Interest (RoI) and Non Region of Interest 
(NonRoI) parts. For a given fixed bit budget, more bits are 
devoted to representing RoI parts, while allowing other 
parts to suffer larger distortion. For this purpose the cor- 
relation between the successive samples of the ROI part 
has been utilized by adopting DPCM approach and the 
NonRoI part is compressed using DWT, thresholding and 
coding techniques. Compression is then achieved by se- 
lecting a subset of the most relevant coefficients which 
afterwards are efficiently coded. Illustrative examples are 
given to demonstrate thresholding based on energy pac- 
king efficiency strategy, coding of DWT coefficients and 
data packetizing. The principal advantages of the pro- 
posed approach are: 1) the deployment of different com- 
pression schemes to compress different ECG parts to 
reduce the correlation between consecutive signal sam- 
ples; and 2) getting high compression ratios with accept- 
able reconstruction signal quality compared to the re- 
cently published results. 

The performances of the proposed compression algo- 
rithm are evaluated and compared with other known 
compression algorithms adopting records from MIT-BIH 
Arrhythmia database. The quality of the proposed com- 
pression algorithm is tested in terms of the compression 
ratio and the PRD distortion metrics using 10 seconds of 
data from records 100 and 117. The obtained results re- 
vealed that the proposed method possesses higher com- 
pression ratios and lower PRD compared to the other 
wavelet transformation techniques. This is due to the fact 
that the proposed method is a combined approach of los- 
sy compression (DPCM) and lossless compression (DWT) 
techniques. 
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