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ABSTRACT 
The travelling wave group is a stable wave packet. Many surprising results are derived from it. The group is eas-
ily quantized for photons and applied, as a solution to the relativistic Klein-Gordon equation, to free particles. 
Further solutions to the resulting algebraic equation provide a stable wave function for free antiparticles. Con-
sistency with the superstructure of quantum electrodynamics is obtained by an assignment to the electron anti-
particle of negative mass and negative charge. Then in 5-dimensional space-time-mass, CPT invariance trans-
forms to M’PT conservation in either charged or neutral particles, while many other consequences are also evi-
dent. 
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1. Introduction 
This paper was given to the California-Nevada section of 
the American Physical Society. The subject is a continu-
ation of two preliminary papers [1,2]. These have estab-
lished the travelling wave group (TWG) as a stable wave 
packet that contradicts earlier beliefs that the packet is 
unstable [3]. Operation of the relativistic version of the 
Klein-Gordon equation on the TWG provides a second 
order algebraic equation with more than one solution. 
Dirac assigned his negative eigenvalue for his first order 
relativistic equation to the positron. However, we find 
contradictions in his subsequent insistence on its positive 
mass and positive kinetic energy. However, we preserve 
the superstructure of quantum electrodynamics by pre-
serving the ratio of charge to mass, e/m, in the antipar-
ticle. This ensures a regular response to electromagnetic 
fields. It also leads to a new derivation for antiparticle 
wave functions and to new descriptions for annihilation, 
creation, mass etc. A sufficiently profound change in 
method can have surprising consequences. 

In particular, it is prima facie anomalous that CPT 
(Charge, Parity and Time reversal) symmetry violations 
should be recorded on uncharged particles [4]. CPT 
symmetry is a consequence of the Principle of Relativity, 
of the homogeneity of space-time, and of the isotropy of 

space [5,6]. Time reversal has special significance in 
antiparticle interactions as expressed in Feynman dia-
grams and in the Stueckelberg [7]-Feynman [8] “switch-
ing principle”: “Negative-energy objects travelling for-
ward in time do not exist; any negative-energy object P  
travelling backwards in time can and must be described 
as its anti-object P  going in the opposite way in space 
(but endowed with positive energy and motion forward 
in time)”. This principle, as a function of time, cannot be 
relegated to the spin part of the wave function; but is 
naturally incorporated into the TWGs to be described. 

Quantum mechanics has been chronically debated by 
the best known names. Einstein [9], Schroedinger and de 
Broglie employed wavelike models, and the first of these 
was “led to conclude that the description of reality as 
given by a wave function is not complete”. Their view 
contrasts with the more standard methods of Heisenberg 
and Bohr [10]. Previously, we have shown how Max-
well’s equations, applied to electromagnetic waves, can 
be quantized by means of a TWG [1]. This wave group 
satisfies the requirements for Heisenberg’s Uncertainty 
Principle [3,11] for the case of the massless photon. The 
group is consistent with Planck’s law, with the de Broglie 
hypothesis, and with corresponding energy and momen-
tum operators. The wave group is extended to massive 
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particles by adding the conditions derived by special re-
lativity. The same conditions were used by Dirac in his 
first-order, relativistic equation. His theory has been 
extraordinarily successful in many ways. Notable exam-
ples are the explanation for spin and the prediction of the 
positron, beside ubiquitous application in high energy 
elementary particle physics, and in electrodynamics. 
Nevertheless, the wave packet exists: it can be measured 
in several ways even while the carrier wave crests appear, 
move through the wave group, and disappear like “will o’ 
the wisp”, since the carrier transmits not energy, but 
phase. It is time for a type of analysis that expounds the 
consequences of a stable wave packet.  

Part of this explanation was already described in the 
earlier papers, while for clarity, key results are repeated 
here. Notice that the Dirac equation is a single particle 
theory and as such does not account for many funda-
mental processes, such as pair creation and annihilation. 
However, collisions are made between single particles, 
and he found that the application of Heisenberg’s dy-
namics to the free electron gave the unphysical result that 
its speed is equal to the speed of light c 1. He explained 
this by noting the velocity with two components: one a 
lower velocity as measured in the laboratory; and the 
second a very high frequency oscillation. By use of the 
TWG, we find that the latter is the phase velocity, the 
ratio of angular frequency/wave vector, vp = ω/|k|; while 
the former is the group velocity, vg = dω/d|k|. The phase 
velocity is measurable either through the relation vp = 1/vg 
2 in units c = 1, the speed of light in vacuo, or through the 
ratio ω/|k|, corresponding to energy/momentum, where 
numerators and respective denominators are indepen-
dently measurable. The identification of properties that 
break the light barrier provides a simple explanation for 
what has been called zitterbewegung. This concept has 
been more useful in developing theories of spin [12,13] 
than for understanding the spatial part of the wave func-
tion. The developments are not used here because we are 
considering free particles. In free particles, the spin fac-
tor in the wave function is independent of the spatial 
factor and is left to a later time. 

2. The Travelling Wave Group 
For convenience we use units with the reduced Planck 
constant 1c= = . Write the TWG for the wave func-
tion ( )Xψ  of a free particle or photon: 

( )
2

2exp
2
XX A Xψ
σ

 
= + 

 
          (1) 

where A is a normalizing factor found after integration 

over all space d 1ψ ψ τ∗ ⋅ =∫ ; and the imaginary argu-
ment, in the direction of local propagation k = |k|, 
represents the Rest Frame Localizer (RFL): 

( )X i t kxω= − ,             (2) 

where X = 0 locates the rest frame3. The equations de-
scribe a plane wave travelling with mean wave vector k, 
mean angular frequency ω , and therefore with phase 
velocity vp = ω/|k| and group velocity vg = dω/d|k| 4. 
The wave vector is the negative gradient of the three di-
mensional wave function. The second argument in the 
bracket of Equation (1) describes oscillating real and 
imaginary waves that are enveloped by the Gaussian dis-
tribution in the first argument. The envelope is spread by 
the denominator σ , which is a constant that is set by 
the initial condition, being an experimental parameter for 
a free particle. This denominator is related to uncertainty 
(appendix 6.2) and determines A. The amplitude modula-
tion provided by the envelope causes spreading of k' and  
ω'—in space and time respectively—about their respec-
tive mean values, ω  and k. Notice that the group pro-
file depends only on the envelope, Aexp(−X2/2σ2), which 
in turn varies only with x  and t. The Gaussian distribu-
tion is constant, covering all x ; all t; and all combina-
tions. The TWG therefore is perfectly stable. 

In electromagnetism, the real or imaginary parts of the 
travelling wave represent propagating electric or mag-
netic fields. With Planck’s law, these fields define in turn 
the probability for a quantum event, sometimes expressed 
through perturbation theory. The TWG is adapted to par-
ticles as the probability for an event, by operating with 
the relativistic version of the Klein-Gordon equation. For 
a free particle the result is the same as in special relativi-
ty where: 

2 2 2
0E m= +p .              (3) 

where, by substituting for Planck’s law and for the de 
Broglie hypothesis, the equation is written: 

2 2 2k mω = + ,               (4) 
m now being a quantity similar to rest mass5, by dropping 
the subscript 0. The fact that the equation is second order 
has implications for the nature of mass and elementary 
particles as we shall see. Each of the three variables may 
be positive or negative, but they are constrained. Consid-
er the differential: 

d2 2
d

k
k
ωω =                 (5) 

1From [ ]1x x H c= = . This result is the geometric mean of the phase 
and group velocities to be described. 
2Similar to Ref 5 section 30, Equation (32). 

3One axis being the direction of propagation, k/|k|. 
4The derivation is an elementary exercise, (appendix 6.2) provided that 
suitable conditions are known, such as free particles in vacuo, as pre-
sently considered. 
5In particles, rest mass is identical to m; in antiparticles, pseudo mass m 
will have opposite sign. 
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which may be written: 
1p gv v⋅ = .                (6) 

So special relativity defines the phase velocity. It is 
interesting to notice that, if the TWG is considered as the 
sum of component travelling waves, then a carrier wave 
component that travels faster than the mean, is slowed by 
its group velocity according to Equation (6). Wave inter-
ference ensures that the profile, described by Equation (1) 
as a solution to the wave equation, is preserved in time 
and space as it follows the mean velocity. General con-
sequences are summarized in Box 1 and described be-
low. 

3. Singularities and Symmetries 
Begin by representing equation 4 on a right angled trian-
gle [2] and apply Pythagoras’ theorem. Then contract the 
momentum to the rest state, so that m = ω < 0. Now add 
kinetic energy, as k increases from zero. Suppose, in-
itially, that this kinetic energy is positive, as it is for the 
electron. The energy would then be represented as in 
Figure 1. Here the electron rest mass is assigned the unit 
value m0 = 1. Owing to the unphysical singularity that 
occurs when k = −m, the figure is an illustration of the 
false supposition.  

Notice that Figure 1 is one argument among others [2], 
that are used to solve Equation (4) (see summary in Box 1). 
The elimination procedure requires consistency between 
three conditions: from relativity; from the TWG solution 
to the wave equation; and from the positive and negative 
energy solutions found both here in the second order eq-
uations, as elsewhere in Dirac’s first order eigenvalues. 

Starting from the same rest state, and based on the 
TWG as a general solution to the wave equation, the 
analysis [2] shows that a consistent solution is obtained 
by inverting equation 2 in order to solve for antiparticles: 
X X X→ − = ∗ . Thus ( )t kxψ ω −  in a particle trans-

forms to ( )kx tψ ω−  in the corresponding antiparticle, 
with reversed angular motion. Wave properties for par-
ticles and antiparticles are then represented in Figure 2. 
The figure can be used to illustrate simply, in either two 
dimensions or three, conservation rules in two particle 
interactions. For example, in the center of mass frame, 
energy is conserved on horizontal lines that are symme-
tric about the abscissa axis (Figure 3). Furthermore, the 
algebraic solution provides an alternative explanation for 
CPT invariance, but with the clarification that it applies 
equally to neutral particles as to charged particles. In 
M’PT invariance, pseudo masses ensure that free par-
ticles and corresponding antiparticles have the same 
symmetries when time reversal is combined with parity. 

4. Mass 
In the center of mass frame, Figure 3 enables a depiction  

Box 1. The Travelling Wave Group applied to antiparticle 
wave functions. 

 
 
of annihilation6 and creation where the properties of 
energy are contrasted with properties of mass. So Total 
energy is conserved between the horizontal dashed lines 
where Ω = ω1 + ω2, the sum of two photon energies pro-
duced in annihilation. Momentum is conserved because it 
sums to zero, though for creation from a single gamma 
ray, a third body is required. At equivalent energies (ho-
rizontal dashed lines), particles have less combined mo-
mentum, |k3| + |k4|, than photons, |k1| + |k2|. It becomes 
necessary at this point to comment on the considerations 
that differentiate the present discussion from earlier and 
conventional treatments. In the first place, recent expe-
riments, in many disciplines demonstrating entanglement 
at a distance, require an understanding of the wave pack-
ets that were used. Conventional treatments ignore the 
packet for several reasons: it is assumed unstable; while 
being subsumed by quantized interactions; and it more 
often occurs as a real but arbitrary experimental factor. 
Generally, the quantized interactions depend on the car-
rier phases; not the packet. However, we have analyzed 
the consequences for a stable wave group and so are able 
to consider specific exceptions. 

Secondly, we find a description with fewer postulates.  
6The superposition, ( ) ( )( ) ( )2cose ny X y X X+ = , a real function. The 

electric force e-/m – e-/m′ becomes attractive. 
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(a) 

 
(b) 

Figure 1. (a) Calculations for electron group and phase ve-
locities compared with hypothetical group and phase veloci-
ties for the positron, by supposing positive kinetic energy 
superposed on negative pseudo-mass (Equation (5)). (b) 
Corresponding energies for the electron (m = 1); hypotheti-
cal positron (m = −1); and massless photon (m = 0). The 
supposition is unphysical and is not observed experimental-
ly. 
 
For this wave group, the Uncertainty Principle is derived 
in a simple way that is extensible to unstable packets. We 
find, in consequence, new information on “pseudo prop-
erties”. In relativity, mass tends to infinity as it ap-
proaches the speed of light. No “thing” therefore travels 
faster than the speed of light. However, pseudo proper-
ties that do not transport energy, such as the phase veloc-
ity, are not so restricted. The information has implica-
tions for mass and pseudo mass. This feature differen-
tiates the present work. We do not gloss the problem that 
occurs when the kinetic energy of a positron is equal to 
its mass (when k = m in a negatron). It is more difficult to 
see how this is overcome conventionally, by mixing of 
states. 

However, for reasons of simplicity and clarity, since 
our wave group is spatial and since our particles are free 
—i.e. from electromagnetic and nuclear forces—we have 
not needed to include spinor and bispinor factors in the 
wave function. Their treatment in relativity is conven-
tional. (By contrast, in atomic physics, spin-orbit coupl- 

 
(a) 

 
(b) 

Figure 2. (a) Calculated group velocities (<1 = c) and phase 
velocities (>1) for the electron (k > 0) and its antiparticle (k 
< 0). (b) Corresponding angular frequencies plotted against 
wave vector for electrons (upper right) and their antipar-
ticles (lower left). The straight diagonal line plots ω against 
k in massless photons. Notice, the positron pseudo mass m′ 
= −m0 when k = 0. The unit of mass is represented as the 
electron rest mass. 
 
ing makes the spin unseparable in the wave function; but 
in free particles—i.e. when magnetic vector potential A = 
0—the spin becomes, for the spatial part of the wave 
function, academic.) 

5. Conclusion 

The Travelling Wave Group enables physical deductions 
that could not be supported by earlier beliefs in an unsta-
ble wave packet. The stability is guaranteed by mean 
values in the symmetric packet and by conservation of 
energy and momentum. In particular, analysis of phase  
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Figure 3. Plot of ω versus k for particle antiparticle interac-
tions in the center of mass frame. Energy is conserved Ω = 
ω1 + ω2; while momentum sums to zero K = k1 + k2 = k3 + k4. 
In annihilation, (|k1| + |k2|) > (|k3| + |k4|). 
 
and group velocities leads to a new way of viewing anti-
particle wave functions that are prima facie compatible 
with the Feynman-Stueckelberg switching principle. Us-
ing a suitable modification, the superstructure of quan-
tum electrodynamics is unaffected. 
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Appendix 
Further Consequences 
The newly discovered fact of the stable TWG demon-
strates a chronic oversight in historic quantum mechanics. 
Naturally, a feature so fundamental has many conse-
quences, though the wave group is not complete, since 
some experimental wave packets may be unstable. The 
TWG is a special window onto a wider world. We have 
described, in greater detail than previously, the logical 
consequences of negative mass in 5-dimensional space- 
time-mass. This perspective is not new to quantum me-
chanics [14], but we proceeded to describe the wave 
function of a free antiparticle. One feature is the infinite 
phase velocity of the carrier wave in the rest frame, 
which causes space-time, for it, to be Newtonian. There 
are many other properties open to investigation. For ex-
ample, Dirac had difficulty in describing the state of the 
antiparticle with negative energy. He proposed that such 
particles are like “holes” in “semiconductor valence 
bands”. New problems have arisen since his time. What 
gravitational mass do such bands have, and do they con-
tribute to dark matter? The TWG offers new interpreta-
tions for the answers, including a new perspective for the 
apparent preponderance, in our part of the universe, of 
matter over antimatter. Again, entanglement at a distance 
is possible and experimentally observed [15-19] without 
decay of the photon. Moreover, the wave group allows 
interactions that are more detailed than series of micro 
bangs from Schroedinger’s cat; instead, continuous trans- 
formations of the wave functions are open to description. 
There is no end to examples, but our final one provokes 
the question for an expanding universe, “Which wins, 

energy or momentum: radiation or mass?” Increasing 
entropy seems to project decreasing mass with decreas-
ing energy localization. “In questions of science, the au-
thority of a thousand is not worth the humble reasoning 
of a single individual7”. 

Uncertainty in Wave Groups—A Tutorial 
Consider two plane waves: 

( )( )1 exp iA kx wtψ = ⋅ − 8 

and 

( )( )2 exp iA kx k x wt w tψ = ⋅ + ∆ ⋅ − − ∆ ⋅ . 

The real part of the sum of these functions maximizes 
at t = x = 0. 

Show that, generally, the sum is given by: 

( )( ) ( )
( )( ) ( )

exp i 2 cos 2 2

exp i 2 cos 2 2.

A kx k x k x

wt w t w t

Ψ = ⋅ + ∆ ⋅ ∆ ⋅

⋅ − − ∆ ⋅ × −∆ ⋅
 

Identify the wave group envelope. 
At time t = 0, Find the first intensity minimum due to 

destructive interference between the wave groups9. 
At distance x = 0, Find the first intensity minimum due 

to the destructive interference10. 
Find the uncertainty at the full width half Maximum11. 
Find the condition for the maximum in the wave group 

envelope for all space and time12, and take the limit as 
0∆ → . This gives the group velocity13. 

Notice that this wave group is oscillatory. The beats 
are used to tune pianos. By contrast, Gaussian wave 
groups do not oscillate. 

 

7Galileo Galilei. 
8Symbols are defined in the text. 
9x = π/∆k. 
10t = π/∆ω. 
114cos−1(0.5)/∆k and 4cos−1(0.5)/∆ω. 
12∆k·x/2 = ∆ω·t/2. 
13dω/dk. 
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