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ABSTRACT 
In the governing thought, I find an equivalence between the classical information in a quantum system and the 
integral of that system’s energy and time, specifically 2 dI t= ∫  , in natural units. I solve this relationship in 
four ways: the first approach starts with the Schrödinger Equation and applies the Minkowski transformation; 
the second uses the Canonical commutation relation; the third through Gabor’s analysis of the time-frequency 
plane and Heisenberg’s uncertainty principle; and lastly by quantizing Brownian motion within the Bernoulli 
process and applying the Gaussian channel capacity. In support I give two examples of quantum systems that 
follow the governing thought: namely the Gaussian wave packet and the electron spin. I conclude with comments 
on the discretization of space and the information content of a degree of freedom. 
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1. Introduction 
Anyone watching the media these days, especially the 
business news, knows about Big Data. The rate of data 
generation is growing exponentially and storage is due to 
multiply by 50 times between 2010 and 2020 [1]. The 
importance of the digital world is pronounced in almost 
every industry and every field of science [2]. It is not 
surprising that information is also important as a physical 
quantity in physics [3,4]. 

On that front, physics is challenged with many open 
questions including “five great problems” that would 
continue the march toward more knowledge [5]. I intend 
to contribute new insight vis-a-vis the governing thought 
that information equals energy times time and focus its 
application on two well-studied systems, the Gaussian 
wave packet and the electron. 

While a base knowledge in information theory and 
physics is assumed, the arguments and derivations are 
intended to flow naturally from current understandings 
leading to new theory. I find the simplicity of the ma- 
thematics gives reason for special consideration. To 
show this elegance and resilient, the paper derives the 

governing thought in four different proofs, then goes 
through two examples where the governing thought ap-
plies, and lastly ends with a couple notes in the appendix. 

While the proper description of the word “information” 
is closer to self-information or entropy as developed by 
Shannon [6,7], I have chosen to use the word “informa-
tion” to emphasize that a complete statistical description 
of a measurement of nature can be described with clas-
sical bits of information. 

Shannon showed that self-information is formally de- 
fined as the negative expected log probability,  

( )logI E p= −    , and has meaning with both discrete 
and continuous probability distributions. It can even be 
derived from the definition of statistical entropy, 

( )log Ω , as given by Boltzmann [8]. The natural loga- 
rithm is used in this analysis and thus the units of infor- 
mation are the natural unit, or nats [9]. 

Energy times time, or more loosely “action”, has been 
a valuable concept in physics for over 2 centuries. It not 
only survived the migration from classical mechanics to 
quantum mechanics but rather it thrived with the realiza- 
tion that it was quantized [10]. We will start our investi- 
gation, into how information and energy times time are 
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equivalent, here with quantum mechanics and argue that 
information is one in the same as energy times time. 

2. Quantum Mechanics 
2.1. Schrödinger Equation 
The Schrödinger equation, found during the advent of 
quantum mechanics, dictates how a wave function and its 
phase evolve through time. The Hamiltonian or energy 
operator, H, of a system is equal to hbar times the im- 
aginary derivative with respect to time; with the opera- 
tor’s eigenvalue, the energy,  , of the system [10]. 

di
d

H
t

ψ ψ ψ= =   

The solution to this equation is the complex exponen-
tial, 

( ) ( ) i0 e ttψ ψ −=   

One can calculate the probability distribution asso-
ciated with this wave function via its magnitude squared 
[10]. 

( ) ( ) ( ) ( )2 2
0 0p t t pψ ψ= = =  

Note the phase information is lost. Calculating the in-
formation without considering the phase information one 
would conclude that the information is constant and a 
function only of its initial state, ( )0ψ . Let me assume 
that ( )0 1ψ = . However if we dig a little deeper an in-
sight appears that when looked at in a few different ways 
proves resilient.  

If the probability is constant, then the size of the space 
is equal to one over the probability, 1 pΩ = . In this 
case S  is the thermodynamic entropy [8], 

( ) ( )log log
B

S p
k

= Ω = −  

By being a little more formal we can relax the condi-
tion that p  is constant and instead only need to have 
( )tψ  independent from ( )dt tψ + . Consider a large 

number N  of independent steps in the particle, where 
dt N t= . In this case, the probability of ( )p t  is equal 

to ( )dp t  raised to the Nth  power. I next use the weak 
law of large numbers through the asymptotic equiparti-
tion property (AEP) to focus on the most likely states [9]. 
(This is important and exemplified by the Gaussian dis-
tribution, where the Gaussian has infinite range but most 
likely states are limited to its standard deviation. If a 
large number of possible outcomes can occur each with 
the same probability within the range t∆ ∆  of a system, 
then one can prove that information encoded into that 
system is equal to the negative log of the probability on 
average.) In this case  

( ) ( ) i d

1
d e

N
N t

n
t tψ ψ −

=

= =∏   

and 

( ) ( ) ( )( )2 2
d

N
p t t tψ ψ= =  

The AEP and the weak law of large numbers [9] can 
be used to show the negative log probability approaches 
the incremental entropy. Calling this the differential in-
formation, dI, I have 

( )( ) ( )( )
log

log d d  as 
p t

p t I N
N

−
= − → →∞  

2.2. Dueling Information Rates 
The insight comes by breaking up ( ) ( ) 2

d dp t tψ=  and 
looking at the differential information, 

( )( ) ( )( ) ( )( )2 †d log d log d log dI t t tψ ψ ψ= − = − −  

Plugging in for ( )dtψ , results in the trivial answer 

( )i i d
d 0

t
I

− +
= =



 
 

There are two information rates that cancel each other 
out, one equal to the imaginary energy dived by hbar and 
the other a negative imaginary energy divided by hbar. 

If a Minkowski transformation had been performed 
prior to calculating the probability distribution a different 
answer would result. The Minkowski transformation 
takes imaginary time and makes it real. We see this 
transformation appear in relativity and analytic continua-
tion [11,12]. After applying the Minkowski transforma-
tion ( ) dd e ttψ −=   such that, 

( ) ( ) 2 2 dd d e tp t tψ −= =   

and 
d 2 dI t=   

or, 

2 dI t= ∫   

This last equation is the governing thought of the pa-
per. Assuming that the mass energy is not a function of 
time (which is not always the case), the following simple 
expression results, 

2I t=   

2.3. Non-Commuting Operators 
It is possible to remove the dependency on the Min-
kowski transformation and arrive at the same result by 
replacing the energy eigenvalue  , with the energy op-
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erator. When this is the case, the complex conjugate op-
eration also requires the transpose of the operators since 
they do not commute. Using the power rule to expand the 
exponent and the logarithm, I now have, with H  the 
energy operator, 

( )( ) ilog Httψ −
− =



 

( )( )† ilog tHtψ− =


 

With this approach the negative log probability is now 

( )( ) i ilog tH Htp t −
− =



 

Since the commutator [ ], iH t =   [10], I have, 

( )( ) ( )log i i 1p t− = − =  

I show in Section 4 that this is true of every step in the 
process with the appropriate step of size, 2tδ =   . For 
a large number of K  independent steps (where, 
K t tδ= ), the negative log probability approaches the 
information, ( )( )logK p t K I− = → , or 

2I K t= =   

3. Signals 
The initial conclusion (before I introduced imaginary 
time or the commutator) was that there is no information 
contained in the phase of a wave function; however we 
know from our analysis of signals that sine and cosine 
waves are capable of transmitting information in their 
phases. There are differences between the phase of the 
wave function and the phase of a signal [4] but it is 
worthwhile to pursue this approach as well.  

Work by Nyquist and Hartley after the turn of the 20th 
century [13,14] tells us that the bandwidth of the signals 
is in direct proportion to the width of the signal in the 
frequency domain. 

Gabor was even closer on track in the middle of 20th 
century when he tiled the time-frequency plane with 
quantized “logons” on information [15]—see Figure 1. 
Each logon was one degree of freedom and is represented 
by a shifted and modulated Gaussian wave packet. These 
wave packets were used as a basis to represent a signal 
with bandwidth f and duration t. 

A more rigorous analysis of the number of degrees of 
freedom of a signal limited in bandwidth and time can be 
found by Slepian, Pollak and Landau [16-18]. 

They concluded the rate of information that can be 
encoded into a signal is linear in the bandwidth (or fre-
quency). With Planck’s work on black body radiation 
and Einstein’s equation for the photo electric effect, 
where hf= [10], this proportion reduces to below  

 
Figure 1. Time frequency plane quantized to individual de- 
grees of freedom, each containing one natural unit of in- 
formation. 
 
where d dI t  is the information rate of the signal, f  is 
the bandwidth of the signal,   is Planck’s constant 
times f  and t  is the duration of the signal. 

d
d
I f
t
∝ ∝   

From here I can quickly return to the governing 
thought a third time by solving for the direct proportion 
in the equation above by diving by the minimum width 
of the signal (the Heisenberg uncertainty relation). 

dd 2 dtI t
t

= =
∆ ∆







 

In Section 5.1, I show that the Gaussian wave packet, 
which obtains the minimum uncertainty, contains one 
natural unit of information, thus completing this proof. 

An important insight to interpreting this equation is 
seen by again returning to Figure 1 and looking at the 
time-frequency plane as a Venn diagram of entropy. 

4. Brownian Motion 
Before the two examples, I will re-derive the governing 
thought yet a 4th way by discretizing space and motion. 

Building on the analysis by Kubo on the fluctuation 
dissipation theorem [19], I formalize the 2 time constants 
for a diffusing free particle; the collision time, δt  and 
the relaxation time, τ . When the relaxation time is 
equal to the thermal time, 2 Bk Tτ =  , the diffusion 
constant becomes, 2D m=  , [19-22] and spatial va-
riance is ( )( )2

2x t Dt t m∆ = =  . 

4.1. Bernoulli Process 
Introducing the Bernoulli process as reviewed by Reif 
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and Chandrasekhar [8,23], one can solve for the step size, 
δt , (or the collision time). The contribution to the spatial 
variance is balanced between drift and diffusion; when 
the probability parameter is 1/2 the variance is, 

( )( ) ( )2 22 2δ Kx K x K v t∆ = + ∆  

Here δx  is the spatial step size, K  is the number of 
steps, δt K t= ⋅  is the duration of the process and 
( )2

Kv∆  is the variance in velocity. From Dirac, we 
know that δ δx c t= ⋅  [24] which allows us to calculate 
( )2

Kv∆ . 
When K  is large, the average variance of the sum of 

K  samples of a distribution is equal to the variance of 
the individual sample divided by K  

( ) ( )
2 2

2 2
2 1

1 δ 1 δ
2 δ 2 δ

K

x x
v ct tv
K K K

−   +   ∆    ∆ = = =  

Equating ( )( )2
x t∆  and ( )( )2

x K∆ , or 22δt m x K= , 
results in , 

2δ
22

t
mc

= =
 


 

Thus when the relaxation time is equal to one over 
twice the temperature 2 Bk Tτ =  , the collision time is 
one over twice the energy δ 2t =   , and visa versa. 

4.2. Information Content 
With the details of the Bernoulli process defined, we can 
move onto the Gaussian channel. Combined with the 
Shannon-Nyquist’s sampling theorem one has the chan-
nel capacity per second, C′  [9], 

0

log 1 PC W
N W

 
′ = ⋅ + 

 
 

P  is the signal power, 0 2N  is the noise spectral 
density and W  is the bandwidth of the channel. (In this 
case, the channel is the vacuum which either has infinite 
bandwidth or some very large value.)  

Using the assumption (aided by the insight of appen-
dix A1) that the signal spectral density is equal to the 
noise spectral density, the signal power, P , is the noise 
spectral density times twice the bandwidth of the signal, 

( )( )0 2 2P N w= ∆ . Since the bandwidth of the signal is 
much smaller than the bandwidth of the channel, 

w W∆  , we can re-write the equation above as, 
C w′ = ∆  

The signal is the location of the particle performing the 
Bernoulli process with a step size of δt , thus the Shan-
non-Nyquist sampling theorem [25] tells us that the 
maximum frequency that can be represented by the dis-
crete Bernoulli process is 1 2δw t∆ = . 

1
2δ

C
t

′ = =


  

To finish the derivation I will take one more finding 
from Dirac, who showed that there is both a positive and 
negative solution to the energy eigenvalue [24]. Because 
there are two independent particles diffusing and infor-
mation is generated by each particle a factor of 2 must be 
included; returning us to the governing thought. 

d 22
d
I C
t

′= =


  

5. Examples 
5.1. Gaussian Wave Packet 

The Gaussian wave packet has many special properties, 
including 1) its Fourier transform is also a Gaussian [25], 
2) the Gaussian obtains the minimum uncertainty relation 
[12], and 3) the Gaussian maximizes the differential en-
tropy for a given variance [9]. As introduced above, Ga-
bor [15] used the first two properties to tile the time fre-
quency plane with shifted and modulated Gaussian wave 
packets. I will expand on property 3) and show that the 
information that can be decoded from one Gaussian wave 
packet is one nat.  

First a result from Hirshman [26] where he proposed 
that to properly measure the information contained in a 
pair of distributions linked through the Fourier Trans-
form (FT) one must add the differential entropy of the 
probability distribution in the time domain to the diffe-
rential entropy of the probability distribution in the stan-
dard frequency domain. Given the scale property of the 
FT and the differential entropy, the sum of the two diffe-
rential entropies is constant regardless of scale factor. 
Thus the information you can encode into a Gaussian 
wave packet is the same regardless of the relative width 
of the wave packet in the two domains.  

Hirshman found that any FT pair contained at least 
( )log e 2  of information and that the Gaussian has ex-

actly ( )log e 2 . I believe Hirshman missed an extra 
( )log 2  which nature requires. Looking at the governing 

thought, and applying the Heisenberg uncertainty prin-
ciple when the energy is not a function of the time, 
shows that information in nature is greater than or equal 
to 1 natural unit. 

2 1I t= ≥  

To show how this applies to the Gaussian, I again use 
the example of a massive particle. Dirac tells us from his 
work on the relativistic wave equation that there is both a 
positive and negative Eigen state [24]. Looking at the 
positive eigenvalue where the mass-energy divided by 
Planck’s constant equals the average frequency 2f mc h= , 
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we have 

( )
( )

( )
( )

2

24 Δ

21 4

1Φ e
2π Δ

f f

ff
f

− −

+ =  

and for the negative eigenvalue, 

( )
( )

( )
( )

2

24 Δ

21 4

1Φ e
2π Δ

f f

ff
f

− +

− =  

If 2Δ Δh f mc=   the two functions don’t overlap, 
they don’t interfere and thus according to Feynman [10] 
it’s their probability distributions that add not the proba-
bility amplitudes (or wave functions). See Figure 2. The 
resulting probability distribution for the frequency do-
main ( )ΦP f  is, 

( ) ( ) ( )2 2
Φ

1 1Φ Φ
2 2

P f f f+ −= +  

Taking the inverse FT we have ( ) ( ) i2πΦ e dftt f fφ+ += ∫  and ( ) ( ) i2πΦ e dftt f fφ− −= ∫ . The resulting probability 
distribution for the time domain, ( )p tφ  is,  

( ) ( ) ( )2 21 1
2 2

p t t tφ φ φ+ −= +  

Given the modulation properties of the FT, 
( ) ( )2 2
t tφ φ+ −=  and with 4πΔ Δ 1f t = , ( )p tφ  reduc-

es to  

( )
( )

( )

2

22 Δ

2

1 e
2π Δ

t

tp t
t

φ

−

=  

Now using Hirshman’s sum the result is, ( )log e 1, 

( )( ) ( )( )
( )( ) ( )( )

Φ

2 21 1log 8πe Δ log 2πe Δ 1
2 2

I h P f h p t

f t

φ= +

= + =
 

Coupling this back to Gabor’s original analysis, I 
would conclude that a measurement of the Gaussian 
wave packet requires one natural unit of classical infor-
mation to describe. This finite amount is due to the inhe-
rent noise associated with the Heisenberg uncertainty 
principle. 

5.2. Electron Spin State 
One might jump to the conclusion that a spin 1/2 particle 
has one natural unit of information by taking our go-
verning thought and applying it to the spin angular mo-
mentum. However this is not correct as spin is quantized 
to 2  along of each of the three spatial dimensions. 
Associating one natural unit of information to each spa-  

 
Figure 2. Probability distribution for Gaussian with non- 
overlapping positive and negative states. Hirshman sum is 
one natural unit. 
 
tial dimension for a total of 3 natural units is also not 
correct since the measurements are not independent. The 
way to tackle this problem is by looking at the three spa- 
tial dimensions and the time dimension, then using our 
governing thought on the magnitude of the all four spin 
operators. 

Let’s start with the mathematical formulism to deal 
with the spin operator for the time dimension. This oper-
ator maps the wave function at the instantaneous moment 
in time to the discrete value δKt K t= ⋅ , or 1Kt +  when 

[ )1,K Kt t t +∈ . 
Sticking with the spin operator formulism, we need a 

2 2×  matrix that has unity eigenvalues and returns the 
wave function untouched (since we are simply mapping 
to a discrete time value but not touching any of the spa-
tial dimensions). You can see I have identified this Pauli 
matrix as the identity matrix. The spin operator tS  as-
sociated with this identity Pauli matrix is, 

1 0
0 12tS  

=  
 

  

tS  is now a fourth spin operator similar to xS , yS , 
and zS . 

One implication to adding the identity matrix to the 
formulism is that the magnitude of the spin angular mo-
mentum now takes on a more simple form with s the 
quantum spin number. Adding to the standard way of 
calculating S  [12] we have, 

22 22
x y z tS S S S S= + + +  

( ) ( )22 1 1 2tS s s S s= + + = +   

Now applying the governing thought to angular mo-
mentum, I have the information in the spin of a particle 
equal to twice the magnitude divided by hbar. 

2
2 1spin

S
I s= = +



 

Applying this to the electron with 1 2s =  the elec-
tron should have 2 natural units of information. 

1 2 2spinI − =  
1It is interesting to note that the Hirshman sum of the exponential wave 
function is also one natural unit. 
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Let’s see how that plays out using our current under-
standing of quantum information theory. 

We know from Schumacher and Westmoreland [4], 
that the probability of error in inferring a message from a 
quantum measurement is at least one minus the dimen-
sion of the Hilbert space divided by the number of dis-
tinct messages, Y, 

( )
Error

dim
1P

Y
≥ −


 

We find this channel capacity is equal to ( )log 2  
when the Hilbert space is a qubit and we choose to send 
spins in only the 0 , or 1  state. In this case 

( )dim 2Y = =  and ErrorP  can be zero. 
However nature does not just produce electrons in only 

the 0 , or 1  state. Sending an electron in one of only 
two states is a human choice and filtering or initialization 
is required. For nature to maintain symmetry and balance, 
the state must have a uniform distribution around the 
Bloch sphere. Thus the arbitrary state ξ  is created 

icos 0 e sin 1
2 2

φθ θξ    = +   
   

 

We also know that if we classically measure in an ar-
bitrary direction, the wave function collapses to the state 
defined by that outcome [4]. This means that if we make 
a measurement in one direction with zero variance, any 
other non-commuting observable will have maximum 
variance. 

However there is nothing stopping us from calculating 
the entropy we would expect if a measurement were to 
happen (even though don’t make the measurement as that 
would collapse the state). Here I use the word entropy 
instead of information since a measurement of a state 
with Error 0P >  will produce a partially random Boolean 
output that is not completely deterministic from know-
ledge of the initial state. Yet the term information is still 
relevant since it takes that much information to describe 
the outcome. 

In this way we can add the entropy in each non- com-
muting observable in the same way Hirshman showed us. 

For ξ  to be uniformly distributed across the Bloch 
sphere we need to look at the Jacobian between spatial 
and spherical coordinates to seek how θ  and φ  are 
distributed. We find the determinant of the Jacobian is 
equal to ( )sin θ , which means that φ  is uniformly dis-
tributed but θ  has the distribution ( ) ( ) ( )1 2 sinp θ θ=  
for [ ]0, πθ ∈ . 

Defining ( ) ( ) ( ) ( )2 log 1 log 1H β β β β β≡ − − − − , wh- 
ere β  is the probability of a positive measurement of 
the qubit in question, we can calculate the entropy of  

each spin operator by averaging 
2

2 cos
2

H θβ
  =     

  

over θ  to get the average information, one will find, 

( )
2π

2
0

1 1sin cos d
2 2 2zSI H θθ β θ

  = = =     
∫  

Since the distribution of ξ  is uniform around the 
Bloch sphere this calculation is the same for xS  and 

yS . 
1
2x y zS S SI I I= = =  

One might not be satisfied that each of xS , yS , and 
zS  can be separable, however if you go through the 

math and use the joint distribution on θ  and φ  and 
take into consideration the angle between ξ  and xS , 

yS , and zS , one gets the same answer. 
The entropy of the tS  operator takes different rea-

soning to calculate, but the answer is the same. To start 
we need to review Section 4.1 on the Bernoulli process. 
If tS  acts to confirm a particle is occupying the time, 

δKt K t= ⋅ , where K  is the step index and δt  is the 
step size, the probability of a positive confirmation is 
equal to the relative distance the instantaneous time, t  
is away from Kt . A negative confirmation would mean 
that the particle is found in the state 1Kt + . 

Figure 3 is a picture of a particle at time t  uniformly 
distributed between [ )1,K Kt t t +∈ . Finding the particle in 
the Kt  state is equal to KP  and finding the particle in 
the 1Kt +  state is 1 KP− . 

1 d
δ δ

K

t
K

K
t

t tP t
t t

−
= =∫  

Without loss of generality we can set 0K = . To 
complete the derivation I average ( )2 δH t tβ =  over 
the uniform distribution to find 

tSI . 
δ

2
0

1 1d
δ δ 2t

t

S
tI H t

t t
β = = = 
 ∫  

Thus, using Hirshman’s sum I find,  

1 2 2
x y z tspin S S S SI I I I I− = + + + =  

 

 
Figure 3. The action of tS  is to collapse the particle into 
the state, Kt t= , or 1Kt t += . Distribution of instantaneous 
time is uniform between two states. The action of xS , yS , 

and zS  is to collapse the particle into spin up or spin 

down. The distribution is ( )sin θ . 
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It is interesting to note that ξ  is described by 2 de-
grees of freedom. One real number from θ  and one real 
number from φ . Thus we further support the idea that 
one degree of freedom is associated with one natural 
unit. 

6. Discussion and Conclusion 
The questions that I addressed are, “how much informa-
tion is in an evolving system, how does one quantify it, 
and how much classical information is needed to de-
scribe it?”  

You might have noticed that in some cases above I 
used the term rate, while in other cases I used capacity. 
We know from Shannon’s noisy-channel coding theorem 
that the rate must be less than the capacity for the proba-
bility of error of decoding a message to go to zero; and 
conversely that if the rate is greater than the capacity, an 
arbitrary small probability of error is not achievable [6]. 
However from my analysis it appears that in nature the 
rate of the underlying particles equals the capacity of the 
channel that transmits those particles through space-time; 
which in turn equals the energy of the particle. This in-
sight is another reason why I am using the word informa-
tion to describe 2 d 2 d 2 dR t t tI C′= = =∫ ∫ ∫  . 

I propose that the quantum state and the associated 
degree of freedom keep an extremely high (or possibly 
infinitly high) precision of its value. Yet when the wave-
function collapses and a classical measurement occurs, 
the capacity of that channel is only one natural until in-
formation per degree of freedom and the entropy rate of 
that measurement is such that one natural unit of infor-
mation is needed to describe any measurement process 
you could ask of it per degree of freedom. 

Thus, I find that precision to the infinite decimal point 
in the classical measurement is neither required nor 
possible since the classical information is finite. It thus 
makes sense that space is quantized. Planck showed 
energy is quantized [10]; Quantum Mechanics showed 
“action” is quantized; and from the analysis here a finite 
system is described by a finite amount of information; 
there is just not enough information in nature (or too 
much noise) to localize a particle to a continuous value 
that is not part of a finite set of values.  

A broader debate is necessary to understand the phys-
icality of classical information describing a quantum 
system, since its implications can be seen on both tangi-
ble qualities like the entanglement of quantum states and 
intangible qualities like the collaspe of the wavefunction. 
Yet, one advantage of knowing the governing thought is 
that you are able to use information theoretic tools to 
solve physics problems and vice versa. For example, the 
principle of least action (which is fundamental to me-
chanics) can be now looked at as a principle of least in-
formation. 

There is much more work to do in these areas includ-
ing application to the unsolved problems of physics [5], 
or for that matter other unknown unsolved problems. Still 
having this insight into information is a good start. 
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Appendix 
A1. Signal Spectral Density 
It is helpful to show how the signal of Brownian motion 
has the same spectral density as the noise. This is shown 
in the example of a harmonic oscillator with a thermal 
energy Bk T  (from two degrees of freedom) exactly 
equal to the quantum ground state energy, 0 2 Bk Tω =

[20], 
2 2

E
2 2m

xpm x
τ
 = + 
 

 

The signal power is the time derivate of the energy, 
P E=  . As the signal is wiped-out for frequencies higher 
than one over twice the relaxation time, 1 2Wτ τ=  we 
divide the power by 2Wτ  to give the signal spectral 
density, Pτ , 

2
x xp pmxxP
m

τ τ
τ

 = + 
 




 

Here xp  is the force, which is equal to 2mx τ− . 
Re-writing this equation and interpreting x  and xp  as 
operators to replace with the commutator [ ], ixx p =   [10], we get  

i 2 ix x
B

xp p x
P k Tτ

τ τ
−

= = =
  

This is purely reactive power (as one would expect 
from an un-damped harmonic oscillator). But for the 
purposes here, one will recognize the apparent power, or 
magnitude of the complex power, (apart from the resis-
tive factor) as the Johnson-Nyquist noise spectral density 
when spread over both positive and negative frequencies 
[27]. Thus we support the assumption in Section 4.2. 

A2. Thermodynamic Derivation 
Having in appendix A1, introduced the harmonic oscil-
lator with quantum ground state energy equal to the 
temperature, it is straightforward to show that, for this 
example, the governing thought also applies within 
thermodynamics. Reviewing the power, P , we have 

2

iP
τ

=
  

( )d
d

E
P

t
∆

=  

Since the power is reactive (imaginary), there is no 
work done and from the first law of thermodynamics [8]

E∆  will equal the heat, Q . Our expression of for 
thermodynamic entropy is now S∆  

( )d dE P tS
T T
∆

∆ = =∫ ∫  

Remembering 2 Bk Tτ =   and assuming the temper-
ature is constant gives the result, 

4 i 4 i
dB B

B B
k T k T tS k t k∆ = =∫
 

 

It is interesting that once again imaginary time is in the 
picture. Since 0 02 2 BE k Tω= = , and upon making a 
Minkowski transformation [11,12], 

02BS k E t∆ =   

Haller derives the entropy rate of thermal diffusion for 
one particle in [21]; here I will use a quicker derivation 
for both the positive and negative energy states and use 
the Gaussian channel capacity. The signal in this case is 
the width of the diffusing particle undergoing the Ber-
noulli process for one step, δt , 

( )( )2
δ 2 δ δx t D t t m∆ = =   

The noise is the minimum width of the wavepacket 
[10], 

( ) ( )2 2
0 4 Bx k Tm∆ =   

The capacity of one step of the Gaussian channel with 
this signal and noise is 

( )( )
( )

2

2
0

δ1 log 1
2

x t
C

x

 ∆
 = +
 ∆ 

 

Taking C  over the step size, δt , (and including a 
factor of 2 for the two particles), we have the information 
rate, 

( )( )
( )

2

2
0

δd 2 1 log 1
d δ δ

x tI C
t t t x

 ∆
 = = +
 ∆ 

 

Assuming a non-relativistic particle, where 2
Bmc k T , 

or equivalently δt τ , the above reduces to, 

d 4
d B
I k T
t
= 

 

Replacing 0 2 BE k T= , the governing thought is again 
returned, 

02 dI E t= ∫   

As assumed before, the temperature is constant so by 
integrating, we finish with information being equal to the 
thermodynamic entropy calculated above in this section, 

02 BI E t S k= = ∆  
 


