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ABSTRACT 

The propagation of an optical vortex in a hexagonally arranged single mode multicore fiber structure is investi- 
gated for possible generation of additional vortices and their spread dynamics. Fields are separated into a slowly 
varying paraxial envelope and a rapidly changing exponential component. Solutions are derived from the par- 
axial inhomogeneous Schrodinger equation in two dimensions along with the index of refraction of the proposed 
structure. Numerical analyses are based on the beam propagation method and transparent boundary conditions 
in matrix form with different parameters to represent the intensity and phase of all derived fields. Vortices are 
numerically identified by their points of zero intensity and their phase change or polarity. The optical interfero- 
gram with a plane wave reference is also employed to distinguish the dislocation points in the transverse direc- 
tions of the propagating fields. 
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1. Introduction 

The propagation of light and its waveguiding properties 
in periodic lattices or multicore fibers is one of the im-
portant fields of study in photonics. Optical vortices tra-
velling in such structures form a very rich area of re-
search due to their intensity and phase features. The sig-
nificant implication is their possible attractive applica-
tions in optical switching, modulation and sensing [1,2]. 
There are several theoretical and experimental published 
studies in the literature that examined the propagation of 
optical vortices and their overall behavior. Though, pre-
vious investigations did not verify possible relations be-
tween newly generated vortices and the propagation dis-
tance with the effects of different parameters such as 
structure size and number of cores.  

Dispersion and size of guided beams are numerically 
determined for an optical vortex soliton in a graded index 
waveguide [3]. The propagation of a stationary pulse in 
circularly arranged coupled cores is also numerically  

examined [4]. The fundamental and vortex solitons in a 
two-dimensional optical lattice are then considered for 
the effects of weak and strong localizations on vortex sta- 
bility [5]. An asymmetric vortex soliton is shown to exist 
in symmetric periodic lattices by using the energy-ba- 
lanced relations [6]. In addition, discrete vortex solitons 
in optically induced photonic lattices are observed expe- 
rimentally, and their stabilization is verified in a self fo- 
cusing nonlinear medium [7]. In another experimental 
investigation, Gaussian and vortex beams and vortex lat- 
tice interactions are examined [8]. Moreover, optical vor- 
tices are explored to demonstrate stability in two-dimen- 
sional photonic lattices with Kerr nonlinearity [9]. Also, 
observation of topologically stable multivortex solitons 
in hexagonal photonic lattices is achieved through self 
trapping of truncated two-dimensional Bloch waves [10]. 
In similar photonic lattices, stable double charge vortex 
solitons created in self focusing nonlinear media are ob- 
served by experiments [11]. Also, in hexagonal photonic  
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lattices, single charge vortices are found to exhibit dyna- 
mical instabilities and thus their breakup occurs at short 
propagation distances compared to double charge vortic- 
es [12]. 

2. Formulation and Method 

The relation between the generated optical vortices in a 
multicore fiber and the propagation distance is yet to be 
explored. In this paper, the propagation of an optical 
vortex in a multicore fiber is theoretically and numeri- 
cally investigated. All cores are assumed single mode 
and identical such that they are of equal radius in a hex- 
agonal arrangement with equal distances from each other 
and with the same index of refraction in a step profile. 
An example for the proposed structure is shown in Fig- 
ure 1 for 19 cores in a normalized rectangular coordi-
nates as X = x/w0 and Y = y/w0 with a normalized ra- 
dius of each core as R = r/w0 and a normalized dis- 
tance between cores as D = d/w0 where w0 is the beam 
width and r and d are in μm. The index of refraction of 
each core is assumed very close to that of free space with 
a difference of 0  approximately 
where n0 = 1.0 for free space. Beam propagation method 
(BPM) with transparent boundary conditions (TBC) are 
employed to solve for the propagating optical vortex 
beam in the proposed multicore fiber [13-15]. Different 
parameters are also considered in the solutions such as 
number of cores, core size and their distances from each 
other. 

Δ 0 005cn n n .  

The solutions start from the source-free Maxwell’s 
equations to find the Helmholtz scalar wave equation for 
the field ψ(x, y, z) in the rectangular coordinate system as 

 where n(x, y) is the refractive 
index of the medium. In beam propagation method, 
backward waves are ignored and the fields are separated 
as a paraxial slowly varying envelope (x, y, z) multi-
plied by a rapidly varying exponential part in the form 

  2 2 2
0 0k n x, y   

 

X

Y

2R2R + D

n0 = 1.0

nc

60˚ each angle

 

Figure 1. Schematic transverse section of the proposed 

[16]: 

    0 0, , , , jk n zx y z x y z e            (1) 

where n0 and k0 are the free space index of refraction and 

 (1) in the Helmholtz scalar 
w

wavenumber respectively. 
By substituting Equation

ave equation, the propagation of the optical field can be 
described by the inhomogeneous normalized Schrodinger 
equation in the form [15]: 

   

   

2
T

2 2 2 2
0 0 0

Φ X,Y,Z
Φ X,Y,Z 4

Z

X,Y Φ X,Y,Z 0

j

k w n n


 


    

      (2) 

where, 2 2 2 2
T X Y2       ,Φ(X, Y, Z) is the nor- 

 paraxial slowly varyin

lved for the field Φ(X, Y, 

1

malized g field envelope, n (X,Y) 
is the structure refractive index, Z = z/z0, z0 = π w0

2/λ and 
λ is the wavelength. 

3. Numerical Analyses 

Equation (2) is numerically so
Z) using finite difference (FD) and split-step techniques 
by employing the calculation steps of X = Xm = mΔX, Y 
= Yp = pΔY and Z = Zq = qΔZ [16]. Calculation steps are 
assumed as m = 1, 2, 3, ···, M, p = 1, 2, 3, ···, P and q = 1, 
2, 3, ···, Q, where M and P are the transverse field reso-
lution with an assumption of M = P = N. Also, Q is the 
number of longitudinal steps in Z which is the direction 
of field propagation along the optical waveguide. Thus, 
Equation (2) can be split to generate two equations in the 
form: 

, 1, 1,

, , 1 ,

Φ Φ Φ  

Φ Φ Φ

*q *q *q
m p m p m p

q q q
m p m p m p

A C

B C

 



   
    

         (3a) 

 

1 1 1
, , 1 , 1

ΔZ

4
, 1, 1,

Φ Φ Φ

Φ Φ Φ

q q q
m p m p m p

jT
*q *q *q
m p m p m p

A C

B C e

  
 



 

   

    

    (3b) 

where  2 2 2 2
0 0 0X, YT k w n n     

*

is the influence of the  

ttice material,   is a num

Equations (3a) and (3b), 
th


       (4a) 

1N

fiber la erical intermediate val-
ue of the normalized field, A = 1 − α, B = 1 + α, C = α/2, 
α = jΔZ/4Δ2 and ΔX = ΔY = Δ. 

In order to numerically solve 
ey are transformed to matrix form as: 

   1
11

Φ
N N NN

L F


     

     1

1
Φ

N N N
L G



 
  


        (4b) 

where F and G are the right hand expressions in Equa- 
tions (3a) and (3b) respectively and L is an N × N tridi-
agonal matrix given by: structure with 19 cores in hexagonal arrangement. 
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0 0
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0
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
 
 


 


  


 

A C 


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        (5) 

The transverse distribution of the initial field is as-
su

lized optical vortex at Z = 0 can be 
ex

med to be Φ1 for q = 1 and it is used in Equation (4a) at 
the beginning of the solution. Once Φ*1 is calculated, it is 
then used in Equation (4b) to solve for Φ2 which is the 
field in the next longitudinal step at q = 2. This process is 
repeated for any required distance in the normalized lon-
gitudinal direction. 

The initial norma
pressed as a Laguerre-Gaussian mode of the first order 

given by [17]: 

   2

Φ ,
j

e
 

  
 

            (6) 

where  Φ ,   is the vortex optical field, j = 1 , ρ2 
= X2 +  = tan−1 (Y/X). 

Figure 2 illustrates the initi
Y2 and φ

al optical vortex used in 
th

4. Results and Discussions 

e performed for nc = 

is paper which is numerically generated for N = 500, Δ 
= 0.01, w0 = 5 μm and λ =1.5 μm with y = x and x = Xw0 
= NΔw0 = 25.0 μm. The field intensity is shown in Fig- 
ure 2(a) with the point of zero intensity at the origin and 
Figure 2(b) shows the phase change from –π to π. Fig- 
ure 2(c) is the interferogram with a plane wave reference 
that shows the point of dislocation with a vortex topo-
logical charge or polarity of +1 at the origin. 

All analyses and simulations ar
1.005, beam width of w0 = 5.0 μm and wavelength of λ = 
1.5 μm with 2

0 0πz w   52.36 μm. Single mode cores 
are assumed ber as with a V num 2π 2 405V rNA .   
where 

 
2 2

0 0 1cNA n n .    is the numerical aperture. 

propagated optical v
41

The ortex field at Z = 8 (z = Zz0 = 
8.88 μm) is shown in Figure 3 for 61 cores with R = 

0.4 (r = Rw0 = 2.0 μm), D = 0.2 (d = Dw0 = 1.0 μm), a 
resolution of N = 1000 and calculation steps of Δ = 0.09 
and ΔZ = 0.01. Figure 3(a) is a zoomed in image of the 
field intensity that illustrates the spots of light in some 
cores. Since the cores are very close to each other at a 
constant distance, the field is coupled between them as it 
propagates. The phase of the field with charges of +1 or 
−1 of newly generated vortices is shown as a zoomed in 
image in Figure 3(b) where they demonstrate a phase 
change from –π to π. The total charge or polarity of vor- 
tices should be conserved to +1 which is the charge of 
the initial transmitted vortex field. Topological charge 
should be always conserved when new optical vortices 
are formed and then annihilated in pairs with opposing  
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Figure 2. Intensity (a), phas ) and interferogram with a 

harges [18]. In this case, conservation is confirmed as 7 

e (b
plane wave reference (c) of an optical vortex for N = 500, Δ 
= 0.01, w0 = 5 μm and λ = 1.5 μm. 
 
c
* (+1) + 6 * (−1) = +1 where there are 7 vortices with +1 
charge and 6 vortices with −1 charge. Figure 3(c) is the 
zoomed in image of the interferogram with a plane wave 
reference at an angle of π/4 with respect to the X axis 
which also displays the dislocation points of vortices at 
comparable locations to that shown in Figure 3(b). 
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Figure 3. Intensity (a), phas ) and interferogram with a 

Moreover, Figure 4 shows the propagated optical vor- 
te

 

e (b
plane wave reference (c) of an optical vortex for N = 1000, Δ 
= 0.09, Z = 8.0, w0 = 5 μm and λ =1.5 μm.  = −1 charge and 
 = +1 charge. 
 

x field at Z = 11 for 127 cores with R = 0.4, D = 0.2, a 
resolution of N = 1000 and calculation steps of Δ = 0.04 
and ΔZ = 0.01. Figure 4(a) is a zoomed in image from 
−10.0 to 10.0 of the field intensity with the spots of light 
coupled and spread in more cores compared to the case 
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Figure 4. Intensity (a), phas ) and interferogram with a 

 Figure 3(a). The phase of the field from –π to π is 

e (b
plane wave reference (c) of an optical vortex for N = 1000, Δ 
= 0.04, Z = 11.0, w0 = 5 μm and λ = 1.5 μm.  = −1 charge 
and  = +1 charge. 
 
in
shown as a zoomed in image in Figure 4(b) with 6 new 
pairs of vortices around the first vortex at the origin 
which demonstrate the conservation of charge. Also, Fig- 
ure 4(c) shows the zoomed in image of the interferogram 
with a plane wave reference at an angle of π/4 with re-
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spect to the X axis that shows the points of dislocations 
for each created vortex. 

The approach discusse

n r is w v d 

d in Figures 3 and 4 is employ- 
ed

Table 1. Generated vortices for different number of cores 

Z 37 cores 61 cores 91 cores 127 cores 

 to investigate the generation of new vortices with re-
spect to Z when the number of cores, R or D parameters 
are varied. Results are listed in Table 1 for Z from 0.0 to 
20.0 when the number of cores is 37, 61, 91 and 127 re-
spectively and visualized in Figure 5 for R = 0.4 and D = 
0.2 for the same number of cores. Polarities of new vor-
tices are also recorded in Table 1 which clearly demon-
strate and confirm the conservation of charge. The curves 
shown in Figure 5 have meaning only at the data points 
in Table 1 at integer values for the same parameters. As 
exposed, the generation of new vortices is very dynamic 
and highly varied with respect to Z and the number of 
cores. More vortices are created as the number of cores 
increases and the beam propagates at farther distances. 
New vortices start to appear at shorter propagation dis- 
tance but more new vortices are produced when the  

 

for R = 0.4 and D = 0.2 (polarities are shown between pa-
rentheses). 

0.0 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

1.0 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

2.0 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

3.0 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

4.0 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

5.0 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

6.0 

umbe  of cores higher. Ho ever, new ortices coul
not exist continually and may possibly vanish with other 
new vortices generated at different locations. 

As in Table 1, the longitudinal distance at Z = 8.0 
shows differences in the number of new vortices as the 
number of cores is varied. Core radius may also affect 
the number of new generated vortices as listed in Table 2 
and visualized in Figure 6 for R = 0.2, 0.3 and 0.4, Z = 
8.0 and D = 0.2 for the same number of cores. The gen-
eration of new vortices is very sensitive to the core radius 
when there are more cores such as the sharp change from 
1 vortex to 11 vortices and then to 1 vortex for 127 cores. 

In addition, variation of the distance between cores 
could show some changes in the number of new vortices 
as listed in Table 3 and visualized in Figure 7 for D =  

 

 

Figure 5. Created vortices with respect to Z for different 
cores for R = 0.4 and D = 0.2. 

 

 

3  

13  

3 ) 1 

5 ) 

3  

7 ) 

2

3  

 (+2, −1) 1 (+1) 1 (+1) 1 (+1) 

7.0 1 (+1)  (+7, −6) 1 (+1) 1 (+1) 

8.0 1 (+1) 13 (+7, −6)  (+2, −1 (+1) 

9.0 1 (+1) 11 (+6, −5) 13 (+7, −6) 1 (+1) 

10.0 1 (+1) 1 (+1) 13 (+7, −6)  (+3, −2

11.0 1 (+1) 1 (+1) 15 (+8, −7) 13 (+7, −6) 

12.0 1 (+1) 1 (+1) 11 (+6, −5) 13 (+7, −6) 

13.0  (+2, −1) 1 (+1) 7 (+4, −3) 13 (+7, −6) 

14.0 1 (+1)  (+4, −3 3 (+2, −1) 13 (+7, −6) 

15.0 1 (+1) 11 (+6, −5) 13 (+7, −6) 13 (+7, −6) 

16.0 1 (+1) 13 (+7, −6) 13 (+7, −6) 19 (+10, −9)

17.0 1 (+1) 3 (+12, −11) 13 (+7, −6) 31 (+16, −15)

18.0 1 (+1) 23 (+12, −11) 13 (+7, −6) 33 (+17, −16)

19.0 1 (+1) 17 (+9, −8) 13 (+7, −6) 33 (+17, −16)

20.0  (+2, −1) 13 (+7, −6) 11 (+6, −5) 27 (+14, −13)

Figure 6. Created vortices with respect to R for different

ith core radius R for different 

91 cores 127 cores 

 
cores for Z = 8.0 and D = 0.2. 

 
Table 2. Generated vortices w
nu ber of cores for Z = 8.0 and D = 0.2 (polarities are 
shown between parentheses). 

R 37 cores 61 cores 

m

0.2 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

0.3 1 (+1) 1 (+1) 9  11  

13  

 (+5, −4)  (+6, −5)

0.4 1 (+1)  (+7, −6) 3 (+2, −1) 1 (+1) 
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Figure 7. Created vortices with respect to D for diffe e

th distance D for different 

91 cores 127 cores 

r nt 
cores for Z = 8.0 and R = 0.4. 
 

able 3. Generated vortices wiT
number of cores for Z = 8.0 and R = 0.4 (polarities are 
shown between parentheses). 

D 37 cores 61 cores 

0.2 1 (+1) 13 (+7, −6) 1 (+1) 1 (+1) 

0.3 1 (+1) 13 (+7, −6) 1 (+1) 1 (+1) 

0.4 1 (+1) 1 (+1) 1 (+1) 1 (+1) 

 
.2, 0.3 and 0.4, R = 0.4 and Z = 8.0. This parameter may

clusion 

s are presented for the propagation of
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