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ABSTRACT 

In this paper, using Local Linking Theorem, we obtain the existence of multiple solutions for a class of semili- 
near elliptic equations with nonlinear boundary conditions, in which the nonlinearites are compared with higher 
Neumann eigenvalue and the first Steklov eigenvalue. 
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1. Introduction 

In this paper, we investigate the multiple solutions for semilinear elliptic equation with nonlinear boundary con- 
ditions 
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where  3N N    is bounded domain with smooth boundary   and 

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

 is the outward nor- 

mal derivative on  , and the function  c x  satisfies 
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Problems of the above type have been discussed extensively. In 1902, Steklov (see [1]) studied the eigenvalue 
problem 
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Auchmuty (see [2]) considered the eigenvalue problem 
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where  c x  satisfies the condition C) and proved that the eigenfunctions provide a complete orthonormal 
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bases of certain closed subspace of  1H  . Using sub and super-solutions method, Amann (see [3]), Mawhin 
and Schmitt (see [4]) obtained some existence results for the problem (1.1). However, since it is based on com- 
parison techniques, the sub and super-method does not apply when the nonlinearities are compared with higher 
eigenvalues. 

In this paper, using the Local Linking Theorem, we obtain multiple solutions for the problem (1.1), which the 
nonlinearites are compared with higher Neumann eigenvalue and the first Steklov eigenvalue. 

2. Preliminaries and Main Results 

Let  pL   denote the Lebesgue space with the norm 
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 1H   is a Hilbert space under the standard inner product 
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with the associated norm 
1

u . As the function  c x  satisfies the condition C), we define the weighted 
1 -H c inner product by 
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and the associated norm 
c

u . By Corollary 3.3 in [2], we obtain that the norm 
c

u  is equivalent to the stan- 
dard norm 

1
u . As the function ( )c x satisfies the condition C), by Equation (2.2), we can split 
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as a direct orthogonal sum. 
Now, we state the Local Linking theorem introduced by [5]. 
Lemma 2.1 Let X  is a reflexive Banach space, X Y V   with  1dim , ,V C X     satisfies the 

(PS) condition, if 
1) there exists a constant 0  such that 
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Y
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2)   is bounded below and inf 0,X    then the functional   has at least two nontrivial critical points. 
Proof. See Theorem 4 in [5]. 
For the problem (1.3), Auchmuty (see [2]) obtained that 
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holds for all  1u H  , where 1  is the first Steklov eigenvalue for the problem (1.3). In [6], for the Neu- 
man eigenvalue problem 
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they obtain that the above problem has a sequence of real eigenvalues 

1 20 ,   as  ,j j                                 (2.3) 

with finite dimensional eigenspaces. 
Assume that, :f    , :g     are Carathedory functions satisfying 
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uniformly for x  with 
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H4) There exist a integer 1, 0k    and four constants , , ,a b    such that 
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Theorem 2.2 Suppose  c x  satisfies C), and H1)-H4) hold, Then the problem (1.1) has at least two distinct 
nontrivial solutions. 

3. The Proofs of Theorem 2.2 

Now, we define the functional  1: H     
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Since the function  ,f x u  satisfies H1),  ,g x u  satisfies H2), by the Sobolev embedding of  1H    
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we obtain that the functional  u  is well defined. Moreover, by Lemma 2.1, and Lemma 4.2 in [7], we ob- 
tain that   1 1 ,C H   , and 
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Furthermore, the functional  J u  is weakly continuous, and  J u  is compact. Let u v  in (3.2) and a 
simple computation, we obtain that the critical point of the functional  u  is the weak solution of the prob-
lem (1.1). 

Lemma 3.1 (see [7]) Assume that the function  c x  satisfies the condition C), H1) and H2) hold. If  mu  
is a (PS) sequence for the functional  , and  mu  is bounded in  1 ,H  then  mu  has a strongly conver- 
gence subsequence. i.e.  u  satisfies the (PS) condition. 

Lemma 3.2 Assume that  c x  satisfies the condition C), and H1)-H3) hold, the functional  u  is coer- 
cive on  1 .H   
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Hence, we obtain that  u  is coercive on  1H   since 1  . 
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By H3), we obtain 1 1 1 1 0       , then  u  is coercive on  1H  . 

Hence we obtain that the functional  u  is bounded from below, and every (PS) sequence  nu  is 
bounded in  1H  . From Lemma 3.1, we obtain that  u  satisfies (PS) condition and is bounded from below. 

The Proof of Theorem 2.2 We write  2L V V    , where 
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Since   1V H   is a finite dimensional space, by [2], we obtain that for given 0,   there is a 1 0   
such that 
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Therefore, we obtain that   0u  . 
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Combining Equation (3.4), Equation (3.6), H1) and H2), we have 
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From Equation (2.6), we have, for 0   sufficiently small 
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Since 1 2, 2q q  , we can choose 2 0   sufficiently small and   1u V H  , 2c
u  , such that the 

functional   0u  . 
By Lemma 3.2, we obtain that  u  satisfies (PS) condition and is bounded from below. If  

   1inf 0,
u H

u
 

   then by Lemma 2.1,   possesses two nonzero critical point. From (3.3), we obtain that  

there exist two nontrivial weak solutions for the problem (1.1). 

4. Conclusion 

Using Local Linking Theorem, we obtain the existence of two nontrival weak solutions for the problem (1.1) 
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which the nonlinearites  ,f x u  and  ,g x u  are compared with higher Neumann eigenvalue and the first 
Steklov eigenvalue. 
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