
Open Journal of Statistics, 2013, 3, 427-440
Published Online December 2013 (http://www.scirp.org/journal/ojs)
http://dx.doi.org/10.4236/ojs.2013.36051

Open Access OJS

High-Dimensional Regression on Sparse Grids
Applied to Pricing Moving Window Asian Options

Stefan Dirnstorfer1, Andreas J. Grau1, Rudi Zagst2
1Thetaris GmbH, Munich, Germany

2Technical University Munich, Munich, Germany
Email: dirnstor@thetaris.com, grau@thetaris.com, zagst@tum.de

Received July 29, 2013; revised August 29, 2013; accepted September 6, 2013

Copyright © 2013 Stefan Dirnstorfer et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor-
dance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of the intellectual
property Stefan Dirnstorfer et al. All Copyright © 2013 are guarded by law and by SCIRP as a guardian.

ABSTRACT

The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in op-
tion pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality
required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte
Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and con-
vergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be
generalized to pricing other high-dimensional, early-exercisable derivatives.

Keywords: Sparse Grid; Regression; Least-Squares Monte Carlo; Moving Window Asian Option

1. Introduction

Methods for pricing a large variety of exotic options have
been developed in the past decades. Still, the pricing of
high dimensional American-style moving average op-
tions remains a challenging task. The price of this type of
options depends on the full path of the underlying, not
only at the final exercise date but also during the whole
period of exercisable times. We consider in this paper the
case of an early-exercisable floating-strike moving win-
dow Asian option (MWAO) with discrete observations
for the computation of the exercise value. The exercise
value of the MWAO depends on a moving average of the
underlying stock over a period of time.

Carriere [1] first introduces the simulation-based me-
thod for solving American-type option valuation prob-
lems. A similar but simpler method is presented by
Longstaff and Schwartz [2]. Their method is known as
the Least Squares Monte Carlo (LSM) method. It uses
the least-squares regression method to determine the op-
timal exercise strategy. Longstaff and Schwartz also use
their LSM method to price an American-Bermuda-Asian
option that can be exercised on a specific set of dates
after an initial lockout period. Their American-Ber-

muda-Asian option has an arithmetic average of stock
prices as the underlying. The pricing problem can be
reduced to two dimensions after introducing another
variable in the partial differential equation (PDE) to rep-
resent the arithmetic average.

The dimension reduction technique as in Longstaff-
Schwartz [2] can not be applied for the pricing problem
of MWAOs. Since moving averages shift up and down
when the underlying prices shift up and down especially
when the first observation in the moving window drops
out and a new one comes in, the whole history of stock
prices is important in determining the optimal exercise
strategy of MWAOs. This leads to an arbitrary number of
dimensions and presents a computational challenge.
Pricing methods for MWAOs have been described by
very few authors besides Broadie and Cao [3]. Broadie
and Cao price a fixed strike MWAO, using polynomials
of underlying asset price and arithmetic average as the
regression basis function. Bilger [4] applies the LSM
method to price MWAOs. He uses a different choice of
basis functions (i.e. the underlying asset S and a set of
averages) for evaluating the conditional expected option
value. Kao and Lyuu [5] present results for moving av-
erage-type options traded in the Taiwan market. Their

S. DIRNSTORFER ET AL. 428

method is based on the binomial tree model and they
include up to 6 discrete observations in the averaging
period for their numerical examples. Bernhart et al. [6]
use a truncated Laguerre series expansion to reduce the
infinite dimensional dynamics of a moving average pro-
cess to a finite dimensional approximation and then ap-
ply the LSM algorithm to price the finite-dimensioned
moving average American-type options. Their numerical
implementations can handle dimensions up to 8, beyond
that their method becomes infeasible. Dai et al. [7] use a
forward shooting grid method to price European and
American-style moving average barrier options. The win-
dow lengths in their numerical examples range from three
or four days to two or three months.

In this paper, we apply an alternative type of basis
functions—the sparse grid basis functions—to the simu-
lation-based LSM approach for pricing American-style
MWAOs. The sparse grid technique overcomes the
low-dimension limit associated with full grid discretiza-
tions and achieves reasonable accuracy for approximat-
ing high-dimensional problems. Instead of using a pre-
determined set of basis functions in the least squares re-
gressions, the sparse grid basis functions are adaptive to
the data—it is more general and considers as many in-
formation in the moving window as possible. Using nu-
merical examples, we demonstrate the convergence of
the pricing algorithms for MWAOs for different numbers
of Monte-Carlo paths, different sparse grid levels and a
fixed length of observation period of 10 days. Sparse grid
is a discretization technique that is designed to circum-
vent the “curse of dimensionality” problem in standard
grid-based methods for approximating a function. The
idea of sparse grid was originally discovered by Smolyak
[8] and was rediscovered by Zenger [9] for PDE solu-
tions in 1990. Since then, it has been applied to many dif-
ferent topics, such as integration [10,11] or Fast Fourier
Transform (FFT) [12]. Sparse grids have also been used
for finite element PDE solutions by Bungartz [13], inter-
polation by Bathelmann et al. [14], clustering by Garcke et
al. [15], and PDE option pricing by Reisinger [16].

The structure of this paper is as follows: first, we for-
mulate the pricing problem of a moving window Asian
option and explain why this problem is computationally
challenging. This is followed by a brief description of the
LSM approach and the sparse grid technique. Finally, we
provide some numerical examples for pricing MWAOs
with discretely sampled observations using LSM with
sparse grid type basis functions.

Throughout this paper, we consider equity options on a
single underlying stock in the Black Scholes [17] frame-
work.

2. Moving Window Asian Option

MWAO is an American-style option that makes use of

the moving average dynamics of stock prices. Similar to
an American option which pays the difference between
the current underlying price and a fixed strike, a MWAO
pays the difference between current stock price and the
floating moving average or the difference between a
floating moving average and a fixed strike.

2.1. Continuous Time Version

Before going into the details of an MWAO, we set up the
process for the underlying stock. The stock prices are
assumed following a geometric Brownian motion (GBM)
process

d d dt t tS rS t S W ,t  (1)

where is the constant riskless interest rate, r  is the
constant stock return volatility and d is the incre-
ment of a standard Wiener process under the risk-neutral
measure. The initial stock price is denoted as 0 and at
time the stock price is t . The value of a MWAO
option written on the stock is denoted in general as ,
or t resp.

W

S
t S

V
V  , tV t S when we stress the dependence on

 or t . The option value V satisfies the following
Black Scholes PDE
t S

2
2 2

2

1
0.

2 t t
tt

V V V
S rS rV

t SS
  

   
 

 (2)

The following American constraint sets a minimum
value for the function . The constraint has to be satis-
fied at each time 0

V
t t> wt , where 0 denotes the set-

up time of the option and denotes a fixed window
length

t

wt

   , ,t tV t S P A S ,t (3)

 
 

0

1
d ,

dw w

t

t t t t
A t S  

   
 


 (4)

where  ,t tP A S
t

 is the payoff of a MWAO from exer-
cise at time . It depends on the stock price t and a
weighted moving average t

S
A of the stock prices. The

moving average tA is computed using the weight func-
tion  on a window of stock prices ranging from time

wt t to time . In this paper, we consider the payoff
function

t

  , max ,0t t t tP A S A S .  (5)

when setting the weight 1  in (4), we have an
equally-weighted arithmetic moving average

1
d .

w

t

t t t
w

A S
t  


 

Differentiating this expression with respect to time
leads to

t

 1
d d ,t t t tw

w

S S t
t   A

Open Access OJS

S. DIRNSTORFER ET AL. 429

where the updating process of tA depends not only on
the stock price at time , but also on the stock price at
time w . This is clearly not Markovian. An optimal
exercise strategy performed on the above moving aver-
age process

t
t t

tA has to consider t ,
wt t and all stock

prices w in between. Since all the values
 are used in computing the moving average t

S S 

, >u u > t tS t

uS A , and

tA in turn determines the MWAO payoff in (3), there
are infinitely many prices involved in the computation of
an optimal exercise strategy. This is a challenging infi-
nite-dimensional problem in continuous time [6,7].

2.2. Discretizations

To implement the pricing problem for the MWAO, we
consider the finite dimensional case with discretely sam-
pled observations. Define a set of times

 0 10, , , nt t t T   ,

with , and jt for . At time
, the value of and V is respectively denoted as
 and V .

, 0, ,it i  
S

n <i t



<i j

it

tS
i it

We consider constant weight t in defining a dis-
cretely sampled moving average tA

 
1, for

0, for

t m
t

t m



  

 (6)

where denotes the number of samples used in com-
puting the moving average. Using the weight function

m

 t in defining the moving average tA , the boundary
condition (3) at times  has the following
discretized form

1, ,m nt t 

   1
, , , ,

i i m i j i

i

t t t t t
j i m

V S S P i j S S
m




 


 










 (7)

where the weight function assigns a zero
weight to an initial observation in the moving window
and a weight of one to the rest of the observations. With
this weight function we have effectively used the past
samples to form the moving window. The above condi-
tion holds for , after an initial allowance for the
window length. The dimension of this MWAO problem
equals to the number of discrete samples used in the
averaging window.

i j 

m

i m

m

Our method for valuing the MWAO uses the discre-
tized process and a quadrature of  . The valuation pro-
ceeds backwards in time, starting at the option maturity

, where condition (7) holds with equality. Then we
solve for the option value at current time
T

 , tV V t S
00 .

For short window length and thus low dimensional-
ity, this procedure can be reformulated in a PDE setting
and solved numerically. However, due to the “curse of
dimensionality”, the PDE method is ineffective for di-

mensions of more than three or four. For window length
 larger than four, the high dimensional problem has to

be solved using approximate representations or special
numerical techniques.

m

m

3. Numerical Procedure

The previous sections provided the mathematical formu-
lations and discussed the discretization issues related to
the MWAO. This section details the numerical methods
we use for pricing MWAOs. The algorithm proposed by
this paper is effectively a combination of three tech-
niques that are well established in their respective fields.
The three techniques that we use as a practical tool for
valuing a MWAO are Monte Carlo simulation, least
squares regression and sparse grids. Especially in quanti-
tative finance, sparse grids technique has not yet lived to
its full potential. This paper contributes to use sparse
grids in solving high-dimensional problems. Since all the
three techniques have been documented in full detail by
the cited sources, we summarize in the following the
main aspects of each technique. Without explicitly men-
tioning it, all prices in our computations are discounted
prices, meaning that prices are already normalized by the
bank account numeraire. We use , and V to de-
note discounted stock prices, discounted payoffs and
discounted option values.

S P 

3.1. Monte Carlo Simulation

A standard method that is used when dimensionality
causes numerical difficulties is the Monte Carlo simula-
tion method. This method alone does not resolve our issue,
but provides the framework for our algorithm. We as-
sume that the stock price underlying a MWAO follows the
GBM process defined in (1). The discretized stock price
process is sampled at the set of discrete times it  so
that each of the realizations jS ,  1 with 11, ,j  s s
denoting the number of Monte-Carlo paths, has the fol-
lowing normalized representation

 2
1 1 1

1

1

2 ,
j

i i i i ti

i i

t t t t
j j

t tS S
    



     
   (8)

where
1

j

it



 is drawn from a standardized Normal dis-

tribution.
The price of the MWAO is the expected value of the

(discounted) payoff at the optimal stopping time. The
optimal stopping time provides a strategy that maximizes
the option value without using any information about
future stock prices.

3.2. Least Squares

At each exercise time it , the option holder decides
whether to exercise the option and get the payoff
 , iP S t or to continue holding the option. In order to

Open Access OJS

S. DIRNSTORFER ET AL. 430

maximize the option value at time , the holder
exercises if

it
V it

  1
,

ii tP S t V S t


 
  , ,i




 (9)

where denotes the expectation taken under the risk
neutral measure. In the LSM approach, the value of



1
,

it iV S t





 
 is approximated by a function  ,e

iP S t

  1
, , 


 .

i

e
i t iP S t V S t


 

  (10)

The value of  ,e
iP S t is computed using a least square

regression on many path-realizations 1i
.

The regressions start at one time step before the maturity
.

, 1, ,S j s j
t


T
The function is a linear combination of the

basis functions
 ,e

iP S t

k




  ,
i m i

e i
i k k t

k

P S t a S S


    , t,  . (11)

The coefficients are found by minimizing the
-norm

i
ka

2L

  1
2

, , , 1, , ,
i m i

i j j j
k k t t ti

k

a S S V j s


      (12)

where
i

j
tV is the option value of a Monte Carlo path

realization jS at time i . The option value
i

t j
tV is

given as the maximum between the estimated continua-
tion value and the intrinsic value. A numerically more
stable algorithm is to set

   
 

1
if , >

,
, else

i

i

j e j
tj

t j
i

V P S t P S
V

P S t


 


  




,i
 

j
T T

j
it





 (13)

where the computed is used only in early-
exercise decisions, this avoids the accumulation of ap-
proximation errors when stepping backwards in time.

 ,e j
iP S t

Given the option payoff V P at maturity  ,j
T S  

time, a backward induction dynamic programming me-

thod solves for all values
i

j
tV , starting at time and T

iterating back to . Based on the values
0

,
we compute an estimated option value, known as the
in-sample price

0t 1, 1, ,V j s j
t


0

1

11

1
.

s
in j

t
j

V
s 

  V  (14)

This approach has an obvious shortcoming. Each of
the estimated option values

0

j
tV

,
i

j
t iS t 

 contains information
about its future stock path . In order to avoid
this perfect foresight bias, we compute an out-of-sample
option price: we generate additional simulation paths ,

 but use the coefficients fitted
to the old set of simulation paths

 


lS

 1 11, ,l s s s   2
i
ka

jS ,  11,j , s .
Consequently, the out-of-sample value does not depend

on knowledge of the future paths. The out-of-sample
option value is computed by

1 2

0
1 12

1
,

s s
out l

t
l s

V
s



 

   V

l
it

 (15)

with

   
 

1
if , ,

.
, else

i

i

l e l
t il

t l
i

V P S t P S
V

P S t


  


   



 (16)

In our implementations, we compute only the out-of-
sample value since it is the value for which we can state
the optimal exercise policy without information about the
future. The expected value of the out-of-sample price

 is always a lower bound for the option value, and
the estimate is crucial for the convergence of the
least squares Monte Carlo simulation method. We are
confined to finitely many samples and to finite degrees of
freedom in the regressions, thus are not able to perfectly
represent the real shape of

outV
eP

1it i  using the esti-
mate . A less than optimal exercise strategy is per-
formed and provides a lower biased option value.

,V S t 
eP

3.3. Basis Functions

An important issue in the LSM approach is a careful
choice of the basis functions k in (11). We will use in
this paper a linear combination of the sparse grid type
basis functions to approximate the conditional expected
value

1it i
,V S t 

  involved in the optimal exercise
rules. We need one dimension for each observation in the
averaging window, this leads to a high dimensionality in
the computational problem. Sparse grid [8] is a discreti-
zation technique designed to circumvent this “curse of
dimensionality” problem. It gives a more efficient selec-
tion of basis functions. This technique has been success-
fully applied in the field of high-dimensional function
approximations [15] and many others [10,13,16,18].



In the following we provide a brief description of the
sparse grid approach. We start from constructing one-
dimensional basis functions in a general case and show
how to build multi-dimensional basis functions from the
one-dimensional ones. Next we create a finite set of basis
functions for numerical computations. Sparse grid then
efficiently combines the sets of basis functions in a way
such that the resulting function set is linearly independ-
ent. Following this, we detail on two specific types of
sparse basis functions - a polynomial function and a
piecewise linear function - to be used as the basis func-
tions in the LSM regressions in this paper.

3.3.1. Constructing the Basis Functions
When approximating a function with simpler functions or
numerically extracting the shape of a function, it is com-

Open Access OJS

S. DIRNSTORFER ET AL. 431

mon to build such a function representation using some
basis functions. We consider here a set of basis functions

 1 2, , , n     and we call the set (sets) of basis
functions “function basis (bases)”. From the set  , we
construct an approximating function f as a linear com-
bination of the basis functions

   
1

,
n

k k
k

f x a x


  (17)

with coefficients k for a , 1, ,k k n   , and x X
for some set . The basis functions X  k x can be a
one-dimensional or multi-dimensional mapping from
to .

X
R

For the one-dimensional case, many function bases are
well known and widely used. Examples include polyno-
mials, splines, B-splines, Bessel functions, trigonometric
functions, and so on. For the multi-dimensional case, the
set of basis functions that are commonly used is more
scarce. There are two common approaches to construct-
ing multi-dimensional basis functions from the one-di-
mensional ones: the radial basis functions [19] and the
tensor product functions [20]. In this paper we focus on
the tensor product approach. To construct a tensor
product basis function, we select one-dimensional func-
tions  and multiply their respective function value
evaluated at the corresponding component of x .
Specifically, for and each m-dimensional basis
function

mX R
k , we choose a set of one dimensional func-

tions

 ,1 ,2 ,, , ,k k k m  

and

 1 2, , , mx x x x  ,

then multiply the -th function ,k jj  evaluated at the
-th element jj x , for , to have the following

representation of an -dimensional basis function
1, ,j   m

m

       ,1 1 ,2 2 , .k k k k m mx x x x     (18)

3.3.2. Creating a Function Basis
Having created multi-dimensional basis functions in a
general case, we now select a finite set of these functions
to be our basis for numerical analyses. Since we will do
computations on different levels of accuracy, we will
also need a set of basis functions on different levels.
Naturally, the more basis functions we put in the set, the
more accurate are our function approximations.

We decide that on a level there are L   1L  ba-
sis functions. The one-dimensional function basis L
with functions is the following set   1L 

  1 2 1, , , ,L L     

where   , 1, , 1i i L   are one-dimensional basis
functions, and  L is a monotonously increasing
function that determines the size of our basis at level . L

In order to create an -dimensional function basis,
we choose a level

m
 1 2, , , mL L L L . For each dimen-

sion  1, ,j  m jL, the level implies a function ba-

sis   1 2 1
, , ,

j j
L L

  


   via (19). Using the ten-

sor product function, the -dimensional function basis m

L is constructed as

 

      
1 2, , ,

1 1 2 2 , 1, ,

m

j

L L L L

m m j L ,x x x x j m   

   

 



     
(20)

where  j jx denotes any of the one-dimensional ba-
sis functions from

jL , evaluated at the j t element of h
 1 2, , , mx x x x .

It was our original goal to construct a function basis
with increasing expressiveness for increasing levels. This
multi-dimensional level is not a very good starting
point. Consider the case where all dimensions are equally
important, we would have to use a level of the form

L

 , , ,L      . The size of the resulting function set
would be extremely large, a phenomenon known as the
“curse of dimensionality” problem:

 , , , .
m

L        (21)

Choosing 10m  dimensions and   3  results
in functions with a corresponding number of coeffi-
cients to be solved.

103

3.3.3. Sparse Grids
Sparse grids were developed as an escape from the
“curse of dimensionality” problem. They allow reasona-
bly accurate approximations in high dimensions at low
computational cost. The idea behind the sparse grid is to
combine the tensor basis of different levels.

Let *L
 be the set of basis functions on level .

We define it as the union of all tensor function bases

*L

L where the sum of levels   is
equal to , with and denoting the set of
all non-negative numbers

m

0
1 2 mL L L  

0*L *L 

 

*
*

1 2
1 , ,

.
m
m

LL
L L L L

L L L
   


 



  (22)

Considering a simple example with dimen-
sions on level

2m 
* 2L  , i.e. . For 0k

*
1 2L L L   2 L 

with 1,2k  , there are three possible combi- nations of
the levels 1 and 2 that sum to 2: , L L  20,  11, and
 2,0 . From this, we could create a set * 2L 


  

 as the
union of the tensor function bases: .      2,0 1,1 0,2

 (19) The first set  2,0 has high resolution in the first di-
mension , while the last set mainly resolves


1L  0,2

Open Access OJS

S. DIRNSTORFER ET AL. 432

the second dimension 2 . By construction, basis func-
tions with high resolution in both dimensions, such as

 2,2 , are left out in the sparse set, making the sparse
basis ideal for approximating functions with bounded
mixed derivatives.

L



The computational effort of sparse grids compared with
conventional full grids decreases radically while the error
rises only slightly: for the representation of a function f
over an m-dimensional domain with minimal mesh

size 2 L
L

h , a sparse grid employs  11 log
m

L LO h h


points and a full grid has  m
LO h grid points. At the

same time, the interpolation error for smooth func- 2L

tions is  2 logLO h h 1m

L


 for sparse grids and  2

LO h

for full grids.
Having constructed a sparse basis *L

 on a top
level, we now create two specific types of sparse basis
functions that will be used as the function sets in our
LSM regression problem: a polynomial sparse function
basis and a piecewise linear function basis. Compared
to the piecewise linear basis functions, the polynomial
sparse basis functions are easier to understand and eas-
ier to implement. As solutions to higher dimensional
problems, the piecewise linear basis functions are more
adaptive. They can be extended to effectively place the
basis functions on the dimension that contributes more
to the problem solution. As a result, piecewise linear
basis functions have seen wide applicability to solving
PDEs [18] and interpolating functions [21]. In our paper,
we use these two types of sparse basis functions to cross
validate the results of our high dimensional pricing
problem.

3.3.4. A Polynomial Sparse Basis
A polynomial function basis with basis func-
tions in the one-dimensional case has the following con-
struction

  1L 

  2 31, , , , .L
L x x   ,x x (23)

From the one-dimensional functions L , we can
build a multi-dimensional tensor basis according to (20).

As an example, for the two-dimensional case  2m  ,
we have the first dimension in x with one-dimensional
functions

  1

1

2 31, , , , L
L x x  ,x x

,y y

,

and the second dimension in with one-dimensional
functions

y

  2

2

2 31, , , , L
L y y   .

Equation (20) then gives the following list of tensor basis
functions

 

 

 

         

1 2

1

1

2 2 2 1

,

2

2

2

1

L L

L

L

L L L L L

x x x

y xy x y x y

y xy x y x y





    

 

2

 
 
 
 
 
 
 




    



 (24)

Building upon the two-dimensional function basis

 1 2,L L , we construct a sparse basis function set for the
three sparse levels


* 0L  , , and * 1L  * 2L  , where
*L L1 L2  . We let the three levels correspond to
 *L 0 0  ,  * = 1 =L 2 and  * 6L 2  num-

ber of basis functions. Using (22) to unite the function
sets, our sparse bases for the two dimensional function
space are the following sets

   

      
 

     




*

*

*

0,00

2 2
1,0 0,11

2 2

2,0 1,1 0,22

2 3 4 5 6 2 3 4

5 6 2 2 2 2

1

1, , 1, ,

1, , , ,

1, , , , , , , , , , ,

, , , , , .

poly

L

poly

L

poly

L

x x y y

x x y y

x x x x x x y y y y

y y xy x y xy x y







   

    



    



 

 
 (25)

The above sparse basis function sets *
poly

L
 are cre-

ated by taking the unions of the tensor bases of  1 2,L L

according to (22). As an example, the sparse set * 1

poly

L 


is constructed as a union of

     
1 2

2
1,0 1, 0 1, ,L L x x    

and

     
1 2

2
0,1 0, 1 1, ,L L y y     .

The set  1,0 is arrived at by having   1 1 2L  
number of basis functions in the x direction and
 2 0L 0  basis functions in the direction from

the two-dimensional set
y

 1 2,L L

We have just created a polynomial sparse basis *

 , ceteris paribus.
poly
L

in two dimensions. Higher dimensional function bases
can be similarly constructed using the tensor product
approach, depending on the dimension of the problem we
intend to solve. In our LSM regression problems, we
have for example used 10m  dimensions and a poly-
nomial sparse level of  2* 0,1,L  .

While the polynomial sparse basis functions aim for a
global fit, the piecewise linear basis functions fit locally
to the approximated functions and it is to the task of con-
structing the piecewise linear basis functions that we now
turn.

Open Access OJS

S. DIRNSTORFER ET AL.

Open Access OJS

433

3.3.5. Piecewise Linear Functions on [0,1] It has been found computationally advisable to have
only one basis function on the first level. Hence we start
with the constant 1 on level and transform * 0L  
on successive levels. This construction avoids the inclu-
sion of costly boundary points by creating boundary func-
tions that are less scaled than inner functions. Klimke
and Wohlmuth [21] is a good reference on piecewise
linear basis functions.

The piecewise linear function is a type of basis function
that is commonly used in sparse grid applications. To
create a piecewise basis for various levels, we utilize a
construction approach known from multi-resolution
analysis. We define a mother function  x and gen-
erate our basis by scaling and translating from  x

 
 
 

1 when 1,0

1 when 0,1

0 otherwise

x x

x x x

   


  



 (26)
The one-dimensional function bases of levels 1 0L  ,

1 1L  , 1 2L  , , 1 L k in x as generated from
the one-dimensional basis functions  in (26) are the
following sets

 

    
        

1

1 1

1 1

0

1 0

2 1

1

2 , 2 2

4 , 4 4 8 3 , 8 5

L

L L

L L

x x

x x x x

 

   



 

 

 

   

     



  
 (27)



    
        

1 1 1

1 1 1 1 1

2 , 2 2

2 3 , 2 5 , 2 7 , , 2 2 3

k k k
L k L k

k k k k k

x x

x x x x

 

   

  

    

   

    



   ,
 (28)

where the series  13,5,7, , 2 3k  in (28) is a se-
quence of odd numbers. The one-dimensional function
bases in can be analogously generated from (26). y

The construction of a two-dimensional sparse basis in
the x and directions respectively for levels y * 0L  ,
L* = 1 and *L 2 , where , follows from (22) *

1L L L  2



   

            
     

                
                 
   

*

*

*

0,00

1,0 0,11

2,0 1,1 0,22

1

1, 2 , 2 2 , 2 , 2 2

1, 2 , 2 2 , 4 , 4 4 , 8 3 , 8 5 , 2 , 2 2 , 4 ,

4 4 , 8 3 , 8 5 , 2 2 , 2 2 2 , 2 2 2 ,

2 2 2 2 .

piece

L

piece

L

piece

L

x x y y

x x x x x x y y

y y y x y x y x y

x y

   

        

        

 







   

      

    

     

    

 



 

y
 (29)

As an example, the sparse basis function set * 2

piece

L 
 is

created by taking the unions of the function bases of

 2,0 , , and , where  1,1  0,2    1 22,0 2, 0L L    is

the tensor product of and , with
1 2L 

2 0L 
1 2L 

given in (27) and
2 0 . The set  1 2,1L   L L is con-

structed using the tensor product function (20).


The two-dimensional sparse bases can be extended to
higher dimensions depending on the problem dimensions
we intend to solve. The resulting higher-dimensional
function sets can then be used in the LSM regressions by
selecting an optimal sparse level for that problem dimen-
sion.

3.3.6. Implementations
We perform the regressions required by (12) on sparse
polynomial basis functions *

poly

L
 and sparse piecewise

linear basis functions *
piece
L

 as explained in Section
3.3.4 and 3.3.5, respectively. As an example, in the case
of sparse polynomial basis functions of dimen-
sions, the approximating function of (11) is a linear
combination of the basis functions in the polynomial
sparse basis set

2m 
eP

*
poly

L
 in (25). At sparse level * 1L  ,

 2
1 2, , 2

1

poly

L
the set * 11, , 2x x x x

1 2

4 2

i i

i j

a a

a x

 

 


  , and the approximating

function

 ,e j
it  2

1

.

jx

 
3

2

2

i

j

P x x

x

 




1

5

j

i

a

a





For the sparse piecewise linear basis functions of
2m  dimensions, the approximating function is a

linear combination of the basis functions in the piecewise
linear sparse basis set

eP

*
piece

L
 in (29). At sparse level

S. DIRNSTORFER ET AL. 434

* 1L 

* 1

piec

L 



0

j

, the set

        1 1 2 21, 2 , 2 2 , 2 , 2 2e x x x x       ,

and the approximating function

    
   

1 2 1 3 1

4 2 5 2

, 2 2

2 2 2

e j i i j i j
i

i j i j

P x t a a x a x

a x a x

 

 

     

    

2

m

In our implementations, we use sparse levels from
 up to 3 and dimensions for computing the

basis functions. This is sufficient for our purposes. But,
we do not perform the regressions on directly. In-
stead, we use scaled values of such that for each path

, we compute

*L
10m 

S
S

   1 1 1 1, , , ,
i i

j j j j j j j
m t m tx x x S S 

      ,

where  1 , ,j j
m   1 are defined such that   1

0,1
mjx
 .

For discretely sampled observations, the dimension of
the problem is effectively dimensions because of the
weight function

m
 used in computing the moving av-

erages. When extrapolating to the continuous case, the
dimension of the problem approaches infinity as
goes to .

m


The regression itself is performed solving the least
squares problem of (12) via QR-decomposition. Fur-
thermore, the regression is only performed on paths with
a positive exercise value . This sig-
nificantly decreases the computational effort.

 : , >j j
iS P S t  0

4. Numerical Example

We provide in this section a numerical case study of us-
ing sparse grid basis functions in LSM pricing MWAOs.
We will use a discretely sampled averaging window
spanning ten observations with the weight function α in
(6).

The properties of the MWAO are defined in Table 1.
The underlying stock prices are sampled at a regular fre-
quency, e.g. every trading day at a specific time.

To analyze the convergence of our pricing algorithm

for MWAOs, we use the notation   *, ,
i

V n L m to de-

note the out-of-sample result as defined in (15).
Each Monte Carlo value

outV
  *, ,V n L

i
m

n
 depends on the

number of sample paths , the level of the sparse grid
function basis , the number of observations in the
averaging window , and the quadrature scheme

*L
m  .

We compute different   *, ,
i

V n L m with , , n *L m

and  fixed in order to get an estimate for the mean

   *

1

1
, , , ,

I i

i

V n L m V n L m
I 



  * (30)

of I different Monte Carlo prices. Each valua-
tion

i I
  *, ,

i
V n L m is based on a randomly generated

Table 1. Specifications of a moving window Asian option
with a floating strike. The moving averages are based on
discretely sampled stock prices.

Option type moving window Asian option

Maturity T 0.4 years

Initial stock price 0S 100

Risk free rate r 5%

Volatility  0.40

Dividend rate d 0

Daily observations obst 1/250 years

Length of observation

period m 10 days

Exercise value  1
max ,0

j i

i

t t
j i m

i j S S
m


 

  
   

  


Monte Carlo seed. The number of I ranges from 10 to
1000 depending on an estimate of the Monte Carlo error.
For instance, if the error is acceptable based on our 95%
confidence level at 10I  , we stop the computation and
obtain the mean price estimate using (30). Otherwise, we
continue computing   *, ,L

i
V n m by increasing the

value of I until the error is acceptable. The number of
samples per Monte Carlo price results from combin-
ing the in-sample paths

n
1, ,1 sS 

2

S and the out-of-sam-
ple paths 1 1, , 1s s sSS   such that 1 2 . We use
30% of the sample paths for regressions and 70% for
option valuation out-of-sample.

n s s 

Figure 1 presents the mean  *, ,10V n L for differ-
ent numbers of samples and different levels , but
with the dimensions

n
10

*L
m  and the weights  fixed.

Included in the figure are the results from the polynomial
and the piecewise linear sparse basis functions. The op-
tion values at sparse level converge quickly to a
value of about

* = 0L
7.17

m
V which does not change after

30,000 simulations. With , the sparse level
consists of just one basis function (i.e. a constant) and the
resulting exercising decision is almost trivial. Sparse
level


10 0

* 1L  consists of 21 basis functions. This allows
for a more sophisticated strategy with a better utilization
of the option. After about 300,000 simulations, the option
value saturates at 7.62 for both polynomial and piecewise
linear basis functions. The sparse level with 241
basis functions results in similar values after 1,000,000
simulations. For the polynomial sparse basis functions, a
third level

* 2L 

* 3L  with 2001 basis functions already
exceeds our available computational resources, such that
the saturation level could not be computed. The values
for polynomial sparse level 3 are thus not presented. One

Open Access OJS

S. DIRNSTORFER ET AL.

Open Access OJS

435

100 300 1000 3000 10,000 30,000 100,000 300,000 1,000,000
number of simulations

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

option price

piecewise
basis
level 0

piecewise
basis
level 2

piecewise
basis
level 1 piecewise

basis
level 3

polynomial
basis
level 2

polynomial
basis
level 0

basis
level 1

polynomial

Figure 1. The option values for MWAO. The figure shows MWAO values estimated by least squares Monte Carlo combined
respectively with polynomial sparse basis functions and with piecewise linear sparse basis functions. The sparse level ranges
from 0 to 3 and the number of simulation paths runs from to . In the figure, “polynomial basis level #” refers
to the MWAO values estimated with the polynomial basis functions at a sparse level #, where # is the number for the sparse
level. Similarly, “piecewise basis level #” points to MWAO values estimated with the piecewise linear basis functions at the
sparse level #. The data for the MWAO are specified in Table 1.

21 10 61 10

thing worth mentioning is that higher sparse levels ini-
tially perform inferior to lower sparse levels due to the
over-fitted regression functions.

The corresponding values in Figure 1 are presented in
Table 2 for polynomial sparse basis functions and in
Table 3 for piecewise linear sparse basis functions. The
mean values of a series of valuations ,   *, ,10

i
V n L

1, ,i   I , is denoted by  *, ,10V n L (30), the stan-

dard deviation of the series across I valuations is de-
noted by ̂ . For a single evaluation with
LSM,

  *, ,10
i

V n L 
̂ can be seen as a measure of how close the

value is to the mean of I valuations. Thus ̂ does not
measure the error relative to the true option value. The
mean estimate  *, ,L 10V n (30) will be biased lower
than the true values due to the suboptimal estimate of the
optimal exercise strategy

1it i
, tV S 

  . At sparse level
 both polynomial and piecewise linear basis func-

tions deliver similar MWAO prices up to two decimal
points after sample paths. At sparse level


* 1L 

53 10 *L 2
with sample paths the MWAO prices are the
same up to three decimal point in both cases. Based on
the results, both types of sparse basis functions solve our

high-dimensional least squares problem and the prices
converge to a level of at sample paths for
sparse levels

601 1

7.62 61 10
* 1L  and sparse level . Since the

polynomial sparse basis functions are easier to construct
and easier to implement, we recommend them as the
bases of choice for our MWAO pricing problem.

* 2L 

L

The price of our moving average window option has
three main sources of error: the number of simulation
paths , the level of the function basis and the
number of integration samples . The best possible
approximation would have to reduce the errors originated
from using these limiting parameters.

n *

m

5. Conclusion

This paper presents a general and convergent algorithm
for pricing early-exercisable moving window Asian op-
tions. The computational difficulty of the pricing task
stems from what defines the option’s underlying: an ei-
ther discretely or continuously sampled average over a
moving window. We have applied a generalized frame-
work to solve this high-dimensional problem by com-
bining the least-squares Monte Carlo method with the

S. DIRNSTORFER ET AL. 436

Table 2. The option value for MWAO with data in Table 1 estimated by least squares Monte Carlo with polynomial sparse

basis functions. The mean estimate  , ,* 10αV n L  (30) is based on sample , sparse level , number of observations in the

averaging window , and the weight function

n *L

10m  . The number of samples ranges from to , and the

sparse level goes from 0 to . The standard deviation of the series

n 21 10 61 10
L 2   , , 10L

i

αV n is denoted by ̂ .

\ level *L * 0L  * 1L  * 2L 

samples n  ,0,10V n ̂  ,1,10V n ̂  , 2,10V n ̂

21 10 7.158912 0.234 4.378564 0.470 4.446816

23 10 7.171716 0.134 6.950492 0.264 3.399907

31 10 7.172727 0.073 7.385057 0.114 3.325619 0.148

33 10 7.176859 0.043 7.543586 0.061 6.296143 0.083

41 10 7.168296 0.022 7.594902 0.034 7.159272 0.041

43 10 7.172753 0.014 7.617092 0.018 7.464719 0.018

51 10 7.171619 0.007 7.621127 0.010 7.572837 0.009

53 10 7.173722 0.005 7.627301 0.005 7.613978 0.006

61 10 7.171411 0.004 7.624000 0.003 7.625142 0.002

Table 3. The option value for MWAO with data in Table 1 estimated by least squares Monte Carlo with piecewise linear

sparse basis functions. The mean estimate  , ,* 10αV n L  (30) is based on sample , sparse level , number of observations

in the averaging window , and the weight function

n *L

10m  . The number of samples ranges from to ,

and the sparse level goes from 0 to . The standard deviation of the series

n 21 10 61 10
*L 3   *V n , ,10L

i

α is denoted by ̂ .

\ level *L * 0L  * 1L  * 2L  * = 3L

samples n  ,0,10V n ̂  ,1,10V n ̂  , 2,10V n ̂  ,3,10V n ̂

21 10 7.157866 0.257 7.271832 0.293 6.527391 0.427 5.631500 0.468

23 10 7.171375 0.172 7.432182 0.146 7.035495 0.154 6.130585 0.240

31 10 7.172456 0.062 7.459452 0.094 7.306664 0.080 6.103082 0.354

33 10 7.176906 0.050 7.555757 0.052 7.459485 0.051 7.067918 0.077

41 10 7.168270 0.029 7.586647 0.046 7.521104 0.043 7.313780 0.036

43 10 7.172753 0.016 7.614570 0.020 7.576200 0.019 7.444699 0.021

51 10 7.171629 0.009 7.617702 0.012 7.601458 0.011 7.524500 0.010

53 10 7.173733 0.005 7.624306 0.007 7.621602 0.007 7.578699 0.006

61 10 7.171410 0.003 7.621104 0.004 7.625030 0.004 7.606029 0.004

sparse grid basis functions. The sparse grid technique has
been specifically developed as a cure to the “curse of
dimensionality” problem. It allows more efficient selec-
tion of basis functions and can successfully approximate
high-dimensional functions with less computational ef-
fort. We have used both the polynomial and the piece-
wise linear sparse basis functions in the least-squares
regressions and found that the results converge to values
up to two decimal points, independent of the type of ba-
sis functions used. We recommend the polynomial sparse

basis as the basis of choice for this type of pricing prob-
lems since they are easier to construct and easier to im-
plement. The approach presented in this paper can be
generalized to pricing other high-dimensional early-ex-
ercisable derivatives that use a moving average as the
underlying.

REFERENCES
[1] S. Achatz, “Higher Order Sparse Grid Methods for El-

Open Access OJS

S. DIRNSTORFER ET AL. 437

liptic Partial Differential Equations with Variable Coef-
ficients,” Computing, Vol. 71, No. 1, 2003, pp. 1-15.
http://dx.doi.org/10.1007/s00607-003-0012-8

[2] V. Bathelmann, E. Novak and K. Ritter, “High Dimen-
sional Polynomial Interpolation on Sparse Grids,” Ad-
vances in Compuational Mathematics, Vol. 12, No. 4,
2000, pp. 273-288.
http://dx.doi.org/10.1023/A:1018977404843

[3] M. Bernhart, P. Tankov and X. Warin, “A Finite Di-
mensional Approximation for Pricing Moving Average
Options,” Journal on Financial Mathematics, Vol. 2, No.
1, 2011, pp. 989-1013.
http://dx.doi.org/10.1137/100815566

[4] R. Bilger, “Valuing American-Asian Options Using the
Longstaff-Schwartz Algorithm,” Msc Thesis in Compu-
tational Finance, Oxford University, Oxford, 2003.

[5] F. Black and M. Scholes, “The Pricing Of Options and
Corporate Liabilities,” Journal on Political Economy, Vol.
81, No. 3, 1973, pp. 637-659.
http://dx.doi.org/10.1086/260062

[6] T. Bonk, “A New Algorithm for Multi-Dimensional Adaptic
Numerical Quadrature,” In: W. Hackbush, Ed., Adaptive
Methods—Algorithms, Theory and Applications, Notes on
Numerical Fluid Mechanics, Vieweg + Teubner, Brauns-
chweig, 1994, pp. 54-68.

[7] M. Broadie and M. Cao, “Improved Lower and Upper
Bound Algorithms for Pricing American Options by
Simulation,” Quantitative Finance, Vol. 8, No. 8, 2008,
pp. 845-861.
http://dx.doi.org/10.1080/14697680701763086

[8] H.-J. Bungartz, “A Multigrid Algorithm for Higher Order
Finite Elements on Sparse Grid,” Electronic Transactions
on Numerical Analysis, Vol. 6, 1997, pp. 63-77.

[9] J. F. Carriere, “Valuation of the Early-Exercise Price for
Options Using Simulations and Nonparametric Regres-
sion,” Insurance: Mathematics and Economics, Vol. 19,
No. 1, 1996, pp. 19-30.
http://dx.doi.org/10.1016/S0167-6687(96)00004-2

[10] M. Dai, P. Li and J. E. Zhang, “A Lattice Algorithm for
Pricing Moving Average Barrier Options,” Journal of
Economic Dynamics and Control, Vol. 34, No. 3, 2010,
pp. 542-554. http://dx.doi.org/10.1016/j.jedc.2009.10.008

[11] S. Dirnstorfer, A. J. Grau and H. Li, “ThetaML Hand-
book,” edition winterwork, 2012.

[12] S. Dirnstorfer and A. J. Grau, “Computer Aided Finance:
Another Journey in the Quest for the Holy Grail of Fi-

nancial Engineering,” WILMOTT Magazine, 2008, pp.
68-73.

[13] J. Garcke, M. Griebel and M. Thess, “Data Mining with
Sparse Grids,” Computing, Vol. 67, No. 3, 2001, pp. 225-
253. http://dx.doi.org/10.1007/s006070170007

[14] K. Hallatschek, “Fouriertransformation auf Dünnen Gittern
mit Hierarchischen Basen,” Numerische Mathematik, Vol.
63, No. 1, 1992, pp. 83-97.
http://dx.doi.org/10.1007/BF01385849

[15] C.-H. Kao and Y.-D. Lyuu, “Pricing of Moving Average-
Type Options with Applications,” Journal of Futures
Markets, Vol. 23, No. 5, 2003, pp. 415-440.
http://dx.doi.org/10.1002/fut.10072

[16] A. Klimke and B. Wohlmuth, “Algorithm 847: Spinterp:
Piecewise Multilinear Hierarchical Sparse Grid Interpo-
lation in Matlab,” ACM Transactions on Mathematical
Software, Vol. 31, No. 4, 2005, pp. 561-579.
http://dx.doi.org/10.1145/1114268.1114275

[17] F. A. Longstaff and E. S. Schwartz, “Valuing American
Options by Simulation—A Simple Least-Squares Ap-
proach,” The Review of Financial Studies, Vol. 14, No. 1,
2001, pp. 113-147. http://dx.doi.org/10.1093/rfs/14.1.113

[18] B. D. Martin, “Radial Basis Functions: Theory and Im-
plementations,” Cambridge University Press, Cambridge,
2003.

[19] M. Griebel, P. Oswald and T. Schiekoffer, “Sparse Grids
for Boundary Integral Equations,” Numerische Mathe-
matik, Vol. 83, No. 2, 1999, pp. 279-312.
http://dx.doi.org/10.1007/s002110050450

[20] B. Nicolas, “Elements of Mathematics, Algebra I,” Springer-
Verlag, Berlin, 1989.

[21] C. Reisinger, “Numerische Methoden für Hochdimensionale
Parabolische Gleichungen am Beispiel von Optionsprei-
saufgaben,” Dissertation, Ruprecht-Karls-Universität, Heidel-
berg, 2004.

[22] S. Schraufstetter, “A Pricing Framework for the Efficient
Evaluation of Financial Derivatives Based on Theta Cal-
culus and Adaptive Sparse Grids,” Dr. Hut, 2012.

[23] S. A. Smolyak, “Quadrature and Interpolation Formulas
for Tensor Products of Certain Classes of Functions,”
Doklady Akademii Nauk SSSR, Vol. 148, 1963, pp. 1042-
1043. English Russian Translation: Soviet Mathematics
Doklady, Vol. 4, 1963, pp. 240-243.

[24] C. Zenger, “Sparse Grids,” In: W. Hackbusch, Ed., Notes
on Numerical Fluid Mechanics, Vol. 31, Vieweg, Brauns-
chweig, 1991, 1990, pp. 241-251.

Open Access OJS

http://dx.doi.org/10.1023/A:1018977404843
http://dx.doi.org/10.1137/100815566
http://dx.doi.org/10.1086/260062
http://dx.doi.org/10.1080/14697680701763086
http://dx.doi.org/10.1016/S0167-6687(96)00004-2
http://dx.doi.org/10.1016/j.jedc.2009.10.008
http://dx.doi.org/10.1007/s006070170007
http://dx.doi.org/10.1007/BF01385849
http://dx.doi.org/10.1002/fut.10072
http://dx.doi.org/10.1145/1114268.1114275
http://dx.doi.org/10.1093/rfs/14.1.113
http://dx.doi.org/10.1007/s002110050450

S. DIRNSTORFER ET AL. 438

Appendix

ThetaML Implementation of the MWAO

This appendix gives a ThetaML (Theta Modeling Lan-
guage)1 implementation of the MWAO pricing problem
described in the text. To help understand the code, we
first provide a brief description of the ThetaML language
and some ThetaML specific commands and operators
used in the models.

ThetaML supports standard control structures such as
loops and if statements. It operates on a virtual timing
model with the theta command. The theta command de-
scribes the time-determined behavior of financial deriva-
tives. It allows time to pass. The fork command makes it
possible to model simultaneous processes and enables
cross-dependencies among the stochastic variables. The

future operator “!” allows forward access to the future
values of a variable, this operation is based on forward
algorithms.

ThetaML modularizes the pricing task of MWAO into
a simulation model for the stock prices and the numeraire,
an exercise model for obtaining future early-exercise
values, and a pricing model for computing the MWAO
prices. ThetaML virtually parallels and synchronizes the
processes—stock prices, numeraire, early exercise cash
flows and MWAO prices—to the effect that it is as if
these four processes step forward in time as they would
have behaved in real life financial markets. ThetaML
specific commands and operators are briefly explained in
the models where they appear. Process variables in
ThetaML models, such as “S”, “CUR”, “A”, implicitly
incorporates scenario- and time-indices.

1 model StateProcesses
2 % This model simulates stock prices that follow a Geometric Brownian motion process,
3 % and a numeraire process that are discounted at a constant interest rate;
4 % the arguments are in troduced into the model after the “import” keyword, results
5 % computed by the model are exported
6 import S0 “Initial stock prices”
7 import r “Risk_free interest rate”
8 import sigma “Volatility of stock prices”
9 export S “Stock price process”
10 export CUR “Numeraire process in currency CUR”
11
12 % initialize the stock prices at “S0”
13 S = S0
14 % initialize the numeraire at 1 CUR
15 CUR = 1
16 % “loop inf” runs till the expiry time of a pricing application
17 loop inf
18 % “@dt” extracts the smallest time interval from this model time to the next
19 theta @dt
20 % updates the GBM process of the stock prices for the time step “@dt”
21 S = S * exp((r - 0.5*sigma^2)*@dt + sigma*sqrt(@dt)*randn())
22 % update the numeraire for the time step “@dt”
23 CUR = CUR*exp(-r*@dt)
24 end
25 end

1 model MWAOExerciseValue
2 % This model computes the Early exercise values for MWAO, assuming daily exercises.
3 % Early exercises are possible after an initial allowance of a window length “m”
4 import S “Stock prices”
5 import CUR “Numeraire in currency CUR”
6 import m “Window length”
7 import T “Option maturity time”
8 export ExerciseValue “Exercise value”
9 export TimeGrid “A set of exercise times”

*ThetaML is a payoff description language that explicitly incorporates the passage of time. Product path dependencies, settlements, and early exer-
cises are all appropriately addressed. ThetaML also offers the benefit to specify the complete structure of a structured product independent of the
underlying stochastic processes. For details on ThetaML, please consult the references Dirnstorfer et al. [22], Dirnstorfer et al. [23] and Schraufstetter
[24].

Open Access OJS

S. DIRNSTORFER ET AL. 439

10
11 % initialize an array with length “m” to hold a past window of “m” stock prices
12 C = 0 * [1:m]
13 % initialize the moving average to “S/m”, where “S” are the time 0 stock prices
14 A = S/m
15 % initialize “C[m]” to the time 0 stock prices “S”
16 C[m] = S
17
18 ExerciseValue = 0
19 index = 1
20 % early exercise times range from “1/250” to “T”, equally spaced at “1/250”
21 TimeGrid = [1/250:1/250:T]
22
23 % “t” loops through the exercise time sand takes the value of the pointed element
24 loop t: Time Grid
25 % “theta” advances “t_@time” time units to the next time point
26 theta t_@time
27 % update the moving average by adding “S” evaluated at this time divided by “m”;
28 % at the end of “m” periods, subtract “S/m” evaluated at the start window time
29 A = A + S/m - C[index]/m
30 % record the stock price “S” at this time in “C”
31 C[index] = S
32 % increment the index by 1
33 index = index + 1
34 % reset “index” to 1 if “index” is bigger than “m”
35 if index > m
36 index = 1
37 end
38
39 % store the discounted exercise values for in-the-money paths
40 if @time >= 1/250 * (m-1)
41 ExerciseValue = max(A-S,0)*CUR
42 end
43
44 theta @dt
45 % reset Exercise Value to 0 at non-exercising times
46 ExerciseValue = 0
47
48 end
49 end

1 model MWAOPrice
2 % This model returns the MWAO prices across all the Monte-Carlo paths, using the
3 % early-exercise strategies obtained from the model MWAO Exercise Values
4 import Exercise Value “Exercise value”
5 import TimeGrid “A set of exercise times”
6 export Price “MWAO prices”
7
8 % at time 0, “Price” is assigned expected value of “value!”; the future operator “!” accesses the
9 % values of the variable “value” determine data later in stance
10 Price = E(value!)
11 % loop through the exercise times
12 loop t: TimeGrid
13 % early exercise evaluations, the “E” function computes the conditional expected
14 % discounted “value!”, using the Least Squares Monte Carlo regressions combined
15 % with the Sparse Grid type basis functions

Open Access OJS

S. DIRNSTORFER ET AL.

Open Access OJS

440

16 if E(value!) < ExerciseValue
17 value = ExerciseValue
18 end
19 % time passing of “t-@time” with the “theta” command
20 theta t-@ time
21 end
22 % at the option maturity time, set the option pay off values
23 if ExerciseValue>0
24 value = ExerciseValue
25 else
26 value = 0
27 end
28 end

The stock prices and numeraire are first simulated in
the external models “StateProcesses”, then imported as
processes into the exercise model “MWAOExercise
Values” to compute future early-exercise values. The
early-exercise cash flows are next imported as a process
into the pricing model “MWAOPrice” to determine the
MWAO price.

The ThetaML future operator “!” appears in the model

“MWAOPrice”. It allows the possibility to use the
variable “value” at the model time when its values are
not pre-assigned. Computationally, whenever the com-
piler encounters the future operator “!”, it evaluates the
codes backward in time. So, when computing the time 0
option price, the compiler goes from the option maturity
back to time 0, and assigns the computed time 0 value to
“Price”.

