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ABSTRACT 
This paper decomposes the Malmquist productivity index into several assembling components: technical change 
(further break down into technical change magnitude, input bias and output bias), technical efficiency change, 
scale efficiency change, and output-mix effect. A translog output distance function is chosen to represent the 
production technology and each component of the Malmquist index is computed using the estimated parameters. 
This parametric approach allows us to statistically test the hypothesis regarding different components of the 
Malmquist index and the natural of production technology. The empirical application in Chinese agriculture 
shows that the average productivity grows at 2 percent per year during 1978-2010. This growth is mostly driven 
by technical change, which is found to be neutral. 
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1. Introduction 
Productivity change is defined as the ratio of change in 
outputs to change in inputs. Reference [1] pioneered by 
introducing the Malmquist index to measure productivity 
through distance functions. Reference [2] showed that 
the index can be directly estimated using nonparametric 
techniques like Data Envelopment Analysis (DEA). They 
also developed the decomposition of the Malmquist in- 
dex into two mutually exclusive and exhaustive compo- 
nents: technical change and efficiency change. Afterwards, 
many researchers have extended this decomposition to 
develop a more detailed analysis of the Malmquist index, 
including several alternative approaches to understand te- 
chnical change and scale efficiency ([3-6]). 

The majority of Malmquist index estimation falls un- 
der the nonparametric DEA approach ([7]). The DEA ap- 
proach estimates the Malmquist index and its compo- 
nents through the calculation of distance functions under 

both constant and variable returns to scale technologies. 
The popularity of DEA stems from its advantages of non- 
parametric approach: easy to compute, applicable in cas- 
es of multiple outputs, no assumptions of economic beha- 
vior such as cost minimization and profit maximization, 
no need for price information, neither any particular 
functional form for estimation nor a large number of ob- 
servations. These features are very attractive in cases 
where price data is unavailable or cannot be constructed 
in detail, sample is too small or there is insufficient un-
derstanding of firm behavior. However, the nonparame- 
tric approach cannot provide a way to directly test statis- 
tical significance or hypotheses regarding the signific- 
ance of the assembling components or model specifica-
tion. It cannot separate measurement errors and random 
noise from technical inefficiency, either.  

The parametric approach provides a solution to address 
the shortcomings of nonparametric techniques and has 

OPEN ACCESS                                                                                          ME 

http://www.scirp.org/journal/me
http://dx.doi.org/10.4236/me.2014.51009
mailto:b.yu@cgiar.org
mailto:liaoxiyuan@caas.net.cn
mailto:shenhongfang1215@163.com


B. X. YU  ET  AL. 71 

been adopted by some recent studies in the estimation of 
the Malmquist index ([4,8,9]). In the parametric ap- 
proach, the Malmquist index is not directly obtained 
through the estimation of distance functions under differ- 
rent returns to scale technologies. Instead the Malmquist 
index and its components are calculated based on the 
fitted distance function with globally variable returns to 
scale, evaluated at adjacent time periods’ input and out-
put quantity, as implemented by [4,8-10]. In addition to 
statistical testing, the parametric approach has the advan- 
tages of accommodating random errors and enabling dif- 
ferent interactions between outputs and inputs if a flexi- 
ble functional form is chosen to closely approximate the 
underlying production technology. 

This paper extends the methodology of [3,4] to decom- 
pose the Malmquist index into different components while 
taking into account of technology bias and scale effi- 
ciency change simultaneously. We test some hypotheses 
regarding the production technology, functional specifi-
cation, and returns to scale by imposing parametric re-
strictions in the estimation. The hypotheses include 1) no 
technical inefficiency; 2) no heterogeneous inefficiency 
effect; 3) no technical change; 4) production technology 
exhibits input Hicks neutral (no input bias); 5) output 
Hicks neutral (no output bias); 6) input and output Hicks 
neutral; 7) input-output separability; 8) Cobb-Douglas 
functional form; and 9) constant returns to scale. The test 
of each hypothesis examines the corresponding compo- 
nents of the Malmquist index. If technical efficiency term 
is statistically not different from zero, there will be no 
efficiency change and the contribution of efficiency 
change to productivity growth will be zero. If technical 
change or its components are insignificant, no productiv-
ity growth comes from improvement in production fron-
tier. If the functional form can be simplified to Cobb- 
Douglas function, the production technology becomes 
time invariant and separable. Finally, if the hypothesis of 
constant returns to scale is not rejected, scale effect term 
disappears from the Malmquist index.  

By answering these questions, the paper adds value to 
the existing literature in several ways. First, it decom- 
poses the Malmquist productivity index into different 
components using an output distance function. Unlike [9] 
the decomposition of this paper is based on the geometric 
mean of two adjacent Malmquist index, filling a gap in 
the existing literature of productivity analysis. Second, it 
demonstrates the advantages of the parametric output dis- 
tance function approach to characterizing the agricultural 
technology and productivity decomposition. The empirical 
model is a four output, four input stochastic output dis- 
tance function in 31 Chinese provinces over the period of 
1979-2010. This technique is appropriate for the issue at 
hand because it requires only quantity data on inputs and 

outputs, which are well recorded and easily accessible. It 
does not require price information, which is hard to col-
lect and construct. Third, the parametric approach ad-
dresses common methodological issues in TFP estima-
tion like testing hypothesis regarding the production 
technology, which has been lacking in the empirical lite-
rature. For example, the hypothesis of input-output sepa-
rability is rejected, suggesting results from a stochastic 
production function can be misleading. This technique 
can also be applied to other economic investigations of 
productivity in various setting to produce credible and 
relevant results. Finally, this paper updates productivity 
performance of the whole agricultural sector in China 
with the latest data, adding evidence in designing agri-
cultural development strategy in the developing country 
context. We found TFP grows at 2 percent annually in 
China, which is consistent with other studies in the coun-
try. The results have important policy implications in 
policy design to promote productivity growth. 

The paper is organized as follows. Section 2 presents 
the theoretical framework of decomposition of the 
Malmquist index based on an output-oriented distance 
function. Assuming a translog output distance function, 
parametric calculation of different components of the 
Malmquist index is derived in Section 3. The data and 
empirical results are discussed in Sections 4 and 5. Sec- 
tion 6 concludes with major finding and policy implica- 
tions derived from this study. 

2. Theoretical Framework 
The production technology is defined as the set of all 
feasible input-output combinations. The production tech- 
nology T in period t is:  

( ), , 1, , .t t tT x y t T= =             (1) 

where tx  is a K-dimensional vector of non-negative 
inputs ( )1 , , ,t t t K

Kx x x +≡ ∈ R and ty  is a M-dimen- 
sional vector of non-negative outputs  

( )1 , ,t t t M
My y y +≡ ∈ R , tT  is the production possibil- 

ity set for all feasible input-output combination in period 
t. 

The output distance function ( ),t t t
oD x y  is measured 

as the distance of a vector of inputs and outputs in period 
t with respect to the technical frontier in period t: 

( ) ( ){ }, min 0 : , ,

1, , .

t t t t t
oD x y x y T

t T

θ θ= > ∈

= 

    (2) 

where subscript o refers to output orientation. The output 
distance function satisfies the inequality ( ), 1t t t

oD x y ≤ . 
( ), 1t t t

oD x y =  indicates that the production unit is on 
the frontier of the production set and hence is technically 
efficient. 
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The Malmquist index measures the total factor prod-
uctivity (TFP) change between two adjacent periods by 
calculating the ratio of the distance of each data point 
relative to a common technological frontier. Following 
[2], the Malmquist index between period t and t + 1 
based on the period t technology is given by 

( ) ( )
( )

1 1
1 1

,
, , , .

,

t t t
ot t t t t

o t t t
o

D x y
TFP x y x y

D x y

+ +
+ + =       (3) 

The Malmquist index can be greater, equal to or less 
than 1 if productivity grows, is stagnant or declines be-
tween the two periods. 

Similarly, the Malmquist index between period t and 
t+1 based on the period t + 1 technology is 

( ) ( )
( )

1 1 1
1 1 1

1

,
, , , .

,

t t t
ot t t t t

o t t t
o

D x y
TFP x y x y

D x y

+ + +
+ + +

+
=     (4) 

Measures of the productivity change between period t 
and t + 1 generally changes if reference technology is 
different. To avoid the arbitrary choice of reference te- 
chnology, [2] suggested a geometric mean of the two 
Malmquist indexes: 

( )
( )
( )

( )
( )

, 1 1 1

1 21 1 1 1 1

1

, , ,

, ,

,
.

,

t t t t t t
o

t t t t t t
o o

t t t t t t
o o

TFP x y x y

D x y D x y

D x y D x y

+ + +

+ + + + +

+

 
 =
  

      (5) 

Reference [4] showed that the Malmquist index can be 
decomposed into four components: primal technical change 
(TC), technical efficiency change (EC), scale efficiency 
change (SEC) and output-mix effect (OME): 

.TFP TC EC SEC OME= × × ×         (6) 

where 
( )
( )

( )
( )

1 21 1

1 1 1 1

,

,
,

,

,

t t t t t t
o o

t t t t t t
o o

D x y D x y
TC

D x y D x y

+ +

+ + + +

 
 =
  

      (7) 

( )
( )

1 1 1,
,

,

t t t
o

t t t
o

D x y
EC

D x y

+ + +

=             (8) 

( )
( )

( )
( )

1 21 1 1 1

1 1

, ,

, ,
,

t t t t t t

t t t t t t

OSE x y OSE x y
SEC

OSE x y OSE x y

+ + + +

+ +

 
 =
  

    (9) 

( )
( )

( )
( )

1 21 1 1 1

1 1

, ,
.

, ,

t t t t t t

t t t t t t

OSE x y OSE x y
OME

OSE x y OSE x y

+ + + +

+ +

 
 =
  

   (10) 

The first term TC refers to technical change, whose 
magnitude in general depends on the particular input- 
output combination. There is technical progress when  

TC is greater than one and technical regress when it is  
less than one. If ( ) ( )1 1, ,t t t tTC x y TC x y+ + = , the tech-  

nical change is output neutral.  
The technical efficiency, ( ),t t t

oTE D x y= , measures  

the distance of the firm’s position inperiod t relative to 
the period t frontier of the technology, or how far the 
observed production is from maximum potential produc- 
tion. By definition 1TE ≤ , and the production unit is ef- 
ficient if and only if 1TE = . The second term EC meas- 
ures technical efficiency change between period t and 
t+1. If EC is greater than one, the production unit moves 
closer to the frontier—in other words, that the production 
unit is catching up to the production frontier by improv-
ing efficiency. A value of less than one indicates effi-
ciency regress.  

The third term SEC refers to scale efficiency change 
between two periods, which measures how the output- 
oriented scale efficiency changes over time conditional 
on a certain output mix. It is the ratio of output orientated 
measure of scale efficiency OSE in period t  

and t + 1, where ( ) ( )
( )

ˆ ,
,

,

t t t
ot t t
t t t
o

D x y
OSE x y

D x y
=  and  

( )ˆ ,t t t
oD x y  is the output distance function based on the 

cone technology 

( ) ( ){ }ˆ , , , 0t t t t t tT x y x y Tλ λ λ= ∈ > . 

If OSE = 1, the frontier point that can be reached by 
proportionally expanding ty  is a point of technically 
optimal scale. At that point the technology exhibits con-
stant return to scale (CRS) and scale elasticity equals to 
one ( ), 1t t t

o x y = . If SEC is greater than one, the output 
bundle at period t + 1 lies closer to the point of technical 
optimal than the output bundle at period t and thus scale 
efficiency improves. If SEC is less than one, the scale 
efficiency deteriorates.  

The fourth term is labeled as output-mix effect (OME) 
by [4], which measures how the distance of the frontier 
point to the frontier of the cone technology changes when 
the output-mix changes, that is, the change in the output- 
oriented scale efficiency from a change in output mix 
when inputs remain constant. When output mix changes 
the scale efficiency increases if OME values greater than 
one, and scale efficiency declines if OME is less than one. 
In the case of single-output OME = 1. Under global CRS 
technology, both SEC and OME are identically equal to 
one. 

Reference [3] suggested the technical change compo-
nent can be further decomposed to allow determining the 
contribution that technical change neutrality in produc-
tivity change.  
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where 
( )
( )1

,
,

,

t t t
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t t t
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=                    (12) 
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      (14) 

TCM is the index of technical change magnitude. It is 
greater than one if the input requirement set expands 
along a ray through period t data, and less than one if the 
input requirement set shrinks. OB is referred as a period t 
+ 1 output bias index. It compares the magnitude of te- 
chnical change along a ray through 1ty +  with the mag-
nitude of technical change along a ray through ty  while 
holding the input vector constant at 1tx + . The period t 
input bias index IB compares the magnitude of technical 
change along a ray through 1tx +  with the magnitude of 
technical change along a ray through tx , holding the 
output vector constant at ty . The bias indexes OB and 
IB are greater than one if the magnitude of technical 
change measured along a ray through period t + 1 data 
exceeds the magnitude of technical change measured 
along a ray through period t data, and vice versa. Refer-
ence [3] proved that OB (IB) equal to one if the technol-
ogy is said to exhibit implicit Hicks output-neutral (in-
put-neutral) technical change. In other words, the output 
(input) set shifts in or out by the same proportion along a 
ray through period t + 1 data as it does along the ray 
through period t data. OB equals to one in the case of 
single output and IB equals to one in the case of single 
input. 

3. Parametric Estimation of the Malmquist 
Index 

Unlike nonparametric DEA approach, the parametric 

approach requires pre-defined functional form of dis- 
tance function for estimation. According to [11] this spe-
cification fulfills a set of desirable characteristics: flexi-
ble, easy to derive and allowing the imposition of homo-
geneity. The flexible form of translog has been widely 
used to estimate distance functions as it meets all the 
required characteristics ([4,6,9,10,12]). This paper will 
also adopt translog functional form. 

The period t technology is represented by a translog 
output distance function 

( )

0
1 1 1 1

1 1 1 1

2

1 1

.

ln ,

1ln ln ln ln
2

1 ln ln ln ln

,

2
1ln ln ,
2

t t t
o

K M K K
t t t t

k k m m kk k k
k m k k
M M K M

t t t t
mm m m km k m

m m k m
K M

t t
kt k mt m t tt

k m
K M

D x y

x y x x

y y x y

x t y t t t

x y

α α β α

β γ

δ τ θ θ

′ ′
′= = = =

= = = =

=

′ ′
′

=

+ +

= + + +

+ +

+ + + +

∈ℜ ∈ℜ

∑ ∑ ∑∑

∑∑ ∑∑

∑ ∑

  

(15) 

The parameters must satisfy a set of restrictions. First 
the conditions for linear homogeneity in outputs is im- 
posed to obtain an output oriented radial distance func- 
tion,  

1 1 1 1
1, 0, 0, 0

M M M K

m mm mt km
m m m m
β β τ γ′

′= = = =

= = = =∑ ∑ ∑ ∑ . 

Second, symmetry is applied as 

,kk k k mm m mα α β β′ ′ ′ ′= = . 

The output distance function (15) is expressed as  
( )ln , , ;t t t

oD TL x y t π=  for notational convenience,  

where TL denotes the translog function specification and 
( ), , , , ,π α β γ δ τ θ=  is the vector of the parameters to be 

estimated. The parameters of the distance function can be 
estimated only if linear homogeneity in outputs is im- 
posed. Following [11], all output quantities in the right 
hand side of Equation (15) is divided by the quantity of 
an arbitrary output, say the first output, as the numeraire. 
Lets’ denote *

1m my y y= , the translog function is re- 
written as 

t
o

1 1

lnD , , , ;
t t

t t
t t

y yx TL x t
y y

π
   

=   
   

 and hence 

( ) ( ) ( )*
1ln , , ; ln , .t t t t t

m oy TL x y t D x yπ− = −     (16) 

Since ( )ln ,t t t
oD x y  is unobservable, setting  

( )ln ,t t t t
ou D x y= −  and adding a stochastic term v , 

one obtain the familiar production stochastic frontier 
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(17) 

where u  represents the stochastic shortfall of the pro-
duction unit’s output from the production frontier due to 
technical inefficiency, u  is a random non-negative er-
ror term and v  is a symmetric and normally distributed 
error term of ( )20, vN σ . 

Both error terms are independently distributed. Identi-
fication of the inefficiency stochastic term requires some 
structure to be placed on the heterogeneous and temporal 
pattern of technical efficiency. Following [13] the sto-
chastic term itu  is defined as a normally distributed 
variable ( )2;it uN µ σ  truncated at zero. 

.it itzµ ϕ=                 (18) 

where itz  is a vector of observable explanatory vari- 
ables and ϕ  is a vector of parameters to be estimated. 

The predicted value of the output distance function can 
be estimated as a conditional expectation  

( ) ( )
( )
( ) ( )2

, exp

1
exp

1
2 .

t t t t t
o

t
A A t

At
A

D x y E u ε

σ χε σ
χε σ

χε σ

 = − 

−Φ −
= +

−Φ

(19) 

where 
2

2 2 2
2, , ,t t t u

u vu v
σ

ε σ σ σ χ
σ

= + = + =   

( ) 21Aσ χ χ σ= −
 

and Φ  represents a standard nor-
mal the distribution function.  

Once the parameters of Equation (17) are estimated, 
the assembling parts of the Malmquist productivity index 
and its components can be calculated ([4,8]).  

The technical change magnitude TCM  
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Output bias index OB 
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Input bias index IB 
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Efficiency change EC 

( ) ( ){ }1 1* *exp , , 1; , , ; .ˆ ˆt t t t
m mEC TL x y t TL x y tπ π+ += + − (23) 

Reference [4] showed that the SEC and OME can be 
computed by using estimates of the output-oriented scale 
efficiency without estimating the output distance func-
tion under CRS, as required in the nonparametric ap-
proach. For any arbitrary pair ( ),x y  the output oriented 
measure of scale efficiency of a translog distance func-
tion is: 
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( )

2
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ln , .
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t
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where the scale elasticity 
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(25) 

And 
1 1

ˆ
K K

t
kk

k k
α α ′

′= =

= ∑∑ . 

Since local scale efficiency can never exceed the op-
timal scale efficiency, or ( ), 1tOSE x y ≤ , which re-
quires that 0tα > . Equation (25) indicates that the out-
put oriented scale efficiency of a particular input-output 
combination can be obtained from the output distance 
function based measure of local scale elasticity   per-
taining to this combination, and   can be evaluated at 
any data points from the parameter estimates of the out-
put distance function.  
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Scale efficiency change SEC 
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(26) 
Output-mix effect OME 
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 (27) 
Thus, all the assembling components of Malmquist 

index can be computed from evaluation of the translog 
output distance function.  

4. Data 
A panel of provincial level data is collected for the 32 
provinces, municipal cities and autonomous regions from 
China Statistical Yearbook ([14]). There are four sub- 
sectors within agriculture: crop, livestock, fishery and 
forestry. The sub-sector outputs are valued at constant 
2010 billion Yuan. Four major agricultural inputs are in- 
cluded: area, labor, machinery and fertilizer. Area is de- 
fined as total sown area in 1000 hectares, labor measures 
rural employment in 10,000 persons, machinery meas- 
ures agricultural machinery in 10,000 kilowatts, fertilizer 
is the consumption of chemical fertilizer in 10,000 tons. 
Although infrastructure and market structure does not 
directly contribute to output growth, they can affect pro-
duction through improvement in productivity and its 
components. Rural infrastructure is proxied by share of 
irrigated area in crop sown area. Agricultural policies in- 
clude market openness and taxation. Market openness is 
calculated as the value share of agricultural products 
whose prices are not directly managed or stipulated by 
the government. Taxation is the average rate of net agri- 
cultural tax (agricultural tax minus subsidies) per hectare 
of crop sown area. Dummies are introduced to capture 
unique biophysical conditions in the province. 

Reference [15] provides a comprehensive review of 
policy reform in China from 1978 to 2010, breaking into 
6 stages. In the first reform stage of decentralization 
(1978-83), the government procurement quotas were re- 
duced and some commodities were phased out the pro-

curement programs to be traded in markets. Agricultural 
output grew sharply in this period after the establishment 
of household responsibility system. In the second stage 
of marketing system liberalization (1984-1989), although 
more products were liberalized the government main-
tained control over strategic products (grain, cotton and 
oilcrops). Rapid increase in input prices dampened far-
mers’ investment in agriculture and resulting in lower 
output growth. In the third stage of 1989-1993, reform in 
grain marketing system further cut the number of com-
modities subject to state procurement programs, but re-
gional markets remained segmented due to various price 
and quantity controls for strategic crops. The fourth stage 
(1994-99) is characterized by increased procurement 
prices, which brings in a fast expansion in agricultural 
output. In the fifth stage (1998-2003), the grain procure-
ment quota was abolished and a free grain market was 
applied to the majority of China. The government shifted 
its focus from taxing agriculture to supporting producers 
in the sixth stage (2003-2010), with policies including 
input subsidies, direct payment and agricultural tax re- 
form.  

Despite fluctuations and shift of focus in policy, agri-
cultural production has exhibited an impressive growth 
since reform. The output of agricultural sector has in-
creased exponentially after the reform in China as aver-
age annual growth rate reaches nearly 6 percent during 
1978-2010 (Table 1). Although crop production rises at 
4.3 percent annually, it is dwarfed by the surge of high 
value and nutritional animal products in livestock and 
fishery sector, which grows at 8.6 and 13 percent, re-
spectively. The structure of input usage also shifted sub-
stantially with modern inputs including machinery and 
fertilizer growing at a faster pace than traditional inputs 
like land and labor. Given land scarcity, rapid urbaniza-
tion and economic transformation in the country, it is not 
surprising that land barely expanded while labor engaged 
in rural activities increases by less than 2 percent per 
year. On the other hand, input intensification is widely 
observed since new machines serving agricultural pro-
duction grow by 6.3 percent and total fertilizer consump-
tion increases by nearly 5 times within three decades. 

In terms of regional distribution, highest agricultural 
output growth is observed in Xinjiang in the northwest, 
followed by Hainan, Inner Mongolia and Henan, all dri-
ven by rapidly developing crop and other sectors. We 
observe increased modern inputs in these provinces, as 
well as land expansion in the relatively low population 
density regions. On the other hand, low agricultural 
growth occurred in highly urbanized municipalities (Bei-
jing and Shanghai) or provinces face adverse biophysical 
conditions (Xizang and Qinghai). Slow growth in input 
use is widespread in these provinces as well.  
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Table 1. Descriptive statistics. 

 Mean 
Std. Annual growth rate (%) 
Err. 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-10 

Output (billion 2009 Yuan)          
Crop 99.5 64.1 9.0 −0.2 0.5 5.0 1.6 9.1 4.5 

Livestock 60.8 45.7 12.4 10.9 3.8 6.1 6.1 7.1 8.5 
Forestry 6.1 3.7 13.1 −1.8 3.9 1.3 6.6 9.3 4.8 
Fishery 17.8 19.8 15.1 19.1 17.2 10.8 5.5 6.6 12.7 
Input          

Area (1000 hectare) 7105 3246 −0.9 0.3 −0.2 1.3 −0.4 0.6 0.3 
Labor (10,000 person) 2323 1210 2.7 2.6 1.8 1.1 1.1 1.1 1.7 

Machinery (10,000 kwh) 3005 2714 8.3 7.7 3.4 7.9 5.9 6.4 6.3 
Fertilizer (10,000 ton) 214 136 12.3 6.2 6.5 5.9 1.6 3.2 5.3 

Infrastructure and policy   0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Electricity (kwh per hectare) 307.5 520.7 3.3 11.7 14.2 10.6 11.0 8.9 10.2 
Irrigation (% of crop land) 36.6 12.7 −0.2 0.2 1.0 1.8 0.4 1.8 1.0 

Market openness (% of ag. value) 86.7 20.2 13.9 16.3 20.8 0.6 2.6 −0.1 8.6 
Tax rate (Yuan per hectare) 0.23 3.19 0.3 −0.3 0.0 2.8 6.6 −31.0 −2.6 

Source: Authors’ calculation based on data from China Statistical Yearbook (various years). 
 
5. Empirical Results and Discussion 
Before reporting the estimated productivity growth, we 
need to check whether the translog functional form is sui- 
table for the study. 

5.1. Curvature Condition 
We first check whether the curvature condition is satis-
fied. Reference [16] provides the general regularity pro- 
perties for output distance functions: monotonicity (non- 
decreasing in outputs and non-increasing in inputs), ho-
mogeneity of degree 1 in outputs, convex in output and 
quasi-convexity in inputs.  

Monotonicity and curvature conditions involve con-
straints on functions of the partial derivatives of the dis-
tance function. The elasticity of distance with respect to 
input k and output m is  
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For output distance function to be non-increasing in 
input k 
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because distance functions are positive by definition and 
input quantities are positive. 

For output distance function to be non-decreasing in 
output m 
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 (31) 
Evaluated at sample mean, the elasticities of the output 

distance function with respect to input quantities are 
−0.12 for land, −0.44 for labor, −0.07 for machinery and 
−0.34 for fertilizer. This reflects the relative importance 
of labor and fertilizer in the production process. Moreo-
ver, the elasticities with respect to outputs indicates the 
share of each product on production improvement: lives-
tock has the highest impact (0.26) compared with fishery 
(−0.03) or forestry (0.07). The negative values of input 
elasticities indicate that the estimated output distance 
function is decreasing in all four inputs. Similarly, the 
distance function is found to be increasing in three out of 
four outputs based on their elasticities. 
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Output distance function is quasi-convexity in inputs if 
and only if the bordered Hessian matrix is negative defi-
nite. Hessian matrix of inputs is 
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And 1kkξ ′ =  if k k ′=  and 0 otherwise. 
Output distance function is convex in output if and 

only if the Hessian matrix of outputs is positive definite. 
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And 1mmξ ′ =  if m m′=  and 0 otherwise. 
The Hessian matrix of inputs is found to be negative 

semi-definite, and two out of three eigenvalues of output 
Hessian matrix are positive. These results confirm the 
quasi-convexity in inputs of the estimated function is 
satisfied, but convexity in outputs is only partially satis-
fied.  

5.2. Parameter Estimates and Hypothesis Tests 
Parameter estimates of the translog output distance func-
tion from the maximum likelihood procedure are pre-
sented in Appendix Table 1. The variance parameters 
are statistically significant at 1 percent level and the ratio 
of 2

uσ  in total variance is estimated at 0.687. 
The parametric approach permits formal testing of the 

statistical significance of various sources of productivity 
changes. Alternative model specifications can be eva-
luated using likelihood ration tests, which compare the 
likelihood functions under the null and alternative hypo-
thesis based on the translog output distance function de-
fined above. 

First we compare the frontier with the mean output 
distance function, estimated by considering the ineffi-
ciency term u  as non-stochastic and equals to zero. 

Any deviation from the production frontier is interpreted 
as random errors and the distance function can be esti-
mated using ordinary least squares (OLS). This assump-
tion translates into the parameter restriction of  

0 1 2 3 0.Dummyχ µ ϕ ϕ ϕ ϕ ϕ= = = = = = =     (34) 

The technical inefficiency exists because null hypo-
thesis is rejected at 1 percent level (Table 2). This is 
confirmed by the significantly large value of parameter 
χ  (0.687) that indicates more than two-thirds of the out- 
put variability can be explained by technical inefficiency, 
rather than random shocks.  

In addition, we want to test whether the variables in-
troduced as inefficiency effects improve the explanatory 
power of the model. The null hypothesis is reduced as 

1 2 3 0.Dummyϕ ϕ ϕ ϕ= = = =           (35) 

The null hypothesis is firmly rejected at 1 percent, in-
dicating that the distribution of inefficiencies is not iden-
tical across individual observations but depend on the 
variables capturing local natural endowment and policies. 
This test supports the heterogeneity of inefficiency term. 

The second set of hypotheses is about the technology 
bias and technical change by checking the parameters 
used for OB, IB and TCM calculation.  

For the production technology to be implicit Hickneu-
tralin inputs and makes no contribution to productivity 
growth, input bias index IB = 1, lnIB = 0. That means to 
test parameters 

0, for all 1, , .kt k Kδ = =          (36) 

Similarly, the test for implicit Hicksneutral in outputs 
OB = 1 or lnOB = 0 is 

0, for all 1, , .mt m Mτ = =          (37) 

Similarly, the test for implicit Hicksneutral in outputs 
OB = 1 or lnOB = 0 is 

0, for all 1, , .mt m Mτ = =          (38) 

 
Table 2. Results of hypothesis test. 

Hypothesis LR 
statistic P-value 

Mean distance function 388.0 0.000 

No heterogeneous technical inefficiency 388.0 0.000 

Input Hicks neutral 9.4 0.024 

Output Hicks neutral 13.7 0.056 

Input and output Hicks neutral 159.7 0.000 

No technical change 2.9 0.567 

Input-output separability 104.8 0.000 

Cobb-Douglas functional form 429.3 0.000 

Constant returns to scale 128.2 0.000 

Source: Authors’ calculation. 
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No technology bias is a combination of the two tests 
above. 

If there is no change in the technical change magnitude, 
TCM = 1 or lnTCM = 0 requires us to jointly test the 
parameters 

.

0,
or 1, ,  and 1, ,

kt mt t tt f
k K m M

δ τ θ θ= = = =

= = 

       (39) 

Hence, no technical change, or TC = 1, is the equiva-
lent of joint test of the significance of Equations (36), (37) 
and (38). 

The hypothesis of input Hicks neutral cannot be re-
jected output Hicks neutral is rejected at 5 percent level, 
resulting in a marginal rejection of technology bias. The 
joint test result implies that the technical change is pre- 
sent. 

Separability of outputs is an important property of pro- 
duction. It implies that marginal rates of substitution be-
tween pair of outputs in the separated group are indepen- 
dent of the levels of outputs outside the group, hence out- 
puts can be aggregated in the analysis.  

The hypothesis of separability is defined as all interac-
tion terms between outputs and inputs to be zero,  

0, for 1, ,  and 1, , .km k K m Mγ = = =       (40) 

These restrictions on parameters are strongly rejected, 
which shows that it is not possible to aggregate the four 
outputs consistently into a single index. This again de-
monstrates the strength of distance function compared 
with a traditional stochastic frontier production function, 
which requires aggregation of outputs prior to model 
estimation, as revealed by [17]. 

Then we test whether the true output distance function 
can be simplified and represented by the Cobb-Douglas 
functional form instead of the translog form. The para-
meter restrictions are 

0,
for 1, ,  and 1, , .
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        (41) 

The null is rejected, suggesting that the Cobb-Douglas 
form is inappropriate for this study. 

The last hypothesis is the constant returns to scale, 
which requires the output distance function to be homo-
genous of degree -1 in input quantities ([11]), or the fol-
lowing restrictions should hold: 
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The hypothesis of constant returns to scale is rejected 
as well, suggesting that the component of scale ineffici- 
ency should be considered in measuring productivity 
change. 

Following [18], returns to scale can be computed from 
the output distance function as follows 

( ) ( )
1

ln ,
, .

ln

t t tK ot t
t

k k

D x y
x y

x
ε

=

 ∂
 = −
 ∂ 
∑  

The expression in brackets is the proportional increase 
in all outputs caused by an increase in all inputs in the 
same proportion. Therefore, increasing (decreasing) re-
turns to scale are indicated by a value of returns to scale 
greater (less) than one. 

The mean returns to scale is 0.967. The null hypothesis 
of constant returns to scale against alternative hypothesis 
of decreasing returns to scale is strongly rejected, sug-
gesting a decreasing return to scale is appropriate to de-
scribe the production technology. 

5.3. TFP Growth and Its Components 
First we look at technical efficiency. Average technical 
efficiency is 0.884 despite more efficient production in 
mid-1990s to early 2000s. In terms of regional distribu-
tion, north and central regions report the highest effi-
ciency score, where agricultural production is encour-
aged by favorable biophysical condition and policy sup-
port (Table 3). Technical efficiency is the lowest in nor- 
theast region, with an average TE index of 0.76. The low 
efficiency score means that with the same amount of in- 
puts the low performing provinces can increase the level 
of outputs by about 50 percent (Appendix Table 2). The 
sharp drop in technical efficiency since 2004 is especial-
ly alarming, which is caused by several weather shocks 
and the outbreak of animal diseases in northeast and 
south China where pork production is concentrated.  

We expect rural infrastructure, market openness and 
agricultural support should improve technical efficiency. 
The coefficients of market openness and real agricultural 
support are both of the expected sign but only the latter is 
statistically significant (Table 2). Combined with the sig- 
nificant constant term in technical inefficiency variables, 
we not only confirm the existence of technical ineffici- 
ency, but the positive role of agricultural policy in im-
proving technical efficiency. 

The parametric estimation of the Malmquist index and 
its components are summarized in Table 4 and the an-
nual TFP growth of the country is reported in Figure 1. 
It is clear that the development of productivity matches 
the six stages of reform as described in data. With the 
exception of some years at the early stages of reform, an- 
nual TFP growth index is above unity, suggesting prod-
uctivity improvement over time. During the period of 
1978-2010, average agricultural productivity growth rate 
is about 2 percent per year. After the first stage of reform 
in 1978-83, agricultural TFP maintains a steady growth 
rate of above 2 percent per year (Appendix Table 3). 
This growth rate is similar to the finding of [19] but low-
er than that of [15]. 
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Table 3. Technical efficiency in China. 

Region 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-10 

North 0.948 0.898 0.896 0.921 0.947 0.954 0.938 

Northeast 0.808 0.784 0.822 0.796 0.772 0.714 0.757 

Central 0.901 0.893 0.94 0.94 0.957 0.920 0.928 

South 0.859 0.848 0.881 0.918 0.924 0.862 0.882 

Southwest 0.897 0.877 0.891 0.902 0.896 0.781 0.850 

West 0.898 0.824 0.823 0.816 0.859 0.842 0.842 

China 0.884 0.865 0.894 0.906 0.916 0.863 0.884 

Source: Authors’ calculation. 
 

Table 4. Decomposition of Malmquist productivity index. 

Period 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-04 

Productivity (TFP) 0.999 1.021 1.023 1.023 1.022 1.022 1.020 

Technical efficiency change (EC) 0.991 1.010 1.007 1.004 0.998 0.989 0.997 

Technical change (TC) 1.008 1.011 1.015 1.018 1.025 1.032 1.023 

Technical change magnitude (TCM) 1.009 1.012 1.015 1.018 1.025 1.033 1.024 

Output bias (OB) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Input bias (IB) 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

Scale efficiency change (SEC) 1.000 1.000 1.001 1.001 1.000 1.001 1.001 

Output-mix effect (OME) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Source: Authors’ calculation. 
 

 
Figure 1. Evolution of TFP over time. Source: Authors’ calculation. 

 
The overall TFP development can be explained by the 

components of the Malmquist index, namely, technical 
change and bias, technical efficiency change, scale effi-
ciency change and output-mix effect. The technical effi-
ciency change is below one for the whole period, imply-
ing deteriorated technical efficiency. However, technical 
efficiency rises from 1984-97, and declines afterwards. 

This decline is most pronounced after 2004, further hig-
hlighting the urgent need for efficiency improvement.  

Technical change is the main driving force of produc-
tivity growth in China, with technical change growing at 
2.3 percent per year. In addition, technical change exhi-
bits an accelerated pattern over time: average technical 
change rate increases from 0.8 percent per annum in 
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1978-83 to 3.2 percent in 2004-10. Table 4 also shows 
the decomposition of the technical change component 
into the production of technical change along a ray 
through the data of each period (TCM) and the bias ef-
fect. Although statistically significant, the impact of out- 
put bias on productivity is very small. Since both input 
and output bias indexes are close to one, neither an input 
bias effect nor an output bias effect is occurred during 
the period of study and we conclude that the technical 
change is Hicks neutral. In other words, there is globally 
neutral shift in the production frontier and technical 
change does not have much influence in the relative con-
tribution of each output or input to the production pro- 
cess. Therefore, productivity gain cannot be obtained by 
change the mix of outputs or the mix of inputs, and cur-
rent technology does not favor output and input mix from 
different periods. This results in a wide distribution of in- 
put and output combination in Chinese agriculture. 

Scale efficiency boosts Malmquist index by a small 
margin (average SEC is 1.001), which implies that the 
output mix moves closer to technical optimal and scale 
efficiency improves over time. Together with the output 
bias, we observe the mix of output is closer to optimal 
mix of output under the technology as SEC averages 
1.001. In relatively land abundant northern China, scare 
efficiency improves because the output mix is moving 
closer to the optimal production technology. There is lit- 
tle change in the output-oriented scale efficiency from a 
change in output mix and hence the output-mix effect 
(OME) does not contribute to productivity growth. 

The spatial distribution of agricultural productivity is 
presented in Figure 2 and Table 5. The highest TFP 

growth is observed in north and northwest border prov-
inces of Xinjiang and Inner Mongolia at above 5 percent 
per annum, partly due to the rapid growth of crop and 
livestock sector. Northern provinces (Heilongjiang and 
Jilin) follow the suit by reporting impressive TFP growth 
rate between 4 - 5 percent. Gansu and Ningxia, two in-
land provinces located in north China, also benefit from 
the boom in agricultural sectors in the neighborhood. On 
the other hand, the provinces exhibit low productivity 
growth include Sichuan, Liaoning and Hunan, mainly 
caused by efficiency deterioration with efficiency scores 
dropped at more than 1 percent per year. 

It is important to examine the distribution of technical 
change and efficiency change given its key role as the 
engine of TFP growth. Similar to the pattern of TFP 
growth, the northern provinces move closer to production 
frontier represented by provinces reporting TE = 1 (He-
bei, Shanxi, Heilongjiang, Henan and Guizhou). Low TC 
growth occurs in more urbanized municipalities and 
coastal provinces of Jiangsu and Zhejiang where agri-
culture becomes a small player in local economy. Effi-
ciency improves in the northern provinces along with 
Hubei while efficiency declines in provinces scored low 
TFP growth like Liaoning, Hunan and Sichuan. 

Low and sharply declined efficiency scores are more 
pronounced in Liaoning, Hainan and Sichuan, where 
output only reach less than 70 percent of full potential, 
and annual TE indexes fall at an alarming rate of 
2-4percent per year. This is especially noticeable in Si-
chuan province, which is a major producer of agricultural 
commodities and contributes to 6 percent of national 
agricultural production in 2010. Among top five major  

 

  
Figure 2. Map of annual productivity growth. Source: Authors’ calculation. 
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Table 5. Decomposition of Malmquist productivity index by region. 

Region Indexes 1978-83 1984-89 1990-93 1994-97 1998-03 2004-10 1978-10 

North 

TC 1.014 1.017 1.020 1.021 1.027 1.034 1.026 

EC 0.990 0.999 1.000 1.012 0.998 1.006 1.003 

SEC 1.001 0.998 1.000 1.001 1.000 1.002 1.001 

TFP 1.005 1.015 1.020 1.034 1.025 1.042 1.030 

Northeast 

TC 1.025 1.025 1.026 1.029 1.034 1.042 1.034 

EC 0.978 1.031 1.002 0.989 0.999 0.985 0.994 

SEC 1.006 1.001 1.003 0.999 1.001 1.002 1.002 

TFP 1.007 1.056 1.031 1.016 1.033 1.029 1.029 

Central 

TC 1.004 1.008 1.012 1.016 1.024 1.031 1.021 

EC 0.997 1.011 1.002 1.005 1.000 0.991 0.999 

SEC 0.999 0.999 1.001 1.001 1.000 1.001 1.000 

TFP 1.000 1.019 1.015 1.022 1.024 1.023 1.020 

South 

TC 1.008 1.010 1.013 1.016 1.022 1.028 1.020 

EC 0.993 1.012 1.018 1.004 0.997 0.983 0.996 

SEC 1.000 1.000 1.001 1.001 1.000 1.001 1.000 

TFP 1.000 1.022 1.032 1.021 1.018 1.011 1.016 

Southwest 

TC 1.000 1.004 1.009 1.013 1.021 1.029 1.017 

EC 0.984 1.008 1.009 1.000 0.987 0.986 0.993 

SEC 0.999 0.999 0.999 1.000 1.000 1.000 1.000 

TFP 0.983 1.012 1.017 1.013 1.008 1.014 1.010 

West 

TC 1.018 1.022 1.024 1.026 1.033 1.040 1.031 

EC 0.987 0.994 1.004 1.017 1.007 0.990 0.999 

SEC 1.002 1.002 1.004 1.004 1.000 1.004 1.003 

TFP 1.006 1.016 1.032 1.048 1.041 1.035 1.033 

Source: Authors’ calculation. 
 
agricultural producing provinces, Sichuan is the only one 
experienced negative TFP growth in 1978-2010, which 
can be partly due to the lack of rural infrastructure and 
unfavorable agricultural policies. Only 25 percent of crop 
sown area is irrigated in Sichuan, far below the average 
of 40 percent. Sichuan also has a long history of high 
agricultural tax discouraging investment in agricultural 
sector. 

6. Conclusions 
This paper extends the decomposition of the Malmquist 
productivity index suggested by [3,4] by using an output- 
oriented parametric approach. The Malmquist index is 
decomposed into several assembling components, which 
allows us to examine the ray expansion of technology, 
input- and output-induced shifts of technology frontier, 
technical change, scale efficiency change and the change 
of productivity caused by output-mix. A translog output 
distance function is chosen to represent the production 
technology. Computable form of each component of the 
Malmquist index is expressed as a function of parameters 

estimable in the output distance function, and the Malm- 
quist index is derived from these components. 

The advantage of the parametric approach is the flex- 
ibility to statistically test the hypothesis regarding differ- 
rent components of the Malmquist index, the natural and 
bias of production technology, returns to scale and func-
tional form by imposing restrictions on parameters. In 
addition, this paper differs from other studies by express- 
ing results in a discrete changes format, instead of deriv- 
atives. This is very useful in empirical studies because 
most economic variables are not presented as continuous, 
and the estimated productivity growth index using first 
order derivative can lead to incorrect results ([9,20]). 

This paper presents an empirical study of total factor 
productivity change in Chinese agriculture during the 
post-reform period of 1978-2010. The level of technical 
efficiency averages 0.884, with low efficiency score in 
the north. The recent drop of technical efficiency is a rea- 
son of concern, suggesting insufficient rural infrastruc- 
ture and lack of supportive policies. On average, produc- 
tivity grows at 2 percent per year, which is mostly driven 

OPEN ACCESS                                                                                          ME 



B. X. YU  ET  AL. 82 

by technical change. Additionally, the result of the de-
composition of the technical change indicates that the 
technical change is neutral despite that the output mix 
moves closer to technical optimal. Scale efficiency mar- 
ginally contributes to productivity growth whereas there 
is less output-mix effect. The findings have clear policy 
implications regarding improving agricultural performance 
in China. For example, past agricultural policies have 
failed to address the huge efficiency gap to decrease 
wasteful use of agricultural inputs and cut down envi- 
ronmental cost. Whether productivity can be improved 
through a shift in current technology is another relevant 
issue worth exploring. Additionally, given the considera- 
ble spatial variation, agricultural development policies 
need to be tailored to local conditions during planning 
and implementation. Another important issue not dis-
cussed in this paper is future sources of productivity 
growth, including investment in agricultural research, 
rural education and water. 
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Appendix Table 1. Parameter estimates of the translog output distance function. 

Parameter Estimate Std. Err.  Parameter Estimate Std. Err. 

1β  −0.575 (0.437)  22γ  −0.026 (0.027) 

2β  −0.617 (0.150)***  23γ  0.016 (0.036) 

3β  0.798 (0.163)***  31γ  0.061 (0.052) 

1α  0.862 (0.629)  32γ  −0.021 (0.016) 

2α  −3.242 (0.352)***  33γ  0.091 (0.031)*** 

3α  0.079 (0.422)  41γ  −0.228 (0.067)*** 

4α  1.293 (0.535)**  42γ  −0.002 (0.026) 

11β  0.061 (0.089)  43γ  0.148 (0.034)*** 

12β  0.082 (0.015)***  1tτ  0.008 (0.005)* 

13β  0.010 (0.030)  2tτ  −0.001 (0.002) 

22β  −0.030 (0.008)***  3tτ  −0.004 (0.003)* 

23β  −0.032 (0.012)***  1tδ  −0.019 (0.009)** 

33β  0.042 (0.020)**  2tδ  0.015 (0.006)*** 

11α  −0.425 (0.181)**  3tδ  −0.002 (0.005) 

12α  0.497 (0.106)***  4tδ  0.008 (0.007) 

13α  −0.094 (0.105)  tθ  0.029 (0.038) 

14α  −0.018 (0.108)  ttθ  −0.002 (0.001)*** 

22α  −0.314 (0.095)***  0α  4.313 (1.802)** 

23α  0.205 (0.081)**     

24α  −0.212 (0.077)***  1ϕ  0.011 (0.017) 

33α  −0.098 (0.077)  2ϕ  −0.007 (0.005) 

34α  0.037 (0.072)  3ϕ  −0.188 (0.051)*** 

44α  −0.050 (0.091)  0ϕ  −3.725 (0.750)*** 

11γ  0.304 (0.086)***     

12γ  0.099 (0.032)***  2ln vσ  −4.247 (0.074)*** 

13γ  −0.241 (0.043)***  χ  0.687  

21γ  −0.132 (0.061)**  log likelihood 493.9  

Note: For outputs, 1 stands for livestock, 2 for fishery and 3 for forestry. For inputs, 1 stands for area, 2 for labor, 3 for machinery and 4 for fertilizer. For inef-
ficiency terms, 1 stands for share of irrigation, 2 stands for market openness and 3 stands for agricultural tax. ***p < 0.01, **p < 0.05, *p < 0.1. Source: Authors’ 
calculation. 
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Appendix Table 2. Malmquist productivity index and its components by province. 

Region Province TC TCM OB IB TE EC SEC OME TFP 

North 

Beijing 1.016 1.017 1.000 1.000 0.638 1.022 1.003 1.001 1.044 

Hebei 1.021 1.022 1.000 1.000 1.000 1.000 1.000 1.000 1.021 

Inner Mongolia 1.042 1.043 1.000 1.000 0.830 1.005 1.003 1.000 1.051 

Shanxi 1.029 1.030 1.000 1.000 1.000 1.000 1.000 1.000 1.029 

Tianjin 1.023 1.024 1.000 1.000 1.000 1.000 0.994 1.001 1.018 

Northeast 

Heilongjiang 1.047 1.048 1.000 1.000 1.000 1.000 1.003 0.999 1.049 

Jilin 1.032 1.033 1.000 1.000 0.678 1.007 1.003 0.999 1.041 

Liaoning 1.025 1.026 1.000 1.000 0.608 0.982 1.000 1.000 1.006 

Central 

Anhui 1.024 1.025 1.000 1.000 0.915 1.004 1.000 1.000 1.027 

Fujian 1.024 1.025 1.000 1.000 0.933 0.995 1.000 1.000 1.019 

Jiangsu 1.017 1.018 1.000 1.000 0.914 1.001 1.000 1.000 1.017 

Jiangxi 1.030 1.032 1.000 1.000 0.920 0.991 1.000 1.001 1.022 

Shandong 1.020 1.021 1.000 1.000 0.936 0.999 1.000 1.000 1.019 

Shanghai 1.010 1.011 1.000 1.000 1.000 1.000 1.001 1.001 1.012 

Zhejiang 1.019 1.020 1.000 1.000 0.937 1.000 1.001 1.001 1.021 

South 

Guangdong 1.014 1.015 1.000 1.000 0.869 0.998 1.000 1.000 1.012 

Guangxi 1.022 1.024 1.000 1.000 0.916 0.995 0.999 1.000 1.016 

Hainan 1.038 1.039 1.000 1.000 0.600 0.985 1.000 1.000 1.022 

Henan 1.019 1.020 1.000 1.000 1.000 1.000 1.002 1.000 1.021 

Hubei 1.023 1.025 1.000 1.000 0.859 1.005 1.000 1.000 1.029 

Hunan 1.022 1.023 1.000 1.000 0.778 0.982 1.000 1.000 1.003 

Southwest 

Chongqing 1.017 1.018 1.000 1.000 0.983 1.000 0.999 1.000 1.017 

Guizhou 1.020 1.021 1.000 1.000 1.000 1.000 1.000 1.000 1.020 

Sichuan 1.013 1.015 1.000 1.000 0.763 0.986 1.000 1.000 0.999 

Xizang 1.018 1.019 1.000 1.000 1.000 1.000 0.994 0.999 1.011 

Yunnan 1.025 1.027 1.000 1.000 0.870 0.999 0.999 1.000 1.024 

West 

Gansu 1.029 1.031 1.000 1.000 0.972 1.000 1.000 1.001 1.030 

Ningxia 1.038 1.039 1.000 1.000 1.000 1.000 1.000 1.000 1.038 

Qinghai 1.022 1.023 1.000 1.000 0.916 0.999 1.000 0.998 1.018 

Shaanxi 1.024 1.025 1.000 1.000 0.930 0.987 1.002 1.000 1.013 

Xinjiang 1.041 1.042 1.000 1.000 0.629 1.009 1.007 1.000 1.057 

North  1.026 1.028 1.000 1.000 0.938 1.003 1.001 1.000 1.030 

Northeast  1.034 1.035 1.000 1.000 0.757 0.994 1.002 0.999 1.029 

Central  1.021 1.022 1.000 1.000 0.928 0.999 1.000 1.000 1.020 

South  1.020 1.022 1.000 1.000 0.882 0.996 1.000 1.000 1.016 

Southwest  1.017 1.019 1.000 1.000 0.850 0.993 1.000 1.000 1.010 

West  1.031 1.033 1.000 1.000 0.842 0.999 1.003 1.000 1.033 

China  1.023 1.024 1.000 1.000 0.884 0.997 1.001 1.000 1.020 

Source: Authors’ calculation. 
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Appendix Table 3. Malmquist productivity index and its components by year. 

year TC TCM OB IB TE EC SEC OME TFP 

1978 1.008 1.009 1.000 0.999 0.892 0.989 0.998 1.000 0.995 

1979 1.007 1.008 1.000 0.999 0.882 1.033 1.000 1.000 1.040 

1980 1.008 1.008 1.000 1.000 0.904 0.987 1.002 1.000 0.996 

1981 1.008 1.009 1.000 0.999 0.890 0.987 0.999 0.999 0.994 

1982 1.009 1.009 1.000 0.999 0.877 0.988 1.001 1.001 0.998 

1983 1.010 1.010 1.000 1.000 0.866 0.970 1.002 0.999 0.981 

1984 1.011 1.011 0.999 1.000 0.841 1.026 1.000 0.999 1.036 

1985 1.011 1.011 1.000 1.000 0.859 1.009 0.999 1.000 1.019 

1986 1.012 1.012 1.000 1.000 0.864 0.994 0.999 1.000 1.006 

1987 1.011 1.013 0.999 1.000 0.859 1.008 0.999 1.000 1.018 

1988 1.011 1.012 1.000 1.000 0.863 1.051 1.000 1.000 1.062 

1989 1.012 1.012 1.000 1.000 0.901 0.973 1.001 1.000 0.985 

1990 1.013 1.014 1.000 1.000 0.874 1.021 1.001 1.000 1.035 

1991 1.014 1.015 1.000 1.000 0.890 1.015 1.001 1.000 1.031 

1992 1.015 1.016 1.000 1.000 0.902 1.009 1.002 1.000 1.027 

1993 1.015 1.016 0.999 1.000 0.910 0.985 1.001 1.001 1.002 

1994 1.016 1.016 1.000 1.000 0.896 1.008 1.001 1.000 1.026 

1995 1.017 1.017 1.000 1.000 0.904 1.006 1.001 1.000 1.025 

1996 1.019 1.019 1.000 1.000 0.908 1.007 1.001 0.999 1.026 

1997 1.020 1.020 1.000 1.000 0.914 0.996 1.000 1.000 1.016 

1998 1.022 1.022 1.000 1.000 0.909 1.008 0.999 1.000 1.028 

1999 1.023 1.023 1.000 1.000 0.913 1.009 1.000 1.000 1.032 

2000 1.024 1.024 1.000 1.000 0.920 1.000 1.001 1.000 1.024 

2001 1.025 1.025 1.000 1.000 0.919 1.000 1.001 1.000 1.026 

2002 1.026 1.027 1.000 1.000 0.919 0.998 1.001 1.001 1.026 

2003 1.027 1.028 0.999 1.000 0.916 0.974 1.001 1.000 1.001 

2004 1.028 1.028 1.000 1.000 0.894 0.991 1.001 1.000 1.020 

2005 1.030 1.029 1.000 1.000 0.886 0.999 1.001 1.000 1.030 

2006 1.031 1.032 1.000 1.000 0.885 0.975 1.002 0.999 1.006 

2007 1.032 1.032 1.000 1.000 0.862 0.978 1.001 1.000 1.010 

2008 1.034 1.033 1.001 1.000 0.844 1.006 1.001 1.000 1.041 

2009 1.036 1.036 1.000 1.000 0.851 0.984 1.001 1.001 1.022 

1978-83 1.008 1.009 1.000 0.999 0.884 0.991 1.000 1.000 0.999 

1984-89 1.011 1.012 1.000 1.000 0.865 1.010 1.000 1.000 1.021 

1990-93 1.015 1.015 1.000 1.000 0.894 1.007 1.001 1.000 1.023 

1994-97 1.018 1.018 1.000 1.000 0.906 1.004 1.001 1.000 1.023 

1998-03 1.025 1.025 1.000 1.000 0.916 0.998 1.000 1.000 1.022 

2004-10 1.032 1.033 1.000 1.000 0.863 0.989 1.001 1.000 1.022 

1978-10 1.023 1.024 1.000 1.000 0.884 0.997 1.001 1.000 1.020 

Source: Authors’ calculation. 
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