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Variable selection with a large number of predictors is a very challenging and important problem in edu-
cational and social domains. However, relatively little attention has been paid to issues of variable selec-
tion in longitudinal data with application to education. Using this longitudinal educational data (Test of 
English for International Communication, TOEIC), this study compares multiple regression, backward 
elimination, group least selection absolute shrinkage and selection operator (LASSO), and linear mixed 
models in terms of their performance in variable selection. The results from the study show that four dif-
ferent statistical methods contain different sets of predictors in their models. The linear mixed model 
(LMM) provides the smallest number of predictors (4 predictors among a total of 19 predictors). In addi-
tion, LMM is the only appropriate method for the repeated measurement and is the best method with re-
spect to the principal of parsimony. This study also provides interpretation of the selected model by LMM 
in the conclusion using marginal 2R . 
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Introduction 
The characteristic of a longitudinal study is that individuals 

are measured repeatedly through different time points and re-
quire special statistical methods because the set of observations 
on the same individual tends to be inter-correlated and can be 
explained by both fixed and random effects. 

As longitudinal data are common in educational settings, the 
linear mixed model (LMM) has emerged as an effective ap-
proach since it can model within and between subject hetero-
geneity (Vonesh, Chinchilli, & Pu, 1996). The LMM also at-
tempts to account for within-subject dependency in the multiple 
measurements by including one or more subject-specific vari-
ables in a regression model (Laird & Ware, 1982; Giks, Wang, 
Yvonnet, & Coursaget, 1993).  

Despite the development of statistical models, model selec-
tion criteria for the LMM have received little attention (Orelien 
& Edwards, 2008; Vonesh et al., 1996). However, several stud-
ies (Vonesh & Chinchilli, 1997; Vonesh et al., 1996; Zheng, 
2000) recently suggest model fit indices which are useful for 
mixed effect models. More specifically, studies (Vonesh & 
Chinchilli, 1997; Vonesh et al., 1996) show that marginal 2R  
is preferred when only fixed-effect components are involved in 
the predicted values, but conditional 2R  is preferred for ran-
dom effects (Vonesh et al., 1996). 

It is not uncommon to collect a large number of predictors to 
model an individual’s reading achievement more accurately in 
educational and psychological fields. Thus, it is fundamental to 
select meaningful variables in multivariate statistical models 
(Zhang, Wahba, Lin, Voelker, Ferris, Klein, & Klein, 2004) to 
increase prediction accuracy and to provide better understand-

ing of concepts.  
It is, however, challenging to select important variables when 

a response variable is measured repeatedly over a certain period 
of time because it is known that the selection process of statis-
tically significant variables is hindered by the correlation 
among the repeated measurements. Furthermore, classical vari- 
able selection methods, such as the forward selection and the 
backward elimination methods are time-consuming, unstable, 
and sometimes unreliable for making inferences. Although 
there is a great deal of extent research examining issues of vari- 
able selection in linear regression, little research has been done 
investigating how differently and similarly different statistical 
methods perform within a longitudinal data. This study aims to 
investigate how similarly and differently various statistical 
methods perform in the presence of the repeated measurements 
in the data.  

Hence, this study compares four different statistical methods, 
multiple regression, backward elimination, group least selection 
absolute shrinkage and selection operator (LASSO), and the 
LMM, using a test of English as International Communication 
(TOEIC) data as individuals’ reading achievement. For the 
LMM, marginal 2R  for remaining variables in the model is 
used to provide a better understanding of the impacts of se-
lected predictors in the longitudinal data. 

Multiple Linear Regression 

Multiple linear regression is a flexible method of data analy-
sis that may be appropriate whenever a response variable is to 
be examined in relation to any other predictors (Cohen, Cohen, 

OPEN ACCESS 6 

http://www.scirp.org/journal/psych
http://dx.doi.org/10.4236/psych.2014.51002
mailto:rems2002@gmail.com


J. RA, K.-J. RHEE 

West, & Aiken, 2003). For instance, if a multiple regression 
method is used for predicting and explaining an individual’s 
English achievement, many variables such as gender, age, and 
socio-economic status (SES) might all contribute toward indi-
vidual’s English achievement.  

The multiple regression method for predicting English achieve-
ment, Y, with the observed data ( )1 , , , 1, , ,i piX X i n=   is as 
follows 0 1 1 2 2i i i p pi iY X X Xβ β β β ε= + + + + + . This equation 
shows the relationship between p predictors and a response 
variable Y, all of which are measured simultaneously on the 
subject. This method is called linear because the effects of the 
various predictors are treated as additive. 

In addition, much efforts has been put to estimate the per-
formance of different methods and choose the best one by using 
fit indices such as AIC (Akaike, 1973), BIC (Schwarz, 1978), 
Mellow’s pC  (Mallows, 1973), and adjusted 2R . AIC and 
BIC are based on the penalized maximum likelihood estimates. 
AIC is defined as −2log(L) + 2p, where log(L) is the loglikeli-
hood function of the parameters in the model evaluated at the 
maximum likelihood estimator while the second term is a pen-
alty term for additional parameters in the model. Therefore, as 
the number of independent variables included in the model 
increases, the first term decreases while the penalty term in-
creases. Conversely, as variables are dropped from the model, 
the lack of fit term increases while the penalty term decreases. 
BIC is defined as ( ) ( )2log logL p n− + × . The penalty term for 
BIC is similar to AIC but uses a multiplier of log(n) instead of a 
constant 2 by incorporating the sample size. In general, AIC 
tends to choose overly complex models when sample size is 
large and BIC tends to choose overly simple model when sam-
ple size is small and also choose the correct model when sam-
ple size approaches infinity.  

Mallow’s pC  is also commonly used to investigate how well a 
model fits data and can be defined as 2 2( )p pC SSE p nσ += +



. 
In this equation, σ̂  represents the estimate of 2σ  and pSSE   
is defined as ( )2

1 1
ˆn p

i iii i
Y X β

= =
−∑ ∑ , where β̂  is the estimator  

of β . Mallow’s pC  is calculated for all possible subset 
models. The model with the smallest value of pC  is deemed 
to be the best linear model. As the number of independent 
variables (p) increases, an increased penalty term 2p is offset 
with a decreased SSE. 

Another commonly used fit index for model selection is 2R  
or adjusted 2R . Both 2R  and adjusted 2R  represent the 
percentage of the variability of the response variable that is 
explained by the variation of predictors. 2R  is a function of 
the total sum of square (SST) and SSE, and the formula is given 
by ( )1 SSE SST− . 

Adjusted 2R  takes into account the degrees of freedom 
used up by adding more predictors. Even though adjusted 2R  
attempts to yield a more robust value to estimate 2R , there is 
little difference between adjusted 2R  and 2R  when a large 
number of predictors are included in a model. 

When the number of observations is very large compared to 
the number of predictors in a model, the value of 2R  and ad-
justed 2R  will be much closer because the ratio of
( ) ( )n 1 n 1p− − −  will approach 1. Despite the practical ad-
vantages of using a multiple regression method, it is difficult to 
build multiple regression models for repeatedly measured re-
sponses. The multiple regression method is not appropriate for 
correlated response variables as in longitudinal data without 
accounting for correlation within response variables. 

Backward Elimination Approach 
Besides the multiple regression approach, backward elimina-

tion is common and important practice to select relevant vari-
ables among a large number of predictors. A subset selection 
method is one of the most widely used variable selection ap-
proaches in which one predictor at a time is added or deleted 
based on the F statistic iteratively (Bernstein, 1989). Subset 
selection methods, in general, provide an effective means to 
screen a large number of variables (Hosmer & Lmeshow, 2000). 
Since there is a possibility of emerging a suppressor effect in 
the forward inclusion method (Agresti & Finlay, 1986), the 
backward elimination method is usually preferred method of 
exploratory analysis (Agresti, 2002; Hosmer & Lemeshow, 
2000; Menard, 1995) and follows three steps. 

First, obtains a regression equation which includes allp pre-
dictors. Second, conducts a partial F-test for each of the pre-
dictors which indicates the significance of the corresponding 
predictor as if it is the last variable entered into the equation. 
Finally, selects the lowest partial F value and compares it with 
a threshold partial, Fα , the value set equal to some predeter-
mined level of significance, α  If the smallest partial F is less 
than Fα , then deletes that variable and repeats the process for 
p − 1 predictors. This sequence continues until the smallest 
partial Fα  at any given step is greater than Fα . The variables 
that are remained in the model are considered as significant 
predictors. In general, the backward elimination method is 
computationally attractive and can be conducted with an esti-
mation accuracy criterion or through hypothesis testing.  

The backward elimination method, however, is far from per-
fection. This method often leads to locally optimal solutions 
rather than globally optimal solution. Also, the backward 
elimination method yields confidence intervals for effects and 
predicted value that are far too narrow (Altman & Andersen, 
1989). The degree of correlation among the predictors affects 
the frequency with which authentic predictor find their way into 
the final model in terms of frequency of obtaining authentic and 
noise predictors (Derksen & Keselman, 1992). More specifi-
cally, the number of candidate predictors affects the number of 
noise predictors that gains entry to the model. Furthermore, it is 
well known that the backward elimination method will not 
necessarily produce the best model if there are redundant vari-
ables (Derksen & Keselman, 1992). It also yields 2R  values 
that are badly biased upward and have severe problems in the 
presence of collinearity. Since the backward elimination me- 
thod gives biased regression coefficient estimates, they need to 
be shrunk because the regression coefficients for remaining 
variables are too large. Besides well-known inherent technical 
problems, it is time consuming when a large number of predic-
tors are included in the model and cumbersome to choose ap-
propriate variables manually when categorical variables are 
included in the model as a dummy variable. 

The Group LASSO 

To overcome problems shown in multiple regression and 
backward elimination approaches, a number of shrinkage 
methods are developed to overcome the inherent problem 
shown in traditional variable selection methods (Bondell & 
Reich, 2008; Forster & George, 1994; George & McCulloch, 
1993; Tibshirani, 1996). Among many suggested shrinkage 
methods, the least absolute shrinkage and selection operator 
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(LASSO) suggested by Tibshirani (1996) is one of well-known 
penalized regression approaches (Bondell & Reich, 2008; 
Meier, van de Geer, & Bhlmann, 2008; Tibshirani, 1996). The 
LASSO method minimizes the residual sum of squares subject 
to the sum of the absolute value of the coefficients being less 
than a constant (Tibshirani, 1996). It is also well known that all 
the variables in LASSO type methods such as the standardized 
LASSO and group LASSO (Yuan & Lin, 2006) need to be 
standardized before performing analysis. 

The LASSO method is defined as follows  

( ) ( )2

01 0 1
ˆminarg n p p

LASSO iii i i
Y Xββ λ β λ β

= = =
= − +∑ ∑ ∑  In this  

equation, ( )0 1, , pβ β β β=   and λ  is a penalty or tuning 
parameter. The parameter 𝛌𝛌 controls the amount of shrinkage 
that is applied to the estimates. The solution paths of LASSO 
are piecewise linear, and thus can be computed very efficiently. 
The variables selected by the LASSO method are included in 
the model with shrunken coefficients. The salient feature of the 
LASSO method is that it sets some coefficients to be 0 and 
shrinks others. Furthermore, the LASSO method has two ad-
vantages compared to the traditional estimation method. One is 
that it estimates parameters and select variables simultaneously 
(Tibshirani, 1996; Fan & Li, 2001). The other is that the solu-
tion path of the LASSO method moves in a predictable manner 
sine it has good computational properties (Efron, Hastie, 
Johnstone, & Tibshirani, 2004). Thus, the LASSO method can 
be used for high-dimensional data as long as the number of 
predictors, is smaller than or equal ton, p n≤ . 

The LASSO method, however, has some drawbacks (Yuan 
& Lin, 2006). If the number of predictors (p) is larger than the 
number of observations (n), the LASSO method at most select 
variables due to the nature of the convex optimization problem. 
Also, the LASSO method tends to make selection based on the 
strength of individual derived input variables rather than the 
strength of groups of input variables, often resulting in select-
ing more variables than necessary. Another drawback of using 
the LASSO method is that the solution depends on how the 
variables are orthonormalized. That is, if any variable iX  is 
reparameterized through a different set of orthonormal contrasts, 
there is a possibility of getting different set of variables in the 
solution. This is undesirable since solutions to a variable selec-
tion and estimation problem should not depend on how the 
variables are represented. In addition, the LASSO solutions 
bring another problem when categorical variables enter into the 
model. The LASSO method treats categorical variables as an 
individual variables rather than a group (Meier et al., 2008). A 
major stumbling block of the LASSO method is that if there are 
groups of highly correlated variables, it tends to arbitrarily se-
lect only one from each group. This makes models difficult to 
interpret because predictors that are strongly associated with the 
outcome are not included in the predictive model. 

To remedy the shortcomings of the LASSO method, Yuan 
and Lin (2006) suggested the group LASSO in which an entire 
group of predictors may drop out of the model depending on. 
The group LASSO is defined as follows  

( )
2

1 1 11 1
minarg L p

LASSO lll i
Y X Pβ λ λ β

= =
 = − + 
 ∑ ∑  In this  

equation, lX  represents the predictors corresponding to the 
lth group, with corresponding coefficient sub-vector, and lβ . 

lP  takes into account for the different group sizes. If 
( )1,

T
kx x x=  , then, 22

1 1

k
ii

x x
=

= ∑ . The group LASSO acts 

like the LASSO at the group level; depending λ , an entire 
group of predictors may drop out of the model. The group 
LASSO takes two steps. First, a solution path indexed by cer-
tain tuning parameter is built. Then, the final model is selected 
on the solution path by cross validation or using a criterion such 
as the Mallow’s pC . 

This gives group LASSO tremendous computational advan-
tages when compared with other methods. The group LASSO 
makes statistically insignificant variables become zero by in-
corporating shrinkage as the standard LASSO does. Overall, the 
group LASSO method enjoys great computational advantages 
and excellent performance, and a number of nonzero coeffi-
cients in the LASSO and the group LASSO methods are an 
unbiased estimated of the degree of freedom (Efron et al., 
2004).  

Even though the group LASSO is suggested for overcoming 
drawbacks for the standard LASSO, the group LASSO method 
still has some limitations. For example, the solution path of the 
group LASSO is not piecewise linear which precludes the ap-
plication of efficient optimization methods (Efron et al., 2004). 
It is also known that the method tends to select a large number 
of groups than necessary, and thus includes some noisy vari-
ables in the model (Meier et al., 2008). Furthermore, the group 
LASSO method is not directly applicable to longitudinal data 
and needs further study for being suitable for the repeated 
measurement. R code for the group LASSO is provided in 
Appendix. 

Linear Mixed Model 

The linear mixed model (LMM) is another very useful ap-
proach for longitudinal studies to describe relationship between 
a response variable and predictors. The LMM has been called 
differently in different fields. In economics, the term “random 
coefficient regression models” is common. In sociology, “mul-
tilevel modeling” is common, alluding to the fact that regres-
sion intercepts and slops at the individual level may be treated 
as random effects of a higher level. In statistics, the term 
“variance components models” is often used in addition to 
mixed effect models, alluding to the fact that one may decom-
pose the variance into components attributable to within-groups 
versus between-groups effects. All these terms are closely re-
lated, albeit emphasizing different aspects of the LMM. In the 
context of repeated measure, let iY  is an 1in ×  vector of 
observations from the ith subject. Then, the LMM (Laird & 
Ware, 1982) is as follows i i i i iY X Z bβ ε= + + .  

In this model, ( )1 , ,

Tt
i i piX X X=



, where iX is an in p×  
fixed effect design matrix whereas iZ  are known in q×  
constant design matrices. ( )1,

T

pβ β β=   is an p-dimensional 
vector and unknown coefficients of the fixed effects. Here, ib  
is assumed to be multivariate normally distributed with mean 
vector 0 and variance matrix Ψ . Thus, the random effects 
vary by group. In addition, variance-covariance matrix Ψ  = 
diag ( )Ψ, Ψ  should be symmetric and positive semidefinite 
(Laird & Ware, 1982). The iε  are vectors of error term and 
assumed to follow a normal distribution with mean vector 0 and 
variance-covariance matrix , Ω , which are the same for all 
subjects. It is also commonly assumed that Ω  is diagonal and 
all diagonal values are equal, 2σ . However, instead of assum-
ing equal variance in grouped data, it is possible to extend to 
allow unequal variance and correlated within-group errors. 
The vectors ib  and iε  are assumed to be independent. 
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Method 
Participants and Variables 

This study takes place in a public university in Republic of 
Korea, between the years 2009 and 2010, over two semesters. 
Participating students (n = 281) enrolled in TOEIC classes for 
four hours a week. Except students’ TOEIC scores, The TOEIC 
dataset records 20 predictors. Among 20 predictors, 13 are 
continuous: age, father’s education level (FEL), mother’s edu-
cation level (MEL), SES, English study time (EST), reading 
time, level of reading competence (LRC), materials written in 
English (ME), level of computer skill (LC), length of private 
tutoring (LPT), three mean-centered cognitive assessment 
scores (STAS: State and trait anxiety scale, FLCAS: Foreign 
language classroom anxiety scale, FRAS: Foreign language 
reading anxiety scale); and 7 are categorical: major, gender, ex- 
perience of private tutoring (EPT), experience of having foreign 
instructors (EFI), living areas, length of staying at abroad 
(LSA), experience of staying English speaking countries (ESE). 
The wave 2, 3, and 4 data are collected every three months after 
collecting wave 1 data. 

Procedures 
All the analysis are performed with R (R Development Core 

Team, 2013) due to the unavailability of the group LASSO 
approach in standardized statistical packages such as SPSS. 
Once statistically significant predictors in the model are ob-
tained, goodness-of-fit for the LMM can be considered. Among 
different types of 𝑅𝑅2such as unweighted concordance correla-
tion coefficient (CCC: Venesh et al., 1996), and proportional 
reduction in penalized quasi-likelihood (Zheng, 2000), the mar-
ginal 2R (Vonesh & Chinchilli, 1997) is easy to compute and 
interpret in that it is a straightforward extension of the tradi-
tional 2R  (Orelien & Edwards, 2008). The marginal 2R  in this 
analysis for selecting relevant variables is defined as follows 

( ) ( )
( ) ( )
12

1

ˆ ˆ
1

Tn
i i ii

m Tn
i pi i pii

Y Y Y Y
R

Y Y Y Y
=

=

− −
= −

− −

∑
∑

. 

Given the equation shown above,𝑌𝑌𝑖𝑖 ,nof observations, is a 
observed response variable and îY  is a predicted response 
variables. iY  is the grand mean and is an vector of 1’s. This 
equation implies ˆŶ Xβ=  and considers only fixed effects. In 
addition, marginal𝑅𝑅2modeling the average subject ( ˆŶ Xβ= ) 
leads to the terms average model (Vonesh & Chinchilli, 1997) 
where 2

mR  is the proportionate reduction in residual variation 
explained by the modeled response of the average subject. Thus, 
when important predictors in the model are not included, the 
values of marginal 2R  decrease sharply. If the random effects 
are excluded in the computation of the predicted values that 
lead to the residuals, the marginal 2R  is able to select the 
most parsimonious model.  

Results 
For descriptive analysis, frequencies and percentages of all 

variables are calculated. Regarding categorical variables, there 
are 9 different majors having similar number of students who 
are participated in this study except two majors (Child Educa-
tion and Occupational Therapy major) which consist of less 
than 10% of total sample sizes, respectively. Also, there are the 

smallest number of students (n = 14) in Child Education major 
compared to other majors. Relatively a large number of stu-
dents (n = 35) from the Chung-Nam areas are participated. In 
accordance with the experiences of having classes with for-
eign-instructors, about 44.9% of students do not have any ex-
perience. About 15.7% of them have experience studying 
abroad and 29.2% are male. Furthermore, almost 60% of stu-
dents never have a private tutoring.  

For continuous variables, the mean and standard deviation of 
continuous variables are calculated. In terms of outcomes 
across 4 wave points, reading scores of TOEIC are increased as 
time increases, 234.69, 274, 94, 264.75, and 284.03 respec-
tively. However, scores of TOEIC are slightly dropped between 
wave 2 and wave 3. The average age of students is 20.11 years 
old. The average education level of fathers (3.42) is little higher 
than that of mothers (3.13). Furthermore, the significantly dif-
ferent TOEIC scores across four waves are shown among dif-
ferent majors. Furthermore, Figure 1 shows that students in 
medical major has high initial TOEIC scores. 

The existence of relationship between reading achievement 
and predictors across wave 1, wave 2, wave, 3 and wave 4 is 
analyzed using four separate multiple regression runs. Results 
show that there are four majors statistically significant majors 
(medical, nursing, e-business, tourism) across 4 wave points. 
Besides students’ major, four separate multiple regression 
models contains only one variable (LRC) across four wave 
points in common. 

Results are also obtained from the four separated backward 
elimination procedures for the each wave, including nineteen 
predictors in the full model. Only five majors (medical, nursing, 
e-business, tourism, childcare majors) are statistically signifi-
cant across four wave points. Besides individual’s major, there 
are seven significant predictors across four separate analyses; 
two variables (MEL and LRC) at the first, two variables (ME 
and LRC) for the second wave, one variable (LRC) at the third, 
and six variables (gender, FEL, EST, ME, LRC and STAI) at 
the fourth wave point. The interesting point is that four separate 
backward elimination procedures contain different sets of pre-
dictors in the model. It might imply that the backward elimina-
tion method is not suitable for dealing with the repeated meas-
urement.  
 

 
Figure 1. 
Individual TOEIC scores across 4 waves in medical majors. 
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Compared to the backward elimination method, the group 
LASSO contains more predictors in the model. In addition, four 
separate group LASSO procedures contain different types of 
predictors. Besides students’ major, total seventeen predictors 
are included across four separate models; fourteen variables 
(gender, age, area, FEL, MEL, EFI, EST, ME, LRC, LSA, LPT, 
LC, STAI, and FLRAS) are selected in the first wave, then ten 
variables (place, MEL, ME, LRC, LSA, LPT, and STAI) in the 
second wave, nine variables (gender, income, MEL, ME, LRC, 
LSA, EPT, LC, and STAI) in the third wave, and nine variables 
(age, area, FEL, EST, ME, LRC, LC, STAI, and FLRAS) in the 
fourth wave.  

Compared to multiple regression and backward elimination 
method, the group LASSO includes more categorical variables, 
such as area, place, and length of staying abroad in the finalized 
model. However, the results show that four separate group 
LASSO methods also contain different sets of predictors in the 
model. This might suggest inappropriateness of using the group 
LASSO to the repeated measurement.  

Results obtained from the LMM show that all the majors and 
four continuous explanatory variables (MEL, LST, ME, and 
LRC) are included in the finalized model. The results reveal 
that TOEIC achievement is positively related with MEL (p 
< .05), LST (p < .01), and LRC (p < .01) but negatively related 
ME (p < .01). Interesting finding is that ME positively affects 
TOEIC achievement positively in univariate analysis but affects 
TOEIC achievement negatively when considered ME condi-
tional on students’ major, LRC, LST, and MEL. 

Once selecting statistically significant predictors in the 
model, changes of marginal 2R  across all possible combina-
tions of predictors are calculated in Table 1. Table 1 shows 
that Model 1 only contains MAJOR and LRC in the model. 
Model 2 includes MAJOR and LRC with other three predictors 
(MS, LST and MEL). To identify which predictors mostly af-
fect TOEIC achievement, marginal 2R for all possible combi-
nations within Models 2 are also considered. 

However, there is less variations among all possible combi-
nations in Model 2. Values of the marginal 2R  for all possible 
combinations of the selected predictors range from .518 to .527. 
Model 3 contains five predictors: students’ major, LRC, EST, 
ME, and MEL predictors selected from the LMM. Finally, 
Model 4 includes all twenty predictors in the model. 

Valued of four different marginal 2R s for Model 1, Model 2, 
Model 3 and Model 4 are .513, .527, .539, and .544, respec-
tively. Figure 2 also describes the changes of marginal 2R
across four different models. 

As shown in Figure 2, there is less changes of marginal 2R
(.005) between Model 4 including nineteen predictors and 
Model 3 including 5 predictors. However, compared to changes 
of marginal 2R  from Model 4 to Model 3, changes of mar-
ginal 2R  from Model 3 to Model 2 is relatively large, .012. 
This result suggests that four continuous variables (LRC, ME, 
EST, and MEL) should be included in the model.  

Conclusion and Discussion 
This study examines the relation of TOEIC achievement and 

twenty predictors under four different statistical methods. Dif-
ferent sets of predictors are selected in four different statistical 
methods. The results show that there is a strong evidence to 
support the existence of relation between TOEIC achievement 
and some predictors included in this study. Without considering  

Table 1. 
Marginal 2R  for all possible combination. 

Model Variables Marginal 𝑅𝑅2 

1 Major, LRC 0.513 

2 Major, LRC, ME 0.518 

 Major, LRC, EST 0.521 

 Major, LRC, MEL 0.519 

 Major, LRC, ME, EST 0.527 

 Major, LRC, ME, MEL 0.527 

 Major, LRC, EST, MEL 0.527 

3 Major, LRC, EST, ME, MEL 0.539 

4 All variables 0.544 

 

 
Figure 2. 
Changes of marginal 2R . 
 
other predictors, there are much variation in TOEIC reading 
achievement among nine different majors. As expected, stu-
dents in medical program have high TOEIC scores compared to 
others in different programs. Thus, it is necessary to investigate 
predictors which affect growth of TOEIC scores while consid-
ering group difference. Results from this study also show that 
LRC (levels of English ability) is a useful variable to explain 
and predict TOEIC achievement. Interestingly, LRC is signifi-
cant across four different statistical methods. It makes sense 
since the levels of English ability affect TOEIC reading 
achievement positively across four waves. However, when 
negative relationship between EM and TOEIC achievement has 
emerged when considered ME predictor conditional on other 
predictors (major, LRC, EST, and MEL) in the model. 

The LMM reveals that there is little variation in the values of 
marginal across all possible combinations of predictors in-
cluded in the final model. Among four different statistical 
methods, the LMM model seems to be most effective and use-
ful to build a parsimonious model with important and mean-
ingful predictors because it takes into account the repeated 
measurements, which is flexible, and powerful to analyze bal-
anced and unbalanced grouped data. However, these results 
must be regarded as very tentative and inconclusive because 
this is a search for plausible predictors, not a convincing test of 
any theory. Further development based on these results would 
require replication with other data and explanation of why these 
variables appear as predictors of continuity of achievement. 

Moreover, this study has some limitations. Besides simply 
finding important variables, it is necessary to deal with other 
considerations such as optimal size of variables, interaction 
effects, and ratio of variables and observations (O’Hara & Sil-
lanpaa, 2009). Another limitation is that the best-fit model 
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among four statistical models is not pursued since the objective 
of this research is to test hypotheses based on theories. 

Concerning the LASSO method, the group LASSO method 
enjoys great computational advantages and excellent perform-
ance, and a number of nonzero coefficient in the LASSO and 
the group LASSO method are an unbiased estimate of the de-
gree of freedom (Efron et al., 2004). However, it is necessary to 
consider the LASSO method in the hierarchical structure for 
further studies since experiment and survey designs should be 
included in the model. Then, the LASSO method in the LM 
model framework is useful to explain random effects. Despite 
the limitations listed above, this study would contribute to the 
field of education as a better way of explaining of relationship 
between personal predictors and English achievement. 
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Appendix 

Group LASSO (R code) 
toeic.tr < -as.data.frame(toeic.group[ind[1:225],]) 
#GROUP LASSO 
Cols < -ncol(toeic.tr)-1 
index.lasso < -c(rep(0,cols)) 
numgr < -length(gr) 
stg < −1 
ltg < -gr[1] 
for (i in 1:numgr) { 
index.lasso[(stg:ltg)] < -1 
if (I < numgr) { 
stg < -stg + gr[i] 

ltg < -ltg + gr[I + 1] 
      } 
 } 
Lamda < -c(2000, 1500, 1000, 500, 100, 10, 1, 0.1, 0.01) 
fold < −10 
lamda.lasso < -cvlasso Reg (y~., toeic.tr, fold, cvind, index. 

lasso, lam) 
ini.lasso < -grplasso (x = as.matrix(toeic.tr[,-30]),  

y = as.matrix(toeic.tr[,30]), index = index.lasso, lamda = lam. 
lasso, model = LinReg(), penscale = sqrt) 

lasso.pred < -as.matrix (as.matrix (toeic.te [,−30]))% * % ini. 
Lasso $ coefficients 
beta.lasso < -ini.lasso$coef/sx 
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