
Journal of Software Engineering and Applications, 2014, 7, 42-52 
Published Online January 2014 (http://www.scirp.org/journal/jsea) 
http://dx.doi.org/10.4236/jsea.2014.71005  

Multi-Threshold Algorithm Based on Havrda and Charvat 
Entropy for Edge Detection in Satellite Grayscale Images 

Mohamed A. El-Sayed1,2, Hamida A. M. Sennari3 
 

1Department of Mathematics, Faculty of Science, Fayoum University, Al Fayoum, Egypt; 2Assistant Professor of Computer Science, 
Taif University, Taif, KSA; 3Department of Mathematics, Faculty of Science, Aswan University, Aswan, Egypt. 
Email: mas06@fayoum.edu.eg  
 
Received November 27th, 2013; revised December 25th, 2013; accepted January 2nd, 2014 
 
Copyright © 2014 Mohamed A. El-Sayed, Hamida A. M. Sennari. This is an open access article distributed under the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP 
and the owner of the intellectual property Mohamed A. El-Sayed, Hamida A. M. Sennari. All Copyright © 2014 are guarded by law 
and by SCIRP as a guardian. 

ABSTRACT 
Automatic edge detection of an image is considered a type of crucial information that can be extracted by apply- 
ing detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and scene 
analysis. This paper introduces an edge-detection algorithm, which generates multi-threshold values. It is based 
on non-Shannon measures such as Havrda & Charvat’s entropy, which is commonly used in gray level image 
analysis in many types of images such as satellite grayscale images. The proposed edge detection performance is 
compared to the previous classic methods, such as Roberts, Prewitt, and Sobel methods. Numerical results 
underline the robustness of the presented approach and different applications are shown. 
 
KEYWORDS 
Multi-Threshold; Edge Detection; Measure Entropy; Havrda & Charvat’s Entropy 

1. Introduction 
Edge detection is a very important tool used in many ap- 
plications of image processing to obtain information from 
the frames as a preparatory step to feature extraction and 
object segmentation. This phase detects outlines of an 
object and boundaries between objects and the background 
in the image [1]. The detection results benefit applica- 
tions such as optical character recognition [2], infrared 
gait recognition [3,4], automatic target recognition [5], de- 
tection of video changes [6], and medical image applica- 
tions [7]. 

Edge detection concerns localization of abrupt changes 
in the gray level of an image [8]. Edge detection can be 
defined as the boundary between two regions separated 
by two relatively distinct gray level properties [9]. The 
causes of the region dissimilarity may be due to some 
factors such as the geometry of the scene, the radio me- 
tric characteristics of the surface, the illumination and so 
on [10]. An effective edge detector reduces a large amount 
of data but still keeps most of the important feature of 

the image. Edge detection refers to the process of locat- 
ing sharp discontinuities in an image [11,12]. 

Many operators have been introduced in the literature, 
for example, Roberts, Sobel and Prewitt [13-17]. Edges 
are mostly detected using either the first derivatives, call- 
ed gradient, or the second derivatives, called Laplacien. 
Laplacien is more sensitive to noise since it uses more in- 
formation because of the nature of the second deriva- 
tives. 

Most of the classical methods for edge detection based 
on the derivative of the pixels of the original image are 
Gradient operators, Laplacien and Laplacien of Gaussian 
(LOG) operators [10]. Gradient based edge detection me- 
thods, such as Roberts, Sobel and Prewitts, have used 
two linear filters to process vertical edges and horizontal 
edges separately to approximate first-order derivative of 
pixel values of the image. Marr and Hildreth achieved 
this by using the Laplacien of a Gaussian (LoG) function 
as a filter [18]. To solve these problems, the study pro- 
posed a novel approach based on information theory, which 
is entropy-based thresholding. The proposed method is to 

OPEN ACCESS                                                                                        JSEA 

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.71005
mailto:mas06@fayoum.edu.eg


Multi-Threshold Algorithm Based on Havrda and Charvat Entropy for Edge Detection in Satellite Grayscale Images 43 

decrease the computation time compared with Canny and 
LoG method. The results were very good compared with 
the well-known Roberts, Prewitt, and Sobel gradient re- 
sults. 

The outline of the paper is as follows. In Section 2, we 
have presented the classical edge detection methods that 
related to the paper. Image thresholding based on Havrda 
& Charvat’s entropy is presented in Section 3. Section 4 de- 
scribes the edge detection that was based on entropy. Sec- 
tion 5 illustrates the multi-threshold algorithm based on 
Havrda and Charvat entropy for edge detection. In Sec- 
tion 6, we have presented the effectiveness of proposed 
algorithm in the case of satellite grayscale images, and 
also we compared the results of the algorithm with sever- 
al leading edge detection methods such as Roberts, Pre- 
witt, and Sobel methods in the same section. Conclusions 
are presented in Section 7. 

2. Classical Edge Detection Methods 
Five most frequently used edge detection methods are 
used for comparison. These are: Gradient operators (Ro- 
berts, Prewitt, Sobel), Laplacian of Gaussian (LoG or 
Marr-Hildreth) and Gradient of Gaussian (Canny) edge 
detections [19,20]. People which would like to read 
about this subject are referred to [21-23] evaluation stu- 
dies of edge detection algorithms according to different 
criteria. The details of methods as follows, 

2.1. Roberts Edge Detector 
The Roberts Cross operator performs a simple, quick to 
compute, 2-D spatial gradient measurement on an image 
as shown in Figure 1. It thus highlights regions of high 
spatial frequency which often correspond to edges. In its 
most common usage, the input to the operator is a grays- 
cale image, as is the output. Pixel values at each point in 
the output represent the estimated absolute magnitude of 
the spatial gradient of the input image at that point [20]. 

2.2. Prewitt Edge Detector 
The Prewitt edge detector is an appropriate way to esti- 
mate the magnitude and orientation of an edge. Although 
differential gradient edge detection needs a rather time 
consuming calculation to estimate the orientation from 
the magnitudes in the x and y-directions, the compass 
edge detection obtains the orientation directly from the 
kernel with the maximum response. The Prewitt operator 
is limited to 8 possible orientations, however experience 
shows that most direct orientation estimates are not much 
more accurate. This gradient based edge detector is esti- 
mated in the 3 × 3 neighbourhood for eight directions as 
shown in Figure 2. All the eight convolution masks are 
calculated. One convolution mask is then selected, namely 
that with the largest module [20]. 

1 0  0 −1 

0 −1  1 0 

Gx  Gy 

Figure 1. Roberts gradient estimation operator. 
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Figure 2. Prewitt gradient estimation operator. 

2.3. Sobel Edge Detector 
The operator consists of a pair of 3 × 3 convolution ker-
nels as shown in Figure 3. One kernel is simply the other 
rotated by 90˚. 

These kernels are designed to respond maximally to 
edges running vertically and horizontally relative to the 
pixel grid, one kernel for each of the two perpendicular 
orientations. The kernels can be applied separately to the 
input image, to produce separate measurements of the 
gradient component in each orientation (call these Gx and 
Gy). These can then be combined together to find the ab- 
solute magnitude of the gradient at each point and the 
orientation of that gradient [20]. The gradient magnitude 
is given by: 

2 2
x yG   G   G= +  

Typically, an approximate magnitude is computed us-
ing: 

x yG   G   G= +  

which is much faster to compute. 
The angle of orientation of the edge (relative to the pi- 

xel grid) giving rise to the spatial gradient is given by: 

( )arctan y x  G Gθ =  

2.4. Canny Edge Detector 

This edge detector is due to J.F. Canny [19] (a recursive 
implementation of this algorithm was presented in [24]). 
In his work Canny specified three main criteria for the 
performance of edge detectors: First criteria, (low error 
rate) minimum number of false negatives and false posi-
tives. Second criteria, good localization, report edge lo-
cation at correct position. In other words, the distance 
between the edge pixels as found by the detector and the 
actual edge is to be at a minimum. A third criterion is to 
have only one response to a single edge. In order to im- 
plement the canny edge detector algorithm, a series of 
steps must be followed. 
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Figure 3. Sobel gradient estimation operator. 
 

Step 1: The first step is to filter out any noise in the 
original image before trying to locate and detect any ed- 
ges. It uses a filter based on a Gaussian (bell curve), 
where the raw image is convolved with a Gaussian filter. 
The result is a slightly blurred version of the original 
which is not affected by a single noisy pixel to any sig 
nificant degree. The Gaussian mask used in my imple-
mentation is shown in Figure 4 with σ = 1.4. 

Step 2: After smoothing the image and eliminating the 
noise, the next step is to find the edge strength by taking 
the gradient of the image using the Sobel operator uses a 
pair of 3 × 3 convolution masks. The approximate gra-
dient magnitude is given by x yG   G   G= + . 

Step 3: Finding the edge direction is trivial once the 
gradient in the x and y directions are known. However, 
you will generate an error whenever sumX is equal to 
zero. So in the code there has to be a restriction set when- 
ever this takes place. Whenever the gradient in the x di- 
rection is equal to zero, the edge direction has to be equal 
to 90 degrees or 0 degrees, depending on what the value 
of the gradient in the y-direction is equal to. If Gy has a 
value of zero, the edge direction will equal 0 degrees. 
Otherwise the edge direction will equal 90 degrees. The 
formula for finding the edge direction is just:  

( )arctan y x  G Gθ =  
Step 4: Once the edge direction is known, the next step 

is to relate the edge direction to a direction that can be 
traced in an image. So if the pixels of a 5 × 5 image are 
aligned as follows in Figure 5. 

Then, it can be seen by looking at pixel “a”, there are 
only four possible directions when describing the sur- 
rounding pixels, 0 degrees (in the horizontal direction), 
45 degrees (along the positive diagonal), 90 degrees (in 
the vertical direction), or 135 degrees (along the negative 
diagonal). So now the edge orientation has to be resolved 
into one of these four directions depending on which di- 
rection it is closest to (e.g. if the orientation angle is 
found to be 3 degrees, make it zero degrees). Think of 
this as taking a semicircle and dividing it into 5 regions 
as shown in Figure 6. 

Therefore, any edge direction falling within the range 
(0 to 22.5 & 157.5 to 180 degrees) is set to 0 degrees. 
Any edge direction falling in the range (22.5 to 67.5 de- 
grees) is set to 45 degrees. Any edge direction falling in 
the range (67.5 to 112.5 degrees) is set to 90 degrees. 
And finally, any edge direction falling within the range 
(112.5 to 157.5 degrees) is set to 135 degrees. 

 2 4 5 4 2 

1

159
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4 9 12 9 4 
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Figure 4. Discrete approximation to Gaussian function with 
σ = 1.4. 
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Figure 5. The pixel “a” and the possible directions. 
 

 
Figure 6. The range of edge direction in the five regions. 

 
Step 5: After the edge directions are known, nonmax- 

imum suppression now has to be applied. Nonmaximum 
suppression is used to trace along the edge in the edge 
direction and suppress any pixel value (sets it equal to 0) 
that is not considered to be an edge. This will give a thin 
line in the output image. 

Step 6: Finally, hysteresis is used as a means of elimi-
nating streaking. Streaking is the breaking up of an edge 
contour caused by the operator output fluctuating above 
and below the threshold. If a single threshold, T1 is ap-
plied to an image, and an edge has an average strength 
equal to T1, then due to noise, there will be instances 
where the edge dips below the threshold. Equally it will 
also extend above the threshold making an edge look like 
a dashed line. To avoid this, hysteresis uses 2 thresholds, 
a high and a low. Any pixel in the image that has a value 
greater than T1 is presumed to be an edge pixel, and is 
marked as such immediately. Then, any pixels that are 
connected to this edge pixel and that have a value greater 
than T2 are also selected as edge pixels. If you think of 
following an edge, you need a gradient of T2 to start but 
you don’t stop till you hit a gradient below T1. 

3. Havrda & Charvat’s Entropy 
Regarding the statistical approach for describing texture, 
one of the simplest computational approaches is to use 
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statistical moments of the gray level histogram of the 
image. The image histogram carries important informa-
tion about the content of an image and can be used for 
discriminating the abnormal tissue from the local healthy 
background. Considering the gray level histogram 
{ }1, 0,1,2, ,i gh i N −=   where gN  is the number of dis- 
tinct gray levels in the ROI (region of interest). If n is the 
total number of pixels in the region, then the normalized 
histogram of the ROI is the set { }1, 0,1,2, ,i gH i N −=  , 
where i iH h n= . The source symbol probabilities is 

{ }1, 0,1,2, ,i gH H i N −= =  . This set of probabilities 
must satisfy the condition, 0 1iH≤ ≤ . The average infor- 
mation per source output, denoted S(H) [25], Shannon 
entropy may be described as: 

( ) ( )
1

0
log

gN

i i
i

S H H H
−

=

= − ∑            (2) 

If we consider that a system can be decomposed in two 
statistical independent subsystems A and B, the Shannon 
entropy has the extensive property (additivity)  

( ) ( ) ( )S A B S A S B+ = + , this formalism has been 
shown to be restricted to the Boltzmann-Gibbs-Shannon 
(BGS) statistics. 

However, for non-extensive systems, some kind of ex- 
tension appears to become necessary. Havrda & Char- 
vat’s [26,27] has proposed a generalization of the BGS 
statistics which is useful for describing the thermo statis- 
tical properties of non-extensive systems. It is based on a 
generalized entropic form, 

1

0

1 1
1

gN

i
i

HC H α
α α

−

=

 
= −  −  

∑            (3) 

where the real number α  is a entropic index that charac-
terizes the degree of non-extensivity. This expression re- 
covers to BGS entropy in the limit 1α → . Havrda & 
Charvat’s entropy has a non-extensive property for statis-
tical independent systems, defined by the following rule 
[28]: 

( ) ( ) ( ) ( )
( ) ( )

1

.

HC A B HC A HC B

HC A HC B
α α α

α α

α+ = + + −

⋅ ⋅
    (4) 

Similarities between Boltzmann-Gibbs and Shannon 
entropy forms give a basis for possibility of generaliza-
tion of the Shannon’s entropy to the Information Theory. 
This generalization can be extended to image processing 
areas, specifically for the image segmentation, applying 
Havrda & Charvat’s entropy to threshold images, which 
have non-additive information content. 

Considering 0HCα ≥  in the pseudo-additive formal-
ism of Equation (4), three different entropies can be de-
fined with regard to different values of α . 

For 1α < , the Havrda & Charvat’s entropy becomes a 
“sub extensive entropy” where: 

( ) ( ) ( )HC A B HC A HC Bα α α+ < +        (5) 

For 1α = , the Havrda & Charvat’s entropy reduces to 
an standard “extensive entropy” where: 

( ) ( ) ( )HC A B HC A HC Bα α α+ = +         (6) 
For 1α > , the Havrda & Charvat’s entropy becomes a 

“super extensive entropy” where: 
( ) ( ) ( )HC A B HC A HC Bα α α+ > +        (7) 

Let f(x, y) be the gray value of the pixel located at the 
point (x, y). In a digital image  

( ) { } { }{ }, 1,2, , , 1,2, ,f x y x M y N∈ ∈   of size M × N, 
let the histogram be h(a) for { }0,1,2, ,255a ∈ 

 with f as 
the amplitude (brightness) of the image at the real coor-
dinate position (x, y). For the sake of convenience, we 
denote the set of all gray levels { }0,1,2, ,255

 as G. 
Global threshold selection methods usually use the gray 
level histogram of the image. The optimal threshold t* is 
determined by optimizing a suitable criterion function 
obtained from the gray level distribution of the image 
and some other features of the image. 

Let t be a threshold value and B = {b0, b1} be a pair of 
binary gray levels with { }0 1, .b b G∈  Typically b0 and b1 
are taken to be 0 and 1, respectively. The result of thre-
sholding an image function f(x, y) at gray level t is a bi-
nary function ( ),tf x y  such that ( ) 0,tf x y b =  if 

( ),tf x y t≤  otherwise, ( ) 1,tf x y b= . In general, a thre-
sholding method determines the value t* of t based on a 
certain criterion function. If t* is determined solely from 
the gray level of each pixel, the thresholding method is 
point dependent [25]. 

Let 1 2, , , kh h h  be the probability distribution for an 
image with k gray-levels. From this distribution, we de-
rive two probability distributions, one for the object 
(class A) and the other for the background (class B), giv-
en by: 

1 2

1 2

: , , , ,

: , , ,

t
A

A A A

t t k
B

B B B

hh h  
H H H
h h h   
H H H

λ

λ + +





             (8) 

and where 

1 1
,

t k

A i B i
i i t

H   h H   h
= = +

= =∑ ∑             (9) 

The Havrda & Charvat’s entropy of order q for each 
distribution is defined as: 

( )

( )

1

1

1 1
1

1and 1
1

t

A
i

k

B
i t

HC A

HC B

α
α

α
α

λ
α

λ
α

=

= +

 = − −  
 = − −  

∑

∑
    (10) 

The Havrda & Charvat’s entropy HCα  is parametri- 
cally dependent upon the threshold value t for the fore- 
ground and background. It is formulated as the sum each 
entropy, allowing the pseudo-additive property, defined 
in Equation (3). We try to maximize the information 
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measure between the two classes (object and back- 
ground). When HCα  is maximized, the luminance level t 
that maximizes the function is considered to be the opti-
mum threshold value. 

( ) ( ) ( ) ( )

( ) ( )

* Argmax 1

.
t G

t HC A HC B

HC A HC B

α α

α α

α α
∈

= + + −

⋅ ⋅ 
   (11) 

In the proposed scheme, first create a binary image by 
choosing a suitable threshold value using Havrda & 
Charvat’s entropy. The technique consists of treating 
each pixel of the original image and creating a new im-
age, such that ( ), 0tf x y =  if ( ) ( )*,tf x y t q≤  otherwise, 

( ), 1tf x y =  for every { }, , ,x M∈ 1 2  , { }, , ,y N∈ 1 2  . 
When 1α → , the threshold value in Equation (3), 

equals to the same value found by Shannon’s method. 
Thus this proposed method includes Shannon’s method 
as a special case. The following expression can be used 
as a criterion function to obtain the optimal threshold at 

1α → . 

( ) ( ) ( )* 1 Argmax .
t G

t HC A HC Bα αα
∈

= = +     (12) 

The Havrda_Charvat_T procedure to select suitable 
threshold value t* with α  for grayscale image f can now 
be described as follows: 

 
Procedure Havrda_Charvat_T, 
Input: An image f of size r × c, and 0α > . 
Output: optimal threshold t* of f. 
Begin 

1. Let f(x, y) be the original gray value of the pixel at 
the point (x, y), x = 1.. r, y = 1.. c. 

2. Calculate the probability distribution 0 ≤ hi ≤ 255. 
3. For all t∈{0, 1, …, 255}, 

i. Calculate AH , BH , Aλ , and Bλ  using Equations 
(8) and (9). 
ii. Find optimum threshold value t*, such that 

( ) ( ) ( ) ( )

( ) ( )

* Argmax 1

.
t G

t HC A HC B

HC A HC B

α α

α α

α α
∈

= + + −

⋅ ⋅ 
 

End. 
 

The technique consists of treating each pixel of the 
original image and creating a new image, such that 

( ), 0tf x y  =  if ( ) ( )*,tf x y t α≤  otherwise, ( ), 1tf x y =  
for every { }, , ,x M∈ 1 2  , { }, , ,y N∈ 1 2  . 

4. Detecting of the Edges 
We will use the usual masks for detecting the edges [29]. 
A spatial filter mask may be defined as a matrix w of size 
m × n. Assume that m = 2μ + 1 and n = 2ρ + 1, where μ, ρ 
are nonzero positive integers. For this purpose, smallest 

meaningful size of the mask is 3 × 3. Such mask coeffi- 
cients, showing coordinate arrangement as Figure 7(a). 
Image region under the above mask is shown as Figure 
7(b). 

In order to edge detection, firstly classification of all 
pixels that satisfy the criterion of homogeneousness, and 
detection of all pixels on the borders between different 
homogeneous areas. In the proposed scheme, first create 
a binary image by choosing a suitable threshold value us- 
ing Havrda & Charvat entropy. Window is applied on the 
binary image. Set all window coefficients equal to 1 ex-
cept centre, centre equal to × as shown in Figure 8. 

Move the window on the whole binary image and find 
the probability of each central pixel of image under the 
window. Then, the entropy of each central pixel of image 
under the window is calculated as S(CPix) = –pcln(pc). 
Where, pc is the probability of central pixel CPix of bi- 
nary image under the window. When the probability of 
central pixel, pc = 1, then the entropy of this pixel is zero. 
Thus, if the gray level of all pixels under the window ho- 
mogeneous, pc = 1 and S = 0. In this case, the central pi- 
xel is not an edge pixel. Other possibilities of entropy of 
central pixel under window are shown in Table 1. 
 

w(–1,−1) w(−1,0) w(−1,1) 

w(0,−1) w(0,0) w(0,1) 

w(1,−1) w(1,0) w(1,1) 

(a) 

f(x−1,y−1) f(x−1,y) f(x−1,y+1) 

f(x,y−1) f(x,y) f(x,y+1) 

f(x+1,y−1) f(x+1,y) f(x+1,y+1) 

(b) 
Figure 7. Coordinate arrangement and image region under 
3 × 3 mask. 
 

1 1 1 

1 × 1 

1 1 1 

Figure 8. Window coefficients of 3 × 3 mask. 
 

Table 1. p and S of central under window. 

p 1/9 2/9 3/9 4/9 

S 0.2441 0.3342 0.3662 0.3604 

p 5/9 6/9 7/9 8/9 

S 0.3265 0.2703 0.1955 0.1047 
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In cases pc = 8/9, and pc = 7/9, the diversity for gray 
level of pixels under the window is low. So, in these cas-
es, central pixel is not an edge pixel. In remaining cases, 
pc ≤ 6/9, the diversity for gray level of pixels under the 
window is high. The complete algorithm can now be 
described as follows: 

 
Algorithm HCEdgeDetection; 
Input: A grayscale image A (M × N). 
Output: The edge detection image g. 
Begin 

1. Select suitable t*, α, using Havrda_Charvat_T pro-
cedure. 

2. Create a binary image: 
If f(x, y) ≤ t* α) then f (x,y) = 0 Else f(x, y) = 1. 
3. Create a mask w, with dimensions m × n: 
Normally, m = n = 3. μ = (m−1)/2 and ρ = (n−1)/2. 
4. For all 1 ≤ x≤ M and 1 ≤ y ≤ N: 
Find g an output image by set g = f. 
5. For all ρ + 1≤ y ≤ N−ρ and μ + 1 ≤ x ≤ M−μ, 
checking for edge pixels: 

i. sum = 0; 
ii. For all −ρ ≤ k ≤ ρ and −μ ≤ j ≤ μ: 

If (f(x, y) = f (x+j, y+k)) Then 
Sum = sum + 1. 

iii. If (sum > 6) Then g(x,y)=0  Else g(x,y) = 1. 
End algorithm. 

5. Proposed Algorithm 
Here, the algorithm produces three different threshold 
values t1, t2 and t3. We use Havrda_Charvat_T procedure, 
to find the threshold value t1 through the entire image. 
Then we split the image by t1 into two grayscale parts, 
the object and background. Applying the Equation (11), 
to find the locals threshold values t2 and t3 of object and 
background, respectively. Independently, we apply HC 
EdgeDetection Procedure with threshold values t1, t2 and 
t3. We merge the resultant edge images to obtain the re- 
constructed edge image. 

In order to minimize the execution time, we deal with 
the histogram vectors, 0, 1, ···, t1 and t1 + 1, ···, 255 of 
object and background parts, respectively rather than the 
matrices size of them. 

The steps of proposed algorithm are as follows: 
1- Read the grayscale level image, I = imread (‘test. 

tif’); 
2- Calculate the histogram H with 256 elements of I; 
3- Call Havrda_Charvat_T(H, α) to find the optimal 

threshold value, t1; 
4- Divide H into two parts HLow and HHigh using t1. 
5- Recall Havrda_Charvat_T(HLow, α) to find the op-

timal threshold value t2; 
6- Recall Havrda_Charvat_T(HHigh, α) to find the op-

timal threshold value t3; 
7- Now we have 3 values of the threshold, t2 < t1 < t3. 

Reconstruct bitmap image f, such that: if (Ix,y < t1 and Ix,y 
>= t2) or (Ix,y >= t3) then fx,y =1; end; 

8- Call the procedure HCEdgeDetection(f) to find edge 
image g. 

9- Display the image g, imshow(g); 
The above procedures can be done together in the fol-

lowing MATLAB program: 
 

I=imread(‘test.tif’); 
alpha=0.1; 
[M,N,R]=size(I); 
if R==3 I=rgb2gray(I); end; 
H = imhist(I); 
[T1, Max1, Loc1] =  

Havrda_Charvat_T(H,alpha); 
HLow= H (1:Loc1-1,:); 
[T2, Max2, Loc2]= 

Havrda_Charvat_T(HLow,alpha); 
HHigh= H (Loc1:size(H),:);  
[T3, Max3, Loc3] = 

Havrda_Charvat_T(HHigh,alpha); 
f=zeros(M,N); 
for i=1:M;  

for j=1:N; 
if ((I(i,j) >= T2)&(I(i,j) < T1)) 

|(I(i,j) >= T3) f(i,j)=1; end; 
end; 

end 
[g]= HCEdgeDetection(f); 
figure; imshow(g); 

6. Results and Discussion 
In order to test the method proposed in this paper and 
compare with the other edge detectors, common gray le- 
vel test images with different resolutions and sizes are 
detected by Canny, LOG, Roberts, Prewitt, Sobel and the 
proposed method respectively. The performance of the 
proposed scheme is evaluated through the simulation re- 
sults using MATLAB. Prior to the application of this al- 
gorithm, no pre-processing was done on the tested imag- 
es (Figure 9). 

The algorithm has two main phases global and local 
enhancement phase of the threshold values and detection 
phase, we present the results of implementation on these 
images separately. Here, we have used in addition to the 
original gray level function f(x, y), a function g(x, y) that 
is the average gray level value in a 3 × 3 neighborhood 
around the pixel (x, y). We use MATLAB to calculate the 
average time for each method at different images size by 
repeating 10 times for each type of image. As shown in 
Figure 10, the chart of the test images and the average of 
run time for the classical methods and proposed scheme. 
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Figure 9. Samples of test images. 

 

 
Figure 10. Comparison of run time between some classical methods and proposed method on the same datasets. 

 
It has been observed that the proposed edge detector works 
effectively for different gray scale digital images as com- 
pare to the run time of classical methods. Some selected 
results of edge detections for these test images using the 
classical methods and proposed scheme are shown in 
Figure 11 and Table 2. 

10. Conclusion 
This paper shows the new algorithm based on the Havrda  

& Charvat’s entropy for edge detection using split and 
merge technique of the histogram of grey scale image. The 
objective is to find the best edge representation and mini- 
mize the computation time. A set of experiments in the do- 
main of edge detection are presented on a sample of test 
images, see Figure 9. An edge detection performance is 
compared to the previous classic methods, such as Canny, 
LOG, and Sobel. Analysis shows that the effect of the 
proposed method is better than that of those methods in 
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Figure 11. Edge detections of test images using the LoG method, Roberts method, Sobel method and proposed method, re-
spectively. 
 
execution time, and it is also considered as easy imple-
mentation. The significance of this study lies in decreas-

ing the computation time with generating suitable quality of 
edge detection. It is already pointed out in the introduction  
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Table 2. The threshold values of tested images with different values of α. 

Image 
Name 

α = 0.1 α = 0.5 α = 0.7 α = 0.9 α = 1.2 

t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

2_1_01 142 69 182 139 78 178 139 80 178 139 83 176 227 226 227 

2_1_02 96 53 164 102 61 164 104 64 164 136 87 180 231 230 231 

2_1_03 142 107 196 142 109 195 142 108 195 142 108 173 221 220 221 

2_1_04 176 105 196 123 94 174 124 95 172 124 95 171 211 210 211 

2_1_05 137 66 184 136 66 180 136 66 179 136 66 178 234 233 234 

2_1_06 62 52 146 143 62 188 144 61 188 144 105 187 236 235 236 

2_1_07 146 111 202 150 117 197 151 126 191 151 126 186 230 229 230 

2_1_08 158 132 207 161 136 193 161 136 191 161 141 189 227 226 227 

2_1_09 140 120 176 174 140 201 175 140 201 175 140 200 231 230 231 

2_1_10 130 114 182 173 130 201 173 130 199 174 130 199 230 229 230 

2_1_11 130 92 168 130 94 165 130 94 165 130 94 164 208 207 208 

2_1_12 152 128 189 166 141 193 169 144 194 170 145 193 224 223 224 

2_2_01 124 69 190 121 71 176 120 71 173 119 70 170 234 233 234 

2_2_02 132 120 171 171 130 198 171 130 197 171 129 196 229 228 229 

2_2_03 140 122 171 167 138 194 168 138 193 168 138 192 223 222 223 

2_2_04 115 95 210 161 118 211 162 122 209 163 129 208 235 234 235 

2_2_05 143 69 184 142 86 181 142 90 181 142 92 180 232 231 232 

2_2_06 151 114 189 152 127 188 152 127 188 151 127 188 222 221 222 

2_2_07 146 120 213 149 118 182 150 118 181 166 144 189 226 225 226 

2_2_08 126 72 192 123 74 178 122 74 175 121 73 171 235 234 235 

2_2_09 104 68 141 104 69 143 104 69 144 144 104 181 231 230 231 

2_2_10 108 86 211 109 87 152 109 87 153 108 88 154 231 230 231 

2_2_11 99 85 194 98 70 194 98 70 194 98 45 195 233 232 233 

2_2_12 80 62 188 82 65 168 83 65 167 83 65 166 254 249 254 

2_2_13 162 115 189 165 121 189 166 119 189 168 119 191 226 225 226 

2_2_14 62 44 180 169 60 200 154 98 191 152 99 189 235 231 235 

2_2_15 118 88 189 124 105 173 159 121 195 159 121 194 223 222 223 

2_2_16 156 78 194 154 95 190 153 103 189 153 105 187 228 224 228 

2_2_17 71 57 144 70 57 141 68 45 141 141 68 173 219 218 219 

2_2_18 97 80 192 193 126 212 194 130 212 194 131 212 234 233 234 

2_2_19 111 87 193 110 86 191 191 110 209 191 139 207 232 231 232 

2_2_20 85 76 169 166 79 193 165 79 192 165 79 192 233 232 233 

2_2_21 99 47 208 99 46 162 101 52 162 101 47 161 237 236 237 

2_2_22 126 103 211 147 116 212 149 121 200 151 122 181 233 232 233 

2_2_23 128 29 170 129 29 170 129 29 170 129 28 170 229 228 229 

2_2_24 171 53 200 173 127 198 173 127 198 174 127 198 234 233 234 

3_2_25 200 115 224 162 115 208 160 115 208 160 115 208 245 242 245 

5_2_09 129 71 218 129 75 177 129 75 177 129 75 176 255 252 255 

 
that the traditional methods give rise to the exponential 
increment of computational time. Experiment results have 
demonstrated that the proposed scheme for edge detec- 
tion can be used for different gray level digital images. 

Another benefit comes from easy implementation of this 
method. The proposed method works well as compared 
to the previous methods, Roberts, Prewitt, and Sobel on 
test samples. 
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