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ABSTRACT 
Higher-order numeric solutions for nonlinear differential equations based on the Rach-Adomian-Meyers mod- 
ified decomposition method are designed in this work. The presented one-step numeric algorithm has a high effi- 
ciency due to the new, efficient algorithms of the Adomian polynomials, and it enables us to easily generate a 
higher-order numeric scheme such as a 10th-order scheme, while for the Runge-Kutta method, there is no gen- 
eral procedure to generate higher-order numeric solutions. Finally, the method is demonstrated by using the 
Duffing equation and the pendulum equation. 
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1. Introduction 
The Adomian decomposition method (ADM) [1-4] is a practical technology for solving linear or nonlinear or-
dinary differential equations, partial differential equations, integral equations, etc. The ADM provides an effi-
cient analytic approximate solution of nonlinear equations, which model real-world applications in engineering 
and the applied sciences. The Adomian decomposition series has been shown to be equivalent to a Banach-space 
analog of the Taylor series expansion about the initial solution component function, instead of the classic Taylor 
series expansion about a constant that is the initial point [5]. 

The ADM decomposes the pre-existent, unique, analytic solution into a series  
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and decomposes the nonlinearity ( )Nu f u=  into the series of the Adomian polynomials  
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where the Adomian polynomials ,nA  depend on the solution component functions 0 1, , , ,nu u u  and are de-
fined by the formula [3] 
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For convenient reference, we list the first five Adomian polynomials  
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Some algorithms for symbolic programming have since been devised to efficiently generate the Adomian po-
lynomials quickly to high orders, such as in [5-10]. Rach’s Rule for the Adomian polynomials reads  
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where the coefficients k
nC  are the sums of all possible products of k  components from 1 2 1, , , ,n ku u u − +  

whose subscripts sum to n , divided by the factorial of the number of repeated subscripts [6]. 
New, more efficient algorithms and subroutines in MATHEMATICA for fast generation of the one-variable 

and multi-variable Adomian polynomials to high orders have been provided in [8-10]. Here we list Corollary 3 
algorithm [10] for the one-variable Adomian polynomials.  

Corollary 3 algorithm [10]:  
For 1n ≥ ,  
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Then the Adomian polynomials are given by the formula 
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The recurrence procedure for k
nC  does not involve the differentiation operator, only requires the operations 

of addition and multiplication, which is eminently convenient for computer algebra systems. 
In 1992, Rach, Adomian and Meyers [11] proposed a modified decomposition method based on the nonlinear 

transformation of series by the Adomian-Rach theorem [12,13]:  

If 0
0

( ) ( ) ,n
n

n
u x a x x

∞

=

= −∑  

then 

0
0

( ( )) ( ) ,n
n

n
f u x A x x

∞

=

= −∑                                  (7) 

where 0 1( , , , )n n nA A a a a=   are the Adomian polynomials in terms of the solution coefficients. 
The Rach-Adomian-Meyers modified decomposition method [11] combines the power series solution and the 

Adomian-Rach theorem [12,13], and has been efficiently applied to solve various nonlinear models [2,14-16]. 
In this work, higher-order numeric one-step methods are designed for solving nonlinear differential equations 

based on the Rach-Adomian-Meyers modified decomposition method [11] and the previous research [17].  
In the next section, we develop the numeric solution based on the modified decomposition method for nonli-

near second-order differential equations, and demonstrate its application. 

2. Higher-Order Numeric Solutions Based on the Modified Decomposition Method  
We consider the IVP for the second-order ODE  

2
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where 0 ,t t T≤ ≤  ( ), ( ), ( ), ( )t t t g tα β γ  are specified bounded, analytic functions, and f  is an analytic nonli-
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near operator. 
The modified decomposition method supposes an analytic solution  
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Then the functions ( ), ( ), ( ), ( )t t t g tα β γ are decomposed into the Taylor expansions  
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and the analytic nonlinearity ( )f u is decomposed into the Taylor series  
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where the coefficients 0 1( , , , )n n nA A a a a=   are the Adomian polynomials in terms of the solution coefficients 
ka  due to the Adomian-Rach theorem [12,13]. 
Substituting Equations (10)-(15) in Equations (8), regrouping terms, equating the coefficients of like powers 

of 0( )t t− , and using the initial condition we obtain the recurrence scheme for the solution coefficients 
0 0 1 1, ,a C a C= =  
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where 0m ≥  and the 0 1( , , , )n n nA A a a a=   are the Adomian polynomials in terms of the coefficients ka  for 
the nonlinear function ( )f u . 

In particular, if ( )tα α= , ( )tβ β=  and ( )tγ =  γ  are constants, then the recurrence formula becomes
0 0 1 1, ,a C a C= =  
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Further if ( )g t g=  is also a constant, then the recurrence formula becomes  
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We denote the (n + 1)-term approximation of the solution as  
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We regard 0 0 1, ,t C C  as three parameters, and generate the numeric solutions by using the (n + 1)-term ap-
proximation 1nφ + . 

Partition the interval 0[ , ]Nt t  into 0 1 Nt t t< < < . Here we consider an equal step-size partition with
1k kh t t −= − . The numeric solution generated by 1nφ +  is of order n. We denote the nth-order numeric solution 

by n
ku< > , k = 0, 1, …, N. The one-step recurrence scheme is as follows:  

0 0 0 1, ,nu C u C< > = =  
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k = 1, 2, ···, N, 
where (0)

ma  are the ma  in (16), and for k = 2, ···, N, ( 1)k
ma − , 2,3, ,m n=  , are determined by a recursion 

similar to (16) with ( 1)
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Example 1. Consider the IVP for the Duffing equation  
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The IVP has the exact solution * ( ) cos .u t t=  The Adomian polynomials for the nonlinearity 3( )f t u=  are  
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.  
The 8th-order numeric solutions on the interval [0,45] are plotted in Figure 1 with the step-size h = 0.5. The 

numeric solution is suitable for a larger domain as the order increases. 
Example 2. Consider the IVP for the pendulum equation  
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The exact solution can be expressed in terms of a Jacobi elliptic function as  
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10 100

u t t=  

The Adomian polynomials in terms of the decomposition coefficients ka  for the sinusoidal nonlinearity 
sin u  are  

 

 
Figure 1. The exact solution (solid line) and the 8th-order numeric solution on [0,45] with h = 0.5 (dots). 
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Using the initial conditions, the coefficients of solution series are calculated to be 
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The 5-term, 10-term and 20-term approximations 5 ( ,0,0,9),tφ  10 ( ,0,0,9),tφ  20 ( ,0,0,9)tφ  are plotted in 
Figure 2. It is shown that the decomposition solution has a radius of convergence of more than 0.2. 

The 5-term approximation 5 0 0 1( , , , )t t C Cφ  under the general initial conditions are calculated to be 
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The 4th-order and 5th-order numeric solutions on the interval [0,6] with h = 0.1 are plotted in Figures 3 and 4, 
respectively. The 9th-order numeric solutions on the interval [0,10] with 0.2h =  are plotted in Figure 5. We 
observe that the higher-order numeric solutions permit a larger step-size, and enlarge the effective region. 

 

 
Figure 2. The exact solution ( )*u t  (solid line), the 5-term approximation , , ,5(t 0 0 9 )φ  (dot line), the 10-term appro- 
ximation , , ,10(t 0 0 9 )φ  (dash line) and the 20-term approximation , , ,20(t 0 0 9 )φ  (dot-dash line). 

 

 
Figure 3. The exact solution (solid line) and the 4th-order numeric solution on [0,6] with h = 0.1 (dots). 
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Figure 4. The exact solution (solid line) and the 5th-order numeric solution on [0,6] with h = 0.1 (dots). 

 

 
Figure 5. The exact solution (solid line) and the 9th-order numeric solution on [0,10] with h = 0.2 (dots). 

3. Conclusions 
We have developed higher-order numeric solutions for nonlinear differential equations based on the Rach- 
Adomian-Meyers modified decomposition method. Due to the new, efficient algorithms of the Adomian poly-
nomials, the one-step numeric algorithm has a high efficiency, and permits us to easily generate a higher-order 
numeric scheme such as a 10th-order scheme, while for the Runge-Kutta method, there is no general procedure 
to generate higher-order numeric solutions. We demonstrated the presented numeric method by two nonlinear 
physical models. 
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