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ABSTRACT 
A commutative generalization of the ( )1U  gauge symmetry group is proposed. The two-parametric family of 
two-connected abelian Lie groups is obtained. The necessity of existence of so-called imaginary charges and elec- 
tromagnetic fields with negative energy density (dark photons) is derived. The possibilities when the overall La- 
grangian represents a sum or difference of two identical Lagrangians for the visible and hidden sectors (i.e. cop- 
ies of unbroken ( )1U ) are ruled out by the extended symmetry. The distinction between the two types of fields 
resides in the fact that for one of them current and electromagnetic kinetic terms in Lagrangians are identical in 
sign, whereas for another type these terms are opposite in sign. As a consequence, and in contrast to the common 
case, like imaginary charges attract and unlike charges repel. Some cosmological issues of the proposed hypothe- 
sis are discussed. Particles carrying imaginary charges are proposed as one of the components of dark matter. 
Such a matter would be imaginarily charged on a large scale for the reason that dark atoms carry non-compen- 
sated charges. It leads to important predictions for matter distribution, interaction and other physical properties 
being different from what is observed in dominant dark matter component in the standard model. These effects 
of imaginary charges depend on their density and could be distinguished in future observations. Dark electro- 
magnetic fields can play crucial dynamical role in the very early universe as they may dominate in the past and 
violate weak energy condition which provides physical grounds for bouncing cosmological scenarios pouring a 
light on the problem of origin of the expanding matter flow. 
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1. Introduction 
The idea of interactions (even long-range ( )1U  interac-
tions) in the dark sector is not new [1]. As mentioned in 
[2], an attractive non-gravitational force between DM con- 
centrations is not only well-motivated theoretically, it may 
resolve some discomforts with conventional ΛCDM. A 
new kind of photon, which couples to dark matter but not 
to ordinary matter, has been recently proposed by L. 
Ackerman et al. [3]. DM could be weakly coupled to 
long-range forces, which might be related to dark energy. 
One difficulty with the latter is that such forces are 

typically mediated by scalar fields, and it is hard to con-
struct natural models in which the scalar field remains 
massless (to provide a long-range force) while interacting 
with the DM at an interesting strength. The authors point 
out that the dark photon comes from gauge symmetry, 
just like the ordinary photon, and its masslessness is 
therefore completely natural. The proposed Lagrangians 
for the dark sector are of the type  

( )dark 1
4

L D m F F µν
χ µνχ χ= + − ,           (1) 
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where D igAµ µ µ= ∂ −  and Fµν  is the field-strength 
tensor for the dark photons. In essence, proposed here 
and in some analogous works are several exact copies of 
( )1U . But, given the importance of symmetries in the 

SM, could we get an understanding as to where the addi-
tional ( )1U  comes from? This is our main motivation 
of the present work.  

In general, most SM extensions include hidden sectors, 
i.e. sectors which couple only very weakly, typically 
gravitationally, to the SM fields and these hidden sectors 
(if any) contain undoubtedly gauge groups as well. We 
suppose it is from a mechanism of extension of known 
groups. Because of this, simple copies of ( )1U  are of 
course unlikely, since any true generalization is per-
ceived to gain a more penetrating insight into the sym-
metry. It should be remembered that “More is different” 
[4]. The philosophy of symmetry implies that entities 
involved are at once similar and dissimilar to one another. 
Dissimilarity (even contrast) is of the same importance as 
similarity. 

While on the subject of extension of electromagnetism, 
one should comply with some obvious rules. Firstly, such 
a simple thing as electromagnetism must certainly come 
from an abelian gauge group. Secondly, this group must 
be a non-trivial extension of the common ( )1U  (not 
merely a direct sum ( ) ( )1 1U U ′⊕ ). Thirdly, the new 
sector, inhabited by particles charged under the new 
symmetry, should represent a symmetrical image of the 
known sector, with some properties complementing each 
other.  

Two decades ago Ya.P. Terletsky advanced the hypo-
thesis about the existence of so-called imaginary charges 
(IC) and electromagnetic fields with negative energy 
density (“minus-fields”) [5]. The term “imaginary charge” 
is due to the formal substitution of imaginary values 

iq±  for real values q±  into the Coulomb law. In that 
case like charges would attract and unlike charges would 
repel. It is precisely this property that represents the basic 
physical distinction of IC from common charges, while 
their representation as imaginary quantities is nothing 
more than a mathematical tool. 

The phenomenological deduction of equations for IC 
is just based on such a substitution of imaginary charges 
and fields into the Maxwell equations and the Lorentz 
force law. One possibility for such equations is the fol-
lowing:  

[ ] [ ]

4 4
0 0
4π 1 4π 1

1 1

1 1

e m

e m

Lor e e m m

div div
div div

rot rot
c c t c c t

rot rot
c t c t

c c

= π ; = − π ;

= ; = ;
∂ ∂

= + ; = − + ;
∂ ∂

∂ ∂
= − ; = − ;

∂ ∂

= + + + .

E e
B b

E eB j b j

B bE e

F E j B e j b

 

 

   (2) 

Here , , ,E B e b  are common and “minus” fields re-
spectively and e e m m, , ,j j   represent their sources. The 
only peculiarity is the “wrong” sign in front of the 
sources m  and mj  in the equations for “minus” fields, 
meanwhile the Lorentz force law is unchanged. This 
causes profound alterations in the physics of IC. In par-
ticular, one can see from the Coulomb law 

4π mdiv = −e   and the electrostatic force Lor m=F e  
that like charges would attract and unlike charges would 
repel. In a similar way equally directed currents would 
repel, in contrast to the common case.  

A standard deduction of Poynting’s theorem from (2) 
brings the following expressions for the energy density 
and the Poynting vector:  

[ ] [ ]

2 2 2 21 1
8 8

,
4 4

w

c c

   
   
   

= + − + ;
π π

= −
π π

E B e b

S EB eb
         (3) 

whence it follows that the energy density of minus-fields 
is negative. G.E. Marsh points out that “… the idea of 
negative energy states is still quite controversial and 
much confused in the literature. On the other hand, pre-
sently the behavior of the universe makes difficult to 
resist the idea that some negative energy matter (so- 
called dark energy) could contribute and repel the matter, 
creating the observed phenomena at large red shifts” [6]. 
At this point, there is no escape from citing A. Linde [7]: 
“This removes the old prejudice that, even though the 
overall change of sign of the Lagrangian (i.e. both of its 
kinetic and potential terms) does not change the solutions 
of the theory, one must say that the energy of all particles 
is positive. This prejudice was so strong, that many years 
ago physicists preferred to quantize particles with nega-
tive energy as antiparticles with positive energy, which 
caused the appearance of such meaningless concepts as 
negative probability. We wish to emphasize that there is 
no problem to perform a consistent quantization of theo-
ries which describe particles with negative energy. All 
difficulties appear only when there exist interacting spe-
cies with both signs of energy”. 

Note that the term “imaginary charges” has been used 
to designate different things. Firstly there exists a 
well-known technique of replacing conducting surfaces 
by “imaginary charges” in electrostatics (the method of 
images). Secondly there is a notion of sources at imagi-
nary space-time, which are called imaginary sources in 
short [8]. Thirdly, speculations representing gravitation 
as electrostatics with an imaginary charge are sometimes 
encountered. Our hypothesis has nothing to do with these 
uses of the term. 

The aim of this article is to demonstrate the necessity 
of existence of IC and fields with negative energy density 

OPEN ACCESS                                                                                         JMP 



N. P. TRETYAKOV  ET  AL. 36 

from first symmetry principles. The plan to be followed 
consists in finding a natural Abelian extension of ( )1U . 
We take as the starting point the single idea of extension 
to matrices with determinant equal to −1 (however, for 
reasons of commutativity, axes reflections would not do 
here). 

It turns out that one way to accomplish this task is an 
extended understanding of the variational principle. 
Since equations of motion result from making the first 
variation of action equal to zero, the change of sign of a 
Lagrangian does not affect dynamical equations. It 
should be reminded in this connection that the variation 
principle would be more correctly said to be the principle 
of stationary (and not minimal) action and at real trajec-
tories the action takes extreme rather than minimal val-
ues. Hence it is sufficient to require the invariance of 
Lagrangians up to change of sign. 

The double universe model proposed by A. Linde is of 
particular interest in this respect. This model describes 
two universes, X  and Y , with coordinates xµ  and 
yα , respectively and with metrics ( )g xµν  and 

( )g yαβ  , containing fields ( )xΦ  and ( )yΨ  with 
the action of the following type:  

( ) ( ) ( ) ( )( )

( ) ( )( )

2
4 4

2

d d
16π

16π

P

P

MS N x y g x g y R x L x

M R y L y


= + Φ




− − Ψ .


∫ ∫
(4) 

A novel symmetry of the action is the symmetry under 
the transformation mixing the fields ( ) ( )x xΦ ↔Ψ , 

( ) ( )g x g xµν αβ↔  and under the subsequent change of 
the overall sign, S S→− . Linde calls this the antipodal 
symmetry, since it relates to each other the states with 
positive and negative energies. 

In Section 2 the non-commutative extension of ( )1U  
is constructed. In Section 3 some alternatives concerning 
the possibilities when the overall Lagrangian represents a 
sum or difference of two identical Lagrangians for the 
visible and hidden sectors, are discussed. In Section 4 a 
complex scalar field representation of our model is con-
structed. In Section 5 the possibility of mixing terms in 
Lagrangians describing interactions between common 
and imaginary charges, is discussed. Section 6 is devoted 
to a general consideration of the model, not mostly re-
stricted to the infinitesimal case. In Section 7 some cos-
mological issues are discussed. In particular, we propose 
particles carrying imaginary charges as one of the com-
ponents of dark matter. 

2. Extension of U(1) 
The generalization is based on the following reasoning. 
The ( )1U  group is isomorphic to the special orthogonal 

group ( )2SO  , which represents the group of orthogon-
al 2 2×  matrices with unit determinant:  

cos sin
sin cos

tα
α α
α α

 
= . − 

             (5) 

An extension to matrices with determinant equal to 1−  
may be performed by adding axes reflections. However, 
by this way one obtains the complete orthogonal group 
( )2O , which is non-commutative even in the case of two 

dimensions. This is inconsistent with our attempt to derive 
the existence of minus-fields analogically to electro- 
magnetic ones, i.e. from a commutative group of lagran- 
gian symmetries.  

Let us note that matrices (5) are circulant ones, which 
is to say that they are of the form  

a b
pb a

 
, 

 
                    (6) 

with 1p = − . For any fixed value of p , non-degenerate 
matrices (6) form a commutative group. It may be sym- 
bolized as ( )2pC R,  or ( )2pC C, , i.e. p -circulant 
2 2×  matrices with real or complex entries. In case 
that 1p = , they are designated briefly as circulant ma- 
trices. 

It is possible to construct a commutative group of cir-
culant ( )1p =  matrices depending on one real parame-
ter and with determinants equal to 1± , i.e. ( )1 2SC R, . 
The group consists of elements of two types having the 
following general and infinitesimal representations: 

cosh sinh 1 0 0 1
;

sinh cosh 0 1 1 0

sinh cosh 0 1 1 0
cosh sinh 1 0 0 1

det 1 det 1

t

s

t s

α

α

α α

α α
α

α α

α α
α

α α

     
= ≈ +     
     

     
= ≈ + ;     
     

= ; = − .

    (7) 

As may be seen from (7), the elements tα  and sα  
are different in that the unity and the generator switch 
places. The group multiplication table is of the form 

t t t t s s s s tα β α β α β α β α β α β+ + += ; = ; = .       (8) 

Let us consider the group representation space as 
doublets of real scalar fields with the scalar product de-
fined using an indefinite metric:  

1 1

2 2

1 1 2 2

ϕ ψ
ϕ ψ

ϕ ψ

ϕ ψ ϕψ ϕ ψ

   
   
   
   
   

= ; = ;

∗ = − .

           (9) 

Then the quadratic form ϕ ϕ∗  proves to be invariant 
under transformations tα  and changes sign under 
transformations sα : 
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( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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2 2
1 2

2 2
2 1 1 2

2 2
2 1
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ˆ 1̂

0 1
1 0

t G

s G

t t

s s

G

α

α

α α

α α

ϕ αϕ
ϕ α ϕ

ϕ αϕ

ϕ αϕ
ϕ α ϕ

ϕ αϕ

ϕ ϕ ϕ αϕ ϕ αϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ αϕ ϕ αϕ

ϕ ϕ ϕ ϕ

 
 
 
 
 

 
 
 
 
 

+
= + = ;

+

+
= + = ;

+

∗ = + − +

= − = ∗ ;

∗ = + − +

= − = − ∗ ;

 
= . 
 

      (10) 

By analogy with the common case, let us define cova-
riant derivatives as  

ˆD eA Gµ µ µϕ ϕ ϕ= ∂ − .               (11) 

Then under simultaneous transformations of field va-
riables and gradient transformations of potentials, cova-
riant derivatives are transformed in the same way as 
fields: 

( )

( )

1ˆ

ˆ

1ˆ

ˆ

t G A A
e

D D G D

s G A A
e

D G D D

α µ µ µ

µ µ µ

α µ µ µ

µ µ µ

ϕ ϕ α ϕ α

ϕ ϕ α ϕ

ϕ ϕ αϕ α

ϕ ϕ α ϕ

: → + ; → + ∂ ;

→ + ;

: → + ; → + ∂ ;

→ + .

   (12) 

Consequently, the Lagrangian 
21

2 2
mL D Dµ

µϕ ϕ ϕ ϕ= ∗ − ∗          (13) 

is invariant under transformations tα  and changes sign 
under transformations sα . Hence the invariance of dy-
namical equations under the extended Abelian group of 
transformations is achieved by the invariance of Lagran-
gians up to change of sign.  

However the constructed symmetry breaks down on 
addition of the kinetic term describing free electromag-
netic fields: 

21 1
2 2 4

mL D D F F

F A A

µ µν
µ µν

µν µ ν ν µ

ϕ ϕ ϕ ϕ= ∗ − ∗ − ;

= ∂ − ∂ .
   (14) 

The tensor Fµν  does not change under transforma-
tions (12), so under sα  the first two terms of the La-
grangian (14) reverse sign, whereas the last term does not 
change. The overall Lagrangian (14) turns out to be 
non-invariant, even up to change of sign! 

It is not possible to restore the symmetry without in-
corporation of new entities. Another field ψ  must exist 

in addition to the usual field ϕ . The field ψ  interacts 
with its own gauge field aµ , but with the same values of 
the constants e  and m . However the kinetic terms of 
the fields Aµ  and aµ  are opposite in sign:  

( ) ( )

( ) ( )

2

2

1 ˆ ˆ
2 2

1 ˆ ˆ
2 2
1 1
4 4

mL eA G eA G

mea G ea G

F F f f f a a

µ µ
µ µ

µ µ
µ µ

µν µν
µν µν µν µ ν ν µ

ϕ ϕ ϕ ϕ ϕ ϕ

ψ ψ ψ ψ ψ ψ

= ∂ − ∗ ∂ − − ∗

+ ∂ − ∗ ∂ − − ∗

− + ; = ∂ − ∂ .

 (15) 

In order to bring about invariance of the Lagrangian 
(15) up to change of sign, transformations sα  must be 
accompanied by mixing of the fields ϕ  and ψ . Let us 
denote such transformations by capital letters:  

1ˆˆ

1ˆ

1ˆ ˆ

1ˆ

T G A A
e

G a a
e

S G A a
e

G a A
e

α µ µ µ

µ µ µ

α µ µ µ

µ µ µ

ϕ ϕ α ϕ α

ψ ψ α ψ α

ϕ ψ αψ α

ψ ϕ αϕ α

: → + ; → + ∂ ;

→ + ; → + ∂ ;

: → + ; → + ∂ ;

→ + ; → + ∂ .

    (16) 

The representation of (16) in terms of matrices is of 
the form:  

( )

ˆ ˆ1 0 0
ˆ

ˆ ˆ0 1 0

1 0 11
0 1 1

ˆ ˆ0 0 1
ˆ

ˆ ˆ0 1 0

0 1
1 0

G
T

G

A A
a a e

G
S

G

A A
a

α

µ µ
µ

µ µ

α

µ

µ

ϕ ϕ
α

ψ ψ

α

ϕ ϕ
α

ψ ψ

   
   
   
   
   

 
 
 
 
 

        : → + ;                 

   
→ + ∂ ;   

   

        : → + ;                 

 
→  

 
( ) 11

1a e
µ

µ
µ

α
 
 
 
 
 

 
+ ∂ . 

 

   (17) 

It is seen that the group multiplication table is the 
same as (8): 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ; ; ,T T T T S S S S Tα β α β α β α β α β α β+ + += = =       (18) 

that is to say, we are dealing with a representation of the 
same group (four-dimensional at this time). 

Each term of the Lagrangian (15) is invariant under 
transformations Tα . As for transformations Sα , the 
kinetic terms with covariant derivatives and the mass 
terms change sign and convert to one another, the kinetic 
terms of the gauge fields convert to one another without 
change of sign: F fµν µν↔ , but their difference changes 
sign. By this means, the overall sign of the Lagrangian 
(15) changes.  
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3. Discussion of Alternatives 
There is another possibility. The following Lagrangian 
may be written instead of (15):  

( )( )

( )( )

2

2

1 ˆ ˆ
2 2

1 ˆ ˆ
2 2

1 1
4 4

mL eA G eA G

mea G ea G

F F f f

µ µ
µ µ

µ µ
µ µ

µν µν
µν µν

ϕ ϕ ϕ ϕ ϕ ϕ

ψ ψ ψ ψ ψ ψ

= ∂ − ∂ − − ∗

 
− ∂ − ∂ − − ∗ 
 

− − .

(19) 
Whereas the Lagrangian (15) may be schematically 

presented as 2 2
1 mat matL L F L f′= − + + , the expression 

(19) is of the form 2 2
2 mat matL L F L f′= − − − . The La- 

grangian (15a) is completely invariant under transforma-
tions Tα  and Sα , without change of sign. In this sche-
matic notation, the Lagrangian in the model of A. Linde 
(4) may be written as a difference of two identical La-
grangians: 2 2

3 mat matL L F L f′= − − + , and Lagrangians 
in models with hidden sectors representing copies of 
( )1U  (for instance, L. Ackerman et al.) as a sum of two 

identical Lagrangians: 2 2
4 mat matL L F hitL f′= − + − .  

As mentioned above, in order to bring about inva-
riance of the Lagrangian (15) (i.e. 1L  in the schematic 
notation) up to change of sign, transformations Sα  in 
(16) are accompanied by mixing of the fields ϕ  and 
ψ .The question arises as to whether another choice 
might provide invariance of 3L  and/or 4L ? Let us de-
note possible variants as A, B, C, and D:  

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

A

B

C

D

T F F f f

S F f f F

T F f f F

S F F f f

T F f f F

S F f f F

T F F f f

S F F f f

α

α

α

α

α

α

α

α

: Φ,Ψ → Φ,Ψ ; → ; → ;

: Φ,Ψ → Ψ,Φ ; → ; → ;

: Φ,Ψ → Ψ,Φ ; → ; → ;

: Φ,Ψ → Φ,Ψ ; → ; → ;

: Φ,Ψ → Ψ,Φ ; → ; → ;

: Φ,Ψ → Ψ,Φ ; → ; → ;

: Φ,Ψ → Φ,Ψ ; → ; → ;

: Φ,Ψ → Φ,Ψ ; → ; → .

 

The variant A represents (16) where common trans- 
formations Tα  are not accompanied by mixing of fields 
while “imaginary” transformations Sα  mix fields. The 
variant B represents the reverse case where only Tα  are 
accompanied by mixing of fields. In the variant C both Tα  
and Sα  mix fields. Finally, none of the trans- formations 
mix fields in the variant D. The point is that there are no 
other possibilities apart from A, B, C, and D, since any 
mixing of fields must be inevitably accom- panied by 
mixing of potentials A aµ µ↔  and, conse- quently, 
F fµν µν↔  (otherwise covariant derivatives would be 
non-invariant, even up to change of sign).  

Let us remind that “imaginary” transformations Sα  
reverse signs of material Lagrangians mat matL L′,  and both 
Tα  and Sα  keep signs of field-strength tensors F f, . 
This game of signs leads to the conclusion that the only 
valid possibility is the variant A applied to 1L  or 2L . 
There is no other way in which a Lagrangian can be in-
variant, even up to change of sign. By way of example, 
let us examine what happens to the Lagrangian 3L  un-
der the transformations. In case of A, it is invariant under 
Tα  and converts to 2 2

mat matL f L F′− − + + , which 
represents neither 3L+  nor 3L− , under Sα . Analogi-
cally, in cases of B and C it converts to 3L−  under Tα , 
while Sα  represents a problem once again. Finally, in 
case of D, it is invariant under Tα  and converts to 

2 2
mat matL F L f′− − + +  under Sα . The latter expression 

is neither 3L+  nor 3L− . 
So, the possibilities when the overall Lagrangian 

represents a sum ( )4L  or difference ( )3L  of two 
identical Lagrangians for the visible and hidden sectors 
are ruled out by the extended symmetry. The reason is 
that this group imposes more rigid restrictions on the 
structure of Lagrangian’s terms than the common ( )1U . 
Indeed, now that we have a two-connected group, we 
need to ensure invariance (up or not to change of sign) 
under both types of transformations Tα  and Sα . 

4. Complex Scalar Field Representation 
A more conventional representation is constructible. The 
substitution when 1 21 2i ie q ϕ ϕϕ ϕ→ ; → ; →   (imaginary 
charges!), transforms the Lagrangian (13) to 

( )( )
( ) ( )

2

1 2 1 2

i i

1 1i i
2 2

L qA qA mµ µ
µ µ

ϕ ϕ ϕ ϕ

= ∂ Φ − Φ ∂ Φ + Φ − ΦΦ;

Φ = + ; Φ = − ,   

   (20) 

which represents a common Lagrangian for complex 
scalar fields Φ . Then the transformations (10) take the 
form (with iβ  in place of α ): 

i i

i i

i e i e

i e i e

t

s

β β
α

β β
α

β β

β β

−

−

:Φ →Φ+ Φ = Φ;Φ→Φ− Φ = Φ;

:Φ→Φ+ Φ = Φ;Φ→ −Φ+ Φ = − Φ
 (21) 

and in both cases  

( )1 1 1iiA A A Ae q qµ µ µ µ µ µ µα β β→ + ∂ = + ∂ = + ∂ . It can  

be shown that in this case, too, covariant derivatives 

( )
( )

i

i

D qA

D qA

µ µ µ

µ µ µ

Φ = ∂ Φ − Φ ;

Φ = ∂ Φ + Φ
         (22) 

are transformed according to (21), that is, in the same 
manner as the fields Φ,Φ  and consequently the La-
grangian (20) is invariant under transformations tα  and 
changes sign under sα . 

The transformations (21) in terms of real and imagi-
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nary parts of Φ,Φ  look like (writing α  for β ):  

1 1

2 2

1 1

2 2

cos sin
sin cos
i sin i cos
i cos i sin

t

s

α

α

α αϕ ϕ
α αϕ ϕ
α αϕ ϕ
α αϕ ϕ

−    
: → ;    

    
    
: → .    −    

 

 

 

 

      (23) 

Let us rewrite (23) in infinitesimal form separating out 
the imaginary unit, as is the convention in the standard 
form of gauge transformations 

i ; 1, , ; , 1, , .A A A j j BAB
T j K A B Rφ φ φ α φ 
 
 

′→ = + = =   

(24) 
Here K  is the dimension of the gauge group (1 in 

this case), R  is the dimension of the representation (1 
in this case), j AB

T 
 
 

 are group generators. The expres-
sions (23) assume the form:  

1 1

2 2

1 1

2 2

1 0 0 1
i i

0 1 1 0
0 1 1 0

i i
1 0 0 1

t

s

α

α

ϕ ϕ
α

ϕ ϕ
ϕ ϕ

α
ϕ ϕ

  −        : → + −        
         
 −        : → − + .       
        

 

 

 

 

    (25) 

It is seen once again from (25) that the elements tα  
and sα  are different in that the unity and the two- di-
mensional rotation generator i ABε  switch places. The 
multiplication table is of the form (8). 

From the preceding, it may be seen that the analogue 
of the Lagrangian (15) looks like: 

( )( )
( )( )

2

2

i i

i i
1 1
4 4

L qA qA m

qa qa m

F F f f

µ µ
µ µ

µ µ
µ µ

µν µν
µν µν

= ∂ Φ − Φ ∂ Φ + Φ − ΦΦ

+ ∂ Ψ − Ψ ∂ Ψ + Ψ − ΨΨ

− + .

   (26) 

Equation (26) is invariant under the transformations  
i i
i i

Tα α α

α α

:Φ→Φ+ Φ; Φ→Φ− Φ;

Ψ →Ψ+ Ψ; Ψ →Ψ− Ψ
          (27) 

and changes sign under the transformations  

i
i

S i
i

α α α

α α

:Φ→Ψ + Ψ;Φ→ −Ψ + Ψ;

Ψ →Φ+ Φ;Ψ → −Φ+ Φ,
         (28) 

whereas the potentials are transformed exactly as in (17), 
with substitution e q→ . The transformations (27), (28) 
may be rewritten in a matrix form analogous to (17).  

The Lagrangian (26) may be represented in a standard 
form separating out currents:  

( )

( )

( ) ( ) ( ) ( )

2 2

2 2

1 1
4 4
i i

L m A J q A A
m a J q a a

F F f f

J q J q

µ µ µ
µ µ µ

µ µ µ
µ µ µ

µν µν
µν µν

µ µ
µ µ µ µ

Φ

Ψ

Φ Ψ

= ∂ Φ∂ Φ − ΦΦ − + ΦΦ

+ ∂ Ψ∂ Ψ − ΨΨ − + ΨΨ

− + ;

= Φ∂ Φ −Φ∂ Φ ; = Ψ∂ Ψ −Ψ∂ Ψ .

 

(29) 
Hence, the difference between the two types of fields 

resides in the fact that for one of them current and elec-
tromagnetic kinetic terms are identical in sign, whereas 
for another type these terms are opposite in sign. In the 
former case, varying with respect to field variables and 
currents, one obtains the conventional Maxwell equations 
and the Lorentz force law. Otherwise, the Equations (2) 
with imaginary charges and negative energy density re-
sult. Let us notice that in case of the Lagrangian (19) the 
same equations are derivable, since there is no interaction 
between the two types of currents and the variation over 
them is performed independently. The physics does not 
depend on the overall sign of the Lagrangian (or part of it 
subject to variation) but on the relation between the signs 
of its terms.  

For definiteness, we took Φ  to be a scalar, though 
everything may be rewritten in terms of fermions as well. 

5. Possibility of Connectors 
Let us discuss the possibility of mixing terms in Lagran-
gians describing interactions between common and im-
aginary charges, i.e. a connector sector linking hidden 
and visible sectors. It is very tempting to have such a 
connector, since it gives rise to new phenomenology and 
implications for dark matter detection possibilities and 
technological applications (perhaps including perpetuum 
mobile of the first kind!). However it is a rather delicate 
question, since such an interaction may lead to a break-
down ofthe vacuum due to negative energy fields. Theo-
ries of interacting fields in which some fields appear with 
each sign of kinetic term are generically unstable. The 
theory does not possess a vacuum; even classically the 
evolution will lead to disastrous exponentially growing 
excitations with compensating-sign energy contribution. 
Quantum mechanically it is not clear how to quantize the 
interacting theory; even in the absence of gravity, the 
usual approach by analytical continuation from Eucli-
dean space does not make sense because there is no Euc-
lidean partition function. This is why in most models the 
two copies of the standard model matter fields, corres-
ponding to positive and negative energy, interact only 
weakly through gravity, i.e. any connector sector is 
missing (or is multiplied by extremely small constants). 
Note that even if there are no non-gravitational interac-
tions between sectors with opposite-sign Lagrangians, 
mutual interactions with gravity may be already suffi-
cient to ensure the instability of the most natural vacuum, 
and this possibility is firmly ruled out by some authors 
[9]. However, since currently there is still no complete 
and consistent quantum theory of gravity, much remains 
to be seen here. 

As mentioned above, the extended gauge group im-
poses more rigid restrictions on the structure of Lagran-
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gian’s terms than the common ( )1U . Thus a most usual 
mixing term F f µν

µν  is invariant under the transforma-
tions (27) - (28) and so it may not be incorporated into 
the Lagrangian (26), as the latter must change sign under 
(28). However, this term may be included in the Lagran-
gian (19) which is invariant under all transformations. 
Most likely it is impossible to set up a quadratic term 
mixing Fµν  and fµν  that would be invariant under (27) 
and would change sign under (28). It can also be seen 
that the mixing kinetic and Yukawa-like terms are inva-
riant under Tα  and change sign under Sα :  

( ) ( ) ( ) ( )( )
( )

e A q a e A q a
intL D D D Dµ µ

µ µγ

δ

, , , ,= Φ Ψ + Φ Ψ

+ ΦΨ +ΦΨ .
    (30) 

Note that the change of sign occurs in a non-trivial 
way, since mutually conjugated terms in (30) switch 
places under transformations Sα . 

6. The U(1) Extension: General  
Consideration 

The above-described extension of the ( )1U  group is 
limited to the two possible values of the parameter in 
circulant matrices (6): 1p = ±  . Besides, the presenta-
tion is mostly restricted to the infinitesimal case. In this 
section let us develop a more systematic approach. We 
start with the most general form of 2 2×  commutative 
matrices:  

ab

a rb b
t

pb a rb
+ 

= . − 
            (31) 

For any fixed values of p  and r , non-degenerate 
matrices (31) form a commutative group. We would like 
to construct an one-parametric group, so a  and b  are 
assumed to be functions of a single parameter xµα  

 
 

 
depending on space-time coordinates: ( )a a α= ;  

( )b b α= . Hence, abt  will be denoted as tα . The con-
dition ( )det 1tα =  imposes the relation between a  and 
b : 

2 2 2 1a p r b 
 
 

− + = .               (32) 

In what follows, we assume 2 0p r+ ≠ . Let us con-
sider a quadratic form in the linear space of doublets of 
real scalar fields: 

2 2
1 22 2 12 1 22C Cϕ ϕ ϕ ϕ ϕ ϕ∗ = + + .       (33) 

It follows from the requirement of invariance of (33) 
under transformations tα : ( ) ( )t tα αϕ ϕ ϕ ϕ∗ = ∗ , that 

12 22 1C r p C p= − ; = −  and the scalar product takes the 
form  

2 2
1 2 1 2

1 2r
p p

ϕ ϕ ϕ ϕ ϕ ϕ∗ = − − .         (34) 

In order to construct matrices with determinant 1− , 
let us arrange (31) in the form of a sum  

1 0 1
0 1

r
t a b

p rα
   

= + ,   −   
         (35) 

where the first matrix (unity) represents tα  with 
1 0a b= , = , and the second matrix  

1
ˆ

r
g

p r
 

=  − 
               (36) 

represents tα  with 0 1a b= , = . The matrix ĝ  can be 
considered as a “generator”, even though the relation (35) 
is not infinitesimal. We will seek for matrices with de-
terminant 1−  in the form ˆ bs kgtα = , where k  is a 
constant. Requiring ( )det 1sα = − , one obtains  

2 2
2

2 2

a ab r
p r p r

s p r
a ap b r

p r p r

α

 + + + = + .
 − + + 

   (37) 

It can be easily verified (taking into account (32)) that 
the quadratic form (34) changes sign under transforma-
tions (37): ( ) ( )s sα αϕ ϕ ϕ ϕ∗ = − ∗ .  

The next step consists in introducing covariant deriva-
tives  

( )1 1 2

2 1 2

ˆ

ˆ

eA x y
D eA M eA z v

x y
M

z v

µ µ
µ µ µ

µ µ

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ

 
 
 

      

∂ − +
= ∂ − = ;

∂ − +

 
= , 
 

 (38) 

where we introduce a completely arbitrary matrix M̂ . 
The fields are transformed as follows: 

( )
( )

1 21

1 22

1 22 2
1 2

2
1 222

a rb b
t pb a rb

r ab a
p r p r

s p r
rpa b a

p rp r

α

α

ϕ ϕϕ
ϕ

ϕ ϕϕ

ϕ ϕ
ϕ

ϕ
ϕ

ϕ ϕ

                

 
 
 
 
 

+ +
: = → ;

+ −

  
+ +  + +  : = → + ,  + − ,  ++   

 

(39) 
while the gauge field is subject to the gradient transfor-
mation: 1A A eµ µ µα→ + ∂ . Inserting the components of 
fields, transformed under tα , from (39) to (38), one ob-
tains the first transformed component of the covariant 
derivative:  

( ) ( ) ( )
( ) ( )

( ) ( )

1 2 1 21

1 2 1 2

1 2 1 2

a rb b a r b bD

eA x a rb eA bx eA pby eA y a rb

x a rb bx pby y a rb

µ µ µ µ µµ

µ µ µ µ

µ

ϕ ϕ ϕ ϕϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ α 
  

= + ∂ + ∂ + ∂ + ∂ + ∂

− + − − − −

− + + + + − ∂ .
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(40) 
Covariant derivatives are transformed in the same way 

as fields, i.e. (40) must be equal to  

( ) ( ) ( )1 1 2

2 1 2

a rb eA x a rb eA y a rb
b eA bz eA bv

µ µ µ

µ µ µ

ϕ ϕ ϕ

ϕ ϕ ϕ

+ ∂ − + − +

+ ∂ − − .
  (41) 

Equating (40) and (41), one obtains (denoting  
a a b bα α′ ′= ∂ ∂ , = ∂ ∂ ):  

2z py v x r= ; = − ;              (42) 

( )
( )

2a x ry a y p r b

b ya x yr b

 
 
 

 ′ = − + +

′ = + − .

          (43) 

It is notable that the consideration of the second com-
ponent of the covariant derivative transformed under tα , 
as well as both components transformed under sα , leads 
to the same relations (42) - (43). In other words, (42) - 
(43) are quite sufficient to provide correct transforma-
tions of covariant derivatives (38). 

The exact solution of the system (43) with the initial 
conditions ( ) ( )0 00 0a a b b= , =  is as follows  

( )

( )

2 2

2 2

1 22

1 2

2
1 2 0 0

1 e e
2

1 e e
2

x yr y p r x yr y p r

x yr y p r x yr y p r

b c c
p r

a c c

c a b p r

α α

α α

α

α

   
      
   

   
      
   

 − + + − − + 
 
 
  

 − + + − − + 
 
 
  

 
 

,  
 

= − ;
+

= + ;

= ± + .

 

(44) 
The determinant (32) must be equal to 1:  

( ) ( ) ( )2 2 22 2 2 2
0 0 e 1x rya p r b a b p r αα α   −   

    
    

− + = − + = ,

(45) 
whence it follows that x ry=  and 2 2 2

0 0 1a b p r 
 
 

− + = .  

This condition will be satisfied if 2
0 0a b p r u+ + = ;   

2
0 0 1a b p r u− + = . However, the multiplication rules 

(8) imply 1u = . The matrix M̂  takes the form 

1ˆ ˆ
r

M y yg
p r

 
= = − 

               (46) 

and one may put 1y =  without loss of generality. Thus, 
finally, we obtain the expressions for ( ) ( )a bα α,  as 
follows: 

( )

( )

2 2

2 2

2

1 e e
2

1 e e
2

p r p r

p r p r

a

b
p r

α α

α α

α

α

 + − + 
 
 

 + − + 
 
 

= + ;

= − .
+

     (47) 

To summarize, the extended commutative gauge 
groups consist of matrices (31) and (37) with entries that 
depend on one real parameter and are given by (47). The 

family of these Lie groups is parameterized by two pa-
rameters: p r, . Compactness or non-compactness de-
pends on the values of these constants. As seen from (32), 
a group will be compact if 2 0p r+ <  and non-compact 
otherwise. The groups are two-connected. The Lagran-
gian (13) in which the scalar product and the covariant 
derivatives are now given by (34) and (38) respectively, 
is invariant under transformations tα  and changes sign 
under transformations sα  (accompanied by gradient 
transformations of Aα ). 

In case that 0 1r p= , = , the expressions (47) take the 
form cosh sinha bα α= , =  and we come to the case (7) 
with covariant derivatives given by (11). In case of 

0 1r p= , = − , the case (23) results.  

7. Cosmological Issues 
Clearly the existence of IC and “minus” fields leads to 
important physical conclusions which could have inter-
esting consequences for both, cosmological structure on 
all scales and dynamics of the very early universe, and 
pour a light on the key scientific problems facing the 
modern cosmology (e.g., [10]). 

We propose particles carrying imaginary charges as 
one of the components of dark matter. J.L. Feng points 
out that “... it is still not at all difficult to invent new par-
ticles that satisfy all the constraints, and there are candi-
dates motivated by minimality, particles motivated by 
possible experimental anomalies, etc.” [11]. Our candi-
date is motivated by the logic of the gauge group’s natu-
ral extension. Just as common electromagnetic fields 
exist in order to compensate the effect of local gauge 
transformations, so minus-fields are designed to com-
pensate transformations under the extended group. If one 
estimates the coupling and mass scales of the visible and 
hidden sectors on the same order of magnitude then im-
aginary charges would interact (in its sector) like ordi-
nary particles in the visible world, which is a strong ef-
fect in comparison to weakly interacting particles of the 
dominant dark matter in standard cosmology. For this 
reason the spatial distribution of IC-matter would differ 
essentially from baryonic and dominant dark matter 
components. 

Let us assume that the IC-component comprises of 
atomic bound states. Then it will be imaginary charged 
on large scale because imaginary “protons” and “posi-
trons” combine into atoms (like charges attract) that car-
ry a non-compensated charge. Hence the ability of this 
matter for accumulation is enhanced while oppositely 
charged atoms are pushed out remotely elsewhere in the 
Universe (unlike charges repel). Thus we may expect 
fragmentation or clustering of the IC-matter in some 
compact objects or even in separate galaxies or groups of 
galaxies what increases the probability for the matter 
detection through gravitational deviations (from GR) on 
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large scales. Considering the current accuracy of data not 
better than 10%  we can conclude that the proposed 
IC-component of dark matter should be subdominant 
with the density parameter 0 02ICΩ < .  comparable to 
that of baryonic matter.  

On smaller scales IC-matter could exist either in col-
lapsed state (conceivably in galactic centers and other 
astrophysical objects) or in the form of gas clouds and 
balls of plasma where mutual coulomb attraction is 
compensated by gas pressure. Gravitational collapse of 
IC-balls at high red-shifts can stimulate the formation of 
primordial black holes providing natural seeds for a suc-
cessive formation of massive black holes in the early 
Universe through the processes of merging and accretion 
of the standard matter. This effect could help solving the 
problem of super massive black holes observed in the 
centers of distant galaxies (e.g., [12]). Also, one might 
expect the existence of some exotic condensed states and 
phase transitions.  

Consequently, there exist (dark) electromagnetic fields 
with negative energy density on cosmological scales (the 
reviving of the idea of Faradayan cosmology [13]). The 
current density of dark photons is negligible as they are 
redshifted away because of the cosmological expansion. 
However, minus-fields could play an important dynami-
cal role in the past helping to solve the problem of cos-
mological singularity. Taking into account such proper-
ties of dark radiation as violation of the weak energy 
condition [14] and growth of the energy density modulus 
when extrapolating in the past, brings about the conclu-
sion that such a matter in the early universe may crucial-
ly rebuild its evolution avoiding the singularity and pro-
viding sufficient conditions for a cosmological bounce at 
high energies. 

Let us consider this important effect in more detail. In 
the presence of dark radiation ( )dr  in early universe 
the Friedmann equation takes the following form: 

( )2 8π
3 dr
GH ρ ρ= + ,           (48) 

where aH a=   and ( )a a t=  are Hubble and scale fac-
tors respectively, 0ρ >  is the energy density of stan-
dard matter. Assuming that dark photons interact with 
other matter only gravitationally and their density and 
pressure are negative: 

0 0
3
dr

dr drp ρρ < , = < ,            (49) 

we obtain from the energy conservation equation:  

( ) 43 0dr dr drdr
a p a
a
ρ ρρ −+ + = → ∝ .



      (50) 

Therefore, if the trace of standard matter is positive 
( )3 0pρ + >  then the right-hand-side of Equation (48) 
turns to zero at some moment in the past ensuring a 

bounce at this point. Below we demonstrate the bounce 
on the example of two simple cosmological models.  

First, we consider a non-relativistic matter, 3aρ −∝ , 
where Equation (48) yields: 

2 2

0 02 2
0 0

1 1
3

a a t aη ηη
η η

   
= + , = + ;   

   
     (51) 

0a  and 0 0 04 3t a η=  are positive constants, ( )t ⊂ −,+ . 
Another example is a constant density field, constρ ∝  
(say, an inflaton at the beginning of slow-roll evolution): 

0
0

cosh 2 ta a
t

 
= , 

 
             (52) 

where 0 0a t,  is another pair of positive constants. In 
both cases for 0t t< , 0 consta a≈ = , while at earlier 
(later) period of time the formulae describe cosmological 
contraction (expansion). At 0t t  the contribution of 
dark photons in total density becomes negligible. At the 
same time, usual radiation can play a dominant role there 
if they originate in the process of relaxation of standard 
matter, for instance, after decay of inflaton (see Equation 
(52)). 

Summarily, we can conclude that IC and dark photons 
could well be those missing elements of extended cos-
mological model which would naturally answer the key 
problems raised by observational cosmology and yet un-
solved presently. 
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