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viduals, and the theory of isolation by distance [4,5], 
predicts the expected pattern of SGS at drift-dispersal 
equilibrium. Many empirical studies have investigated 
fine-scale SGS within plant populations from molecular 
marker data, often using spatial autocorrelation coeffi- 
cients [6].  

Regarding the statistical framework to study genetic 
variability from genetic data with known sampling site 
positions, spatial statistical genetics has become a rapidly 
evolving field. When implementing a spatially explicit 
approach to analyze georreferenced molecular marker 
data, it is important to consider that different statistical 
methods provide different types of information. The sta- 
tistical dependence between geographic and genetic dis- 
tances is usually carried out using the Mantel test, a 
permutational procedure to test the statistical signific- 
ance of the correlation between matrices [7]. A common 
approach to quantify autocorrelation is the Moran index I 
[8], which has been extensively used and in genetic stu- 
dies has been frequently applied to test the spatial struc- 
ture of single alleles. Many methods for the analysis of 
SGS have been developed for single-locus, diploid ge- 
notypic data such as the one provided by isozymes [9]. 
However, genetic data are highly multidimensional and it 
is currently obtained from multiple loci with molecular 
markers. To deal with multivariate molecular data, di- 
mension reduction techniques have proven to be useful 
[10-13].  

Principal Components Analysis (PCA) [14] is one di- 
mension reduction technique that can be applied to sum- 
marize molecular marker profiles into a few uncorrelated 
components. It finds an orthogonal basis for the data in 
such a way that the first axis of the new spanned space is 
along the direction of greatest variation of the original 
data, providing a set of eigenvectors and their corres- 
ponding eigenvalues. Eigenvectors contain the weight 
coefficients to build the linear combinations, which indi- 
cate the relative importance of variables to explain varia- 
bility among the biological entities (e.g. trees) on each 
axis. Once the synthetic variables (principal components) 
of interest have been chosen, they can be used to give 
scatter plots of observations with optimal properties to 
study the underlying variability among entities. One ad- 
vantage of the use of synthetic variables is that they col- 
lapse the multidimensional genetic characterization of 
individuals, allowing the construction of synthetic maps 
of genetic variability. For mapping purposes, individual 
scores on the principal components can be interpolated, 
by the prediction of the variable (PC) in spatial points. 
This technique allows visualizing the spatial pattern of 
genetic variability [15-18]. Plotting the values of the re- 
sulting synthetic variables (components) onto a geo- 
graphic map as a way to explore the spatial structure of  
genetic variance, has been pioneered by Cavalli-Sforza 

[10] for the reconstruction of the early history of human 
populations. The power of PCA with large spatial ge- 
nomic data sets became evident in Novembre et al. [19], 
who observed a very high correlation between the posi- 
tions in a PCA plot and human geographic origin, show- 
ing that Single Nucleotide Polymorphisms (SNPs) were 
spatially structured. However, PCA was not properly 
designed to investigate spatial patterns and consequently 
spatial information was used as the posteriori analysis. 
The first principal components explain variance among 
observations rather than autocorrelation and therefore 
PCA may fail to detect spatial structuring if this is not 
associated with the most pronounced genetic differentia- 
tion. 

For a more complete characterization of spatial struc- 
tures in genomic data, the analysis of the principal com- 
ponents has to focus on the part of the multidimensional 
variance that is spatially structured. This can be accom- 
plished using the spatial information within the optimi- 
zation criterion used to find the synthetic variables. This 
issue was previously tackled in the context of ecological 
data by Thioulouse et al. [20], who built on the work of 
Wartenberg [21] to test the statistical significance of spa- 
tial structures in the context of multivariate analyses. The 
main concept was to introduce the neighboring relation- 
ship between sampling units in the analysis. Jombart et 
al. [22] developed a spatial Principal Component Analy- 
sis (sPCA) suitable for genetic allelic frequency data 
which relied on a modification of PCA such that not only 
the variance of the synthetic variables, but also their spa- 
tial autocorrelation, was optimized. The spatial informa- 
tion is stored inside a spatial weighting matrix which 
contains positive terms corresponding to some measure- 
ment (often binary) of spatial proximity among entities. 
Such terms can be derived from a connection network, or 
a neighboring graph, which is created by connecting the 
neighboring observations on a map [23]. For example, 
the Delaunay neighboring graph [24] is suited to evenly 
distributed observations, but may also connect unrelated 
peripheral observations, whereas the Gabriel neighboring 
graph [25] is a subset of the Delaunay graph without 
peripheral connections. In sPCA this spatial weighing, 
matrix is used to compute the spatial autocorrelation us- 
ing the Moran’s index statistic. The optimization crite- 
rion defined in the sPCA allows us to take into account 
both the spatial structure and the variability of the data. 
The eigenvalues provided by the sPCA are highly posi- 
tive when the synthetic variables have a large variance 
and exhibit positive autocorrelation; and conversely, sPCA 
eigenvalues are largely negative when the spatial princi- 
pal components have a high variance and display nega- 
tive autocorrelation.  

In this work, we attempt to clarify the use of PCA to 
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tackle the study of spatial genetic patterns from molecu- 
lar marker data. To achieve this, we compare the results 
of the application of PCA and sPCA on microsatellite 
data in the study of the SGS of a tree species. We also 
propose a PC-sPC scatter plot of allele loadings to better 
understand the allele contributions to spatial genetic va- 
riability. The value of the simultaneous use of both types 
of principal component analysis is demonstrated for a 
hybrid swarm between Prosopis chilensis and P. flexuosa, 
two arboreal species with economic and ecological im- 
portance in Argentina. 

2. METHODS 

2.1. Data 

The data [26] contains the genetic characterization of 
geo-referenced trees (observations) of a hybrid swarm 
between Prosopis chilensis and Prosopis flexuosa. The 
study was carried out in a 4700 m2 plot included in a 
continuous forest located in the Natural Reserve Chan- 
caní, in Córdoba, Argentina (Lat. 31˚23'S, Long. 65˚27'W). 
In the study plot, a total of 87 flowering Prosopis trees 
(adult population) were identified as P. flexuosa, P. chi- 
lensis or hybrid using a taxonomic key based on quantit- 
ative characters [27]. The position of each tree in the plot 
was measured in the field using polar coordinates (dis- 
tances and angles) and then converted to Cartesian coor- 
dinates. Genetic structure and variation was characte- 
rized in the adult population using six polymorphic mi- 
crosatellites (SSR) originally developed for P. chilensis 
[28]. The total number of alleles found over all individu- 
als was 72 and the number of alleles per locus ranged 
from 3 to 16. Allelic frequencies were calculated and 
centered by subtracting the mean allele frequency from 
all observations. Therefore, all analyses were performed 
on an 87 × 72 data matrix, corresponding to the 87 trees 
and 72 alleles. 

2.2. Univariate Analysis 

To better interpret the multivariate output, we evaluated 
the variance and the spatial autocorrelation of each allele 
independently. To estimate autocorrelation, we first built 
two spatial weighting matrices, one using Gabriel 
neighboring graph and the other using Delaunay’s trian- 
gulation, with the choose CN function of adegenet [29] 
library in R software [30]. The number of neighbors for 
each individual obtained with both methods were com- 
pared through their frequency distribution. Each allele’s 
spatial autocorrelation was estimated with the Moran 
Index and both spatial weighing matrices, using the 
function moran.test of spdep library [31] in R software. 
Finally, we plotted the Moran Index of each allele 
against its corresponding variance. On this plot we iden- 

tified the four alleles with higher variances and the four 
alleles with more autocorrelation. We focused our analy- 
sis on the spatial structures with positive autocorrelation. 

2.3. Application of PCA and sPCA 

Both PCA and sPCA were performed on the 87 × 72 al- 
lele frequency data matrix using R software. For PCA the 
dudi.pca function in ade4 library [32] was applied and 
sPCA was run with the spca function in the adegenet 
library using Gabriel’s Graph connection network. A 
number of components which explain a relevant amount 
of genetic variance were analyzed. To select the number 
of components we considered not only the variance they 
explained but also its distribution among eigenvalues in a 
screeplot. Additionally, biplots for both analyses were 
obtained with InfoStat software [33]. In the biplots the 
individuals were identified as P. chilensis, P. flexuosa or 
hybrid. 

2.4. Comparison Criteria 

The results obtained with both PCA and sPCA were 
compared by three criteria. First we contrasted the va- 
riance and spatial autocorrelation explained by the Prin- 
cipal Components (PC) and the spatial Principal Com- 
ponents (sPC). For this purpose we calculated the auto- 
correlation of the PCs and sPCs with the Moran Index 
using the spatial weighing matrix obtained by Gabriel 
Graph with the moran.test function of spdep library of R 
software. The Moran Index of each PC and each sPC 
against their corresponding variance were plotted. On 
this plot we identified the PCs and sPCs with the highest 
variances and autocorrelation. Secondly, we compared 
the maps of genetic variability built with the first syn- 
thetic variables yielded by both methods. To achieve this 
we plotted the PC1 and sPC1 scores of each tree posi- 
tioned by its spatial coordinates. In this map the different 
sizes of the used symbols (squares) represent different 
absolute values of the synthetic variables: trees with 
large black squares are well differentiated from trees 
with large white squares and observations represented 
with small squares are less differentiated among them. 
This type of map was performed using the s.value func- 
tion in ade 4. We also generated a surface using a local 
interpolation of principal component scores (function 
s.image in library ade 4), using grey levels and contour 
lines. The closer the contour lines are from each other, 
the steepest the genetic differentiation is. Finally, we 
compared the allele’s contribution to the PCA and sPCA 
axes. To achieve this we proposed to build a PC-sPC 
scatter plot of the allele loadings of both synthetic va-
riables and identify those alleles with high inertia in one 
axis (e.g. PC) and low inertia in the other (e.g. sPC). 
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3. RESULTS AND DISCUSSION 

3.1. Univariate Analysis 

The connection networks used to calculate the Moran 
Index of each allele (CN) are shown in Figure 1. With 
the Delaunay CN the total number of connections was 
492, with an average number of 5.6 neighbors per indi- 
vidual, higher than with the Gabriel’s CN, which ren- 
dered an average of 3.5 links per individual and a total of 
310 connections. The most connected individual in the 
Delaunay CN had 9 neighbors and all individuals had 3 
or more neighbors, whereas with the Gabriel CN, two 
individuals had the maximum number of links, which 
was 7 and 17 individuals had less than 3 neighbors. As 
shown in Figure 1 the most frequent number of links 
was 5 for Delaunay CN and 4 with Gabriel CN. The fre- 
quency distributions suggest that a higher number of 
neighbors per individual will be used to estimate spatial 
autocorrelation with Delaunay Triangulation than with 
Gabriel Graph.  

Among the 72 alleles, only four explained more than 6% 
of total variance each (Figure 2). These were L1.3, 
L5.10, L1.2 and L4.03, which together explained 25% of 
total variance. Among these alleles, L4.03 showed the 
highest spatial autocorrelation, with a Moran’s I of 0.081. 
In general, spatial autocorrelation was higher when cal- 
culated with Gabriel CN. Nevertheless, the four alleles 
with the highest positive autocorrelation are the same 
using both connection networks. The allele with highest 
Moran Index was L5.04 with a Moran I of 0.25 or 0.1 if 
calculated with Gabriel CN or Delaunay CN, respective- 
ly. Alleles L6.05, L5.05 and L3.04 also showed relatively 
high Moran Indexes. The alleles with more spatial auto- 
correlation did not account for high proportions of the 
total variance (5.6%). 

As Figure 1 shows, many peripherical connections are 

included with Delaunay CN, connecting individuals 
which may not be actual neighbors in space. When there 
is information regarding the actual connectivity among 
the biological entities, such information should be used 
to choose or build a connection network. For example, in 
some data sets it might be better to adapt the connection 
network manually in order to exclude contacts across 
geographical barriers or to include long-range contacts 
which for biological reasons might have genetic ex- 
change. When this information is not available, an algo- 
rithm has to be used to build it [23]. The R software pro- 
vides many tools to perform this task though they are 
spread through different packages. For our case study we 
preferred to use the Gabriel CN. 

 

 

Figure 1. Connection networks for spatial analyses calculated 
using (a) Delaunay triangulation and (b) Gabriel’s Graph. Bar 
plots indicate the frequency of individuals with each neigh- 
borhood size expressed as number of neighbors. 

 

 

Figure 2. Spatial Moran’s index of each allele plotted against the corresponding variances. Results correspond to the two con-
nection networks: Delaunay triangulation and Gabriel’s Graph. 
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3.2. Analysis of the Genetic Variability with PCA 

The first synthetic variable of PCA (PC 1) had a variance 
of 0.42 and PC 2 had a variance of 0.36, accounting for 
16.1% and 13.7% of the total genetic variability, respec- 
tively. With highly dimensional data, such as the pro- 
vided by molecular markers, which are not necessarily 
linked among each other, PC1 and PC2 should not be 
expected to explain a high percentage of the total va- 
riance. For example, Novembre et al. [19] analyzed pop- 
ulation SGS measured by 500,568 SNP loci on the space 
generated by a PC1 and a PC2 which explained 0.30% 
and 0.15%, respectively. However, the SGS of the popu- 
lations was evident in the synthetic space. In our case 
study set, in which 72 allele’s frequencies were analyzed, 
a first plane explaining 29.8% of total genetic variance 
was regarded as sufficient to explain the main pattern of 
alleles (co)-variability. In addition, the screeplot (Figure 
3(b)) shows a sharp decay between PC2 and PC3, indi- 
cating that most of the variance in the data can be ex-
plained with the first two synthetic variables. The scree- 
plot is a complementary tool to the axis variances and 
both should be used to decide the number of synthetic 
variables to be analyzed. Jombart et al. [11] cites two 
contrasting studies illustrating the need of using both 
indicators. In one study [34], the first two PC explaining 
a high percentage (80%) of total genetic variability of 
yak (Poephagus grunniens) populations were not as 
much informative in terms of genetic differentiation as in 
another study [35] in which they explained 10% of total 
variability, providing insights about the phylogeny of 
different maize subspecies. In our study, the analysis was 
performed using the first two PCs and the difference 
between species was clearly visible in the biplot. 

As showed in the PCA biplot (Figure 3(a)) PC 1 se- 
parates P. flexuosa individuals from the hybrids and P. 
chilensis individuals. These trees show higher allelic 
frequencies of allele 3 in locus 4 (L4.03) and lower fre- 
quencies of allele 5 in locus 10 (L5.10). Alleles 3 and 2 
of locus 1 (L1.3 and L1.2) are the alleles with more con- 
tribution in PC2 variability, which is not associated with 
a between species variance. The group with higher with- 
in genetic variability was P. flexuosa and these individu- 
als were the most separated on the PC2 axis. As expected, 
the four alleles identified with higher variances in the 
univariate analysis (Figure 2) are the four alleles with 
more contribution in the first two PCA synthetic va- 
riables. In the biplot, the length of the arrows repre- 
senting the alleles is proportional to the amount of ge- 
netic variability explained by the allele. Allele frequen- 
cies were centered but not scaled, maintaining the inhe- 
rent variance of the alleles. This approach allows identi- 
fying the alleles that contribute most to the total genetic 
variability even in high dimensional data sets. Centering 
of allele frequencies is common but their scaling is dis- 
cussed [36]. Scaling allele frequencies could mask dif- 
ferences in the genetic variability contained by informa- 
tive and non-informative markers, ultimately hiding 
structures in the data [11]. Many studies that apply PCA 
on genetic data represent either the entities in the va- 
riables (alleles) space or the alleles in the space spanned 
by the observations. Here we used the biplot representa- 
tion of the allele frequencies data which is useful because 
both the alleles and the trees can be visualized in the 
same plot. Different types of biplots have been used to 
graphically represent genetic variability from molecular 
markers profiles [12,37]. 

 

 

Figure 3. Results obtained by principal component analysis. (a) Biplot of first and second axis of 
PCA, individuals are colored according to classification in P. chilensis, P. flexuosa and hybrid and 
segment lines represent the alleles; (b) Screeplot of PCA eigenvalues. 
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3.3. Analysis of Genetic Variability with sPCA 

The first synthetic variable (sPC 1) had a variance of 
0.26 accounting for 10% of the total inertia. The first two 
principal components of sPCA explained 14% of the data 
structure. Similar levels of total inertia explained by the 
first two spatial principal components (sPC) were ac- 
counted for other genetic studies [22,38]. Analogous to 
the classical biplot used to represent PCA results, we 
built a symmetrical biplot from the two sPCs. The sPCA 
biplot (Figure 4(b)) shows that sPC 1 also allows to 
separate P. flexuosa individuals from the hybrids and P. 
chilensis. The sPCA screeplot shows a sharp decay be- 
tween the first and the second eigenvalue, indicating that 
the analysis of sPC1 variability may be enough to ex- 
plain SGS in this Prosopis hybrid swarm. Although 
sPCA was also applied on centered and not scaled allele 
frequencies, the lengths of the vectors representing the 
alleles are similarly distributed. sPCA is related to mul- 
tivariate spatial correlation [21] but it allows alleles to 
have different variances. Scaling allele frequency data in 
sPCA has the same negative effect discussed above for 
PCA.  

The allele with the highest contribution in sPC1 is 
L4.03 and allele L6.05 is the second allele with a rela- 
tively high loading in sPC1. This allele is one of the four 
alleles with high spatial autocorrelation and from these 
four, the one with most variance (Figure 2). When sPCA 
is performed, negative eigenvalues, which account for 
negative autocorrelation structure, arise. In our study 

case the highest negative eigenvalue explained less per- 
centage of total variance than the first positive eigenva- 
lue. In addition there is no evidence of a sharp decay 
between two negative eigenvalues in the sPCA screeplot 
(Figure 4(b)). For this reason we only analyzed the SGS 
related to positive autocorrelation. 

3.4. Comparison of PCA and sPCA Results 

PCA eigenvalues were larger in magnitude and much less 
spatially autocorrelated (Figure 5). The first two PCs, 
which account for 16% and 14% of total genetic variance, 
had no spatial autocorrelation, with low and not statisti- 
cally significant Moran’s Indexes (I1

PCA = 0.05, I2
PCA = 

−0.07, p > 0.05) (Table 1). On the contrary, the variance 
of the first two sPCs was much lower (10% and 3.8% of 
total variance) but they had higher and significant Moran 
Indexes (I1

sPCA = 0.29, I2
sPCA = −0.39, p < 0.05). The spa- 

tial principal component with most positive spatial auto 
 

Table 1. Variance and spatial autocorrelation of the first 2 PCA 
and sPCA eigenvalues. 

Analysis Eigenvalue Variance 
Proportion of 
Total Variance 

Moran Index

PCA 
1 0.42 0.161 0.05 

2 0.36 0.138 −0.07 

sPCA 
1 0.26 0.100 0.29 

2 0.10 0.038 0.39 
 

 

 

Figure 4. Results obtained by spatial principal component analysis (sPCA). (a) Biplot of first and second axis of 
sPCA, individuals are colored according to classification in P. chilensis, P. flexuosa and hybrids; (b) Screeplot of 
sPCA eigenvalues.  
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Figure 5. Spatial Moran’s index of sPCA and PCA eigenvalues 
plotted against the corresponding variances. 
 
correlation was sPC 2 (I2

sPCA = 0.39) and the PC with 
most positive spatial autocorrelation was PC 9 (I9

PCA = 
0.22). These results show that the first principal compo- 
nents are associated with alleles that explain variance 
instead of spatial correlation. PCA axes, which spatial 
autocorrelation was very low, might fail to identify rele- 
vant spatial patterns in this Prosopis hybrid zone. On the 
contrary, sPCA detects additional spatially structured 
components. As discussed by Jombart et al. [22], the 
variance associated to the first axis in sPCA was lower 
than the variance of PC1, however, it captures a spatial 
pattern associated to the spatially structured genetic dif- 
ferentiation. The relative value of sPCA over PCA de- 
pends on the nature of the structure underlying the data. 
When the spatially genetic variability is not associated to 
the alleles with higher variability among entities, the 
relative sPCA value increases. In our study case the al- 
leles with most spatial autocorrelation were not those 
with highest variances. Therefore sPCs provide new in- 
formation to the study of SGS. In other cases, when the 
most spatially structured alleles also have the higher va- 
riances, the first sPCs correspond to the first coordinates 
of the unrestricted PCA [38]. 

As both principal component analyses suggest, the 
spatial pattern of genetic variability in this hybrid swarm 
shows at least two patches of genotypes in space (Figure 
6). One patch is constituted by individuals with high pos- 
itive scores (black) on the principal components and the 
other with high negative scores (white). In both types of 
maps the spatial structure is clearer with sPC1 scores 
than with PC1 scores. In the interpolated maps, contour 
lines are closer together in the sPC1 map, indicating that 
the magnitude of the gradient is larger. Therefore, the 
sPC1 allows a better visualization of a patchy spatial 
pattern of genetic variability in our study case. As higher 
scores of sPC1 are associated to hybrids and P. chilensis, 
the darker patch is associated to them, whereas the ligh-
ter patch is associated to P. flexuosa.  

Our results are in concordance with the findings of 
Bessega et al. [39], who studied the genetic structure of P. 
alba, a very similar species. They conclude that pollen  

 

Figure 6. Spatial analysis of PCA and sPCA results. Scores of 
the first principal components obtained with PCA (above) and 
sPCA (below). Left: Each square corresponds to the score of an 
individual and it is positioned by its spatial coordinates. Right: 
Map of the scores, values obtained by the interpolation of the 
principal components. 
 
and seed dispersion is limited, estimating the average 
pollen dispersal distance to be between 5.36 and 30.92 m. 
Their findings explain the strong genetic structure of the 
P. alba population, which was studied through its mating 
system, but not through the spatial distribution of the 
genotypes.  

To visually identify those alleles that contribute most 
to the structures captured by the both the PC1 and the 
sPC1, as well as those alleles that either have a lot of 
inertia in one axis but not on the other, we built a scatter 
plot of the allele loadings in PC1 and sPC1 (Figure 7). 
Statistical validation of identified markers was carried 
out through comparison of variance and Moran Index 
between both types of principal components (Table 2). 
In the PC-sPC scatter plot, three types of areas are iden- 
tified by different colors. These areas were defined using 
the mean ± a standard deviation of the allele loadings in 
a synthetic variable. For all synthetic variables, loadings 
have a mean of 0 and standard deviation of 0.12 because 
of the normalization of eigenvectors. The white square in 
the middle of the PC1-sPC1 scatter plot corresponds to 
loadings that range between −0.12 and 0.12 in both the 
sPC1 and the PC1; the alleles that belong to this area do 
not have much inertia in either the PC1 or the sPC1.  

Therefore, these alleles do not contribute much to the 
SGS. On the contrary, the four light grey squared areas 
correspond to alleles that have high inertia in both PC1  
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Figure 7. PC-sPC scatter plot: allele loadings of the first sPCA 
axis vs. PCA axis. 
 
Table 2. Variance, Moran Index and loadings in the first PC 
and sPC of identified alleles. 

Allele Variance Moran Index PC1 sPC1 

L5.10 0.17 −0.08 −0.53 −0.19 

L4.06 0.10 0.03 −0.27 −0.16 

L3.05 0.12 0.08 −0.20 −0.35 

L5.12 0.07 0.06 0.05 0.20 

L6.05 0.08 0.20 0.20 0.38 

L3.09 0.10 0.12 0.25 0.13 

L4.03 0.15 0.08 0.55 0.47 

 
and sPC1. These alleles explain variability between spe- 
cies as shown in the biplots (Figures 3 and 4) and their 
variances were relatively high (Table 2). The four re- 
maining darker areas correspond to alleles with a high 
contribution in one synthetic variable and a low inertia in 
the other. The horizontal dark rectangles correspond to 
alleles with high loadings in PC1 and low loadings in 
sPC1. Only one allele falls in this category (L5.09). This 
allele is important in terms of between species variability 
but is associated to a type of variability that is not spa- 
tially structured. The vertical dark grey rectangles cor- 
respond to areas of high loadings in sPC1 and low load- 
ings in PC1. In our study eight alleles were found in 
these areas, corresponding to alleles that do not contri- 
bute much to the main axis of genetic differentiation 
between species but that their variability is spatially 
structured. However, the interpretation is not simple in 
these cases, as it is important to consider that high load- 
ings in a sPC are associated to alleles with a relatively 
high product between their variances and their spatial 

autocorrelation. 
The sPCA biplot (Figure 4(a)) shows that allele’s 

loadings have a more uniform distribution than in PCA. 
This fact is probably associated with the lower variability 
of the product between allele’s variance and Moran In- 
dex than the variability of allele’s variances, which are 
the optimization criteria of sPCA and PCA, respectively. 
The cut-off values of 0.12 and −0.12 which were used as 
selection criterion for groups of contributing allele 
markers will have effects on the outcome of the biologi-
cal results. In other words different cutoffs can render 
different biological results. Therefore the whole process 
was performed with several others cut-offs on the first 2 
PCs. This analysis showed that the cut-off based on one 
standard deviation of allele loadings highlighted markers 
which have either high variance and/or high autocorrela- 
tion (data not shown).  

Our results show that to effectively understand the rel- 
ative contribution of alleles to spatial genetic structure, 
the joint application of both principal component analys- 
es is useful. However, the results shown before were 
obtained by applying the combination of PCA and sPCA 
on all available markers. To explore the results of both 
PCA and sPCA when performed on the selected subset of 
markers we applied both methods on the 16 alleles out- 
side the white square of the PC1-sPC1 scatter plot. As 
expected, the results show that the main pattern of spe- 
cies differentiation was no different from the overall ef- 
fects present in the whole dataset. This is another way to 
validate the interpretation of the allele contributions in 
the PC-sPC scatter plot. 

Both techniques, PCA and sPCA, have been applied in 
studies of the SGS of animals, such as the Scandinavian 
brown bear (Ursus arctus) and domestic ruminants in 
Europe [22,38]. As compared to most animal species, 
adults from plant species do not move and plants’ prop- 
agules, i.e. pollen and seeds, often show moderate to 
strong spatial restriction in their dispersal leading to 
strong SGS. In particular, the study of these structures in 
forests provides vital information for their conservation 
and management. This is of utmost importance in Argen- 
tina, where 70% of forest cover has been lost and forest 
emergency has recently been declared (National Law 
26.331). Among other native tree species, the genus 
Prosopis constitute a very important natural resource for 
dry zones that need strong conservation actions [40]. 
Although the genus Prosopis presents no difficulty of 
identification, individual species are in some cases diffi- 
cult to determine due to the occurrence of many natural 
hybrid combinations within the genus [41-43]. Because 
frequent events of interspecific natural hybridization 
with fertile hybrid production in areas of sympatry occur, 
isolation mechanisms between Prosopis species seem to 
be weak or incomplete [26,44]. Natural interspecific hy- 
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bridization has been recognized as playing an important 
role in plant evolution and hybrid zones are viewed as 
active sites of evolutionary change that constitute sources 
of new recombinant types [45-47]. Hybrid zones are 
characterized by a continuous variation in morphological 
and genetic traits and the loss of differentiation of pure 
species. Therefore, cryptic and continuous patterns of 
spatial genetic variability are expected even at small spa- 
tial scales, which might be difficult to identify and cha- 
racterize. In this case, recovery plans and management of 
forests can particularly benefit from the joint use of both 
type of principal component analysis of spatial molecular 
marker data. They provide a useful insight into the prob- 
lem of selecting founding populations and particularly, in 
selecting individuals within populations, where some- 
times the spatial genetic structure is overlooked. Spatial 
analysis techniques provide a suitable framework to in- 
tegrate the knowledge derived from genetic, demograph- 
ic and ecological approaches to species conservation, 
allowing the formulation of management strategies that 
take into account different considerations. 

4. CONCLUSION 

After the application of PCA and sPCA and visual in- 
spection of the allele contribution to both types of syn- 
thetic variables, interesting markers to investigate genetic 
spatial structure can be selected. The combination of 
PCA and sPCA, as demonstrated here, is a valuable tool 
in forests molecular marker data analysis because more 
information is available on the allele contributions to the 
spatial genetic structure. The PC-sPC scatter plot can be 
used to split and visualize the different components of 
genetic variability yielded by molecular markers. Consi- 
dering the spatial genetic structure of the studied Proso- 
pis sp. hybrid swarm, two groups of tree genotypes (cor- 
responding to different Prosopis species) were distin- 
guished at a small spatial scale. The patchy spatial pat- 
tern observed could be explained by the existence of a 
patchy spatial structure of available safe sites for the es- 
tablishment of the different genotypes and by limited 
gene dispersal. 
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