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ABSTRACT 

The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in op- 
tion pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality 
required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte 
Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and con- 
vergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be 
generalized to pricing other high-dimensional, early-exercisable derivatives. 
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1. Introduction 

Methods for pricing a large variety of exotic options have 
been developed in the past decades. Still, the pricing of 
high dimensional American-style moving average op- 
tions remains a challenging task. The price of this type of 
options depends on the full path of the underlying, not 
only at the final exercise date but also during the whole 
period of exercisable times. We consider in this paper the 
case of an early-exercisable floating-strike moving win- 
dow Asian option (MWAO) with discrete observations 
for the computation of the exercise value. The exercise 
value of the MWAO depends on a moving average of the 
underlying stock over a period of time. 

Carriere [1] first introduces the simulation-based me- 
thod for solving American-type option valuation prob- 
lems. A similar but simpler method is presented by 
Longstaff and Schwartz [2]. Their method is known as 
the Least Squares Monte Carlo (LSM) method. It uses 
the least-squares regression method to determine the op- 
timal exercise strategy. Longstaff and Schwartz also use 
their LSM method to price an American-Bermuda-Asian 
option that can be exercised on a specific set of dates 
after an initial lockout period. Their American-Ber-  

muda-Asian option has an arithmetic average of stock 
prices as the underlying. The pricing problem can be 
reduced to two dimensions after introducing another 
variable in the partial differential equation (PDE) to rep-
resent the arithmetic average. 

The dimension reduction technique as in Longstaff- 
Schwartz [2] can not be applied for the pricing problem 
of MWAOs. Since moving averages shift up and down 
when the underlying prices shift up and down especially 
when the first observation in the moving window drops 
out and a new one comes in, the whole history of stock 
prices is important in determining the optimal exercise 
strategy of MWAOs. This leads to an arbitrary number of 
dimensions and presents a computational challenge. 
Pricing methods for MWAOs have been described by 
very few authors besides Broadie and Cao [3]. Broadie 
and Cao price a fixed strike MWAO, using polynomials 
of underlying asset price and arithmetic average as the 
regression basis function. Bilger [4] applies the LSM 
method to price MWAOs. He uses a different choice of 
basis functions (i.e. the underlying asset S and a set of 
averages) for evaluating the conditional expected option 
value. Kao and Lyuu [5] present results for moving av- 
erage-type options traded in the Taiwan market. Their 
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method is based on the binomial tree model and they 
include up to 6 discrete observations in the averaging 
period for their numerical examples. Bernhart et al. [6] 
use a truncated Laguerre series expansion to reduce the 
infinite dimensional dynamics of a moving average pro- 
cess to a finite dimensional approximation and then ap- 
ply the LSM algorithm to price the finite-dimensioned 
moving average American-type options. Their numerical 
implementations can handle dimensions up to 8, beyond 
that their method becomes infeasible. Dai et al. [7] use a 
forward shooting grid method to price European and 
American-style moving average barrier options. The win- 
dow lengths in their numerical examples range from three 
or four days to two or three months. 

In this paper, we apply an alternative type of basis 
functions—the sparse grid basis functions—to the simu-
lation-based LSM approach for pricing American-style 
MWAOs. The sparse grid technique overcomes the 
low-dimension limit associated with full grid discretiza- 
tions and achieves reasonable accuracy for approximat- 
ing high-dimensional problems. Instead of using a pre- 
determined set of basis functions in the least squares re- 
gressions, the sparse grid basis functions are adaptive to 
the data—it is more general and considers as many in- 
formation in the moving window as possible. Using nu- 
merical examples, we demonstrate the convergence of 
the pricing algorithms for MWAOs for different numbers 
of Monte-Carlo paths, different sparse grid levels and a 
fixed length of observation period of 10 days. Sparse grid 
is a discretization technique that is designed to circum- 
vent the “curse of dimensionality” problem in standard 
grid-based methods for approximating a function. The 
idea of sparse grid was originally discovered by Smolyak 
[8] and was rediscovered by Zenger [9] for PDE solu- 
tions in 1990. Since then, it has been applied to many dif- 
ferent topics, such as integration [10,11] or Fast Fourier 
Transform (FFT) [12]. Sparse grids have also been used 
for finite element PDE solutions by Bungartz [13], inter-
polation by Bathelmann et al. [14], clustering by Garcke et 
al. [15], and PDE option pricing by Reisinger [16]. 

The structure of this paper is as follows: first, we for- 
mulate the pricing problem of a moving window Asian 
option and explain why this problem is computationally 
challenging. This is followed by a brief description of the 
LSM approach and the sparse grid technique. Finally, we 
provide some numerical examples for pricing MWAOs 
with discretely sampled observations using LSM with 
sparse grid type basis functions. 

Throughout this paper, we consider equity options on a 
single underlying stock in the Black Scholes [17] frame- 
work. 

2. Moving Window Asian Option 

MWAO is an American-style option that makes use of 

the moving average dynamics of stock prices. Similar to 
an American option which pays the difference between 
the current underlying price and a fixed strike, a MWAO 
pays the difference between current stock price and the 
floating moving average or the difference between a 
floating moving average and a fixed strike. 

2.1. Continuous Time Version 

Before going into the details of an MWAO, we set up the 
process for the underlying stock. The stock prices are 
assumed following a geometric Brownian motion (GBM) 
process 

d d dt t tS rS t S W ,t                 (1) 

where  is the constant riskless interest rate, r   is the 
constant stock return volatility and d  is the incre- 
ment of a standard Wiener process under the risk-neutral 
measure. The initial stock price is denoted as 0  and at 
time  the stock price is t . The value of a MWAO 
option written on the stock is denoted in general as , 
or t  resp. 

W

S
t S

V
V  , tV t S  when we stress the dependence on 

 or t . The option value V  satisfies the following 
Black Scholes PDE 
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The following American constraint sets a minimum 
value for the function . The constraint has to be satis- 
fied at each time 0

V
t t> wt , where 0  denotes the set- 

up time of the option and  denotes a fixed window 
length 

t
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where  ,t tP A S
t

 is the payoff of a MWAO from exer- 
cise at time . It depends on the stock price t  and a 
weighted moving average t

S
A  of the stock prices. The 

moving average tA  is computed using the weight func- 
tion   on a window of stock prices ranging from time 

wt t  to time . In this paper, we consider the payoff 
function 

t

  , max ,0t t t tP A S A S .            (5) 

when setting the weight 1   in (4), we have an 
equally-weighted arithmetic moving average 

1
d .

w

t

t t t
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A S
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
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Differentiating this expression with respect to time  
leads to 

t
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d d ,t t t tw

w

S S t
t    A
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where the updating process of tA  depends not only on 
the stock price at time , but also on the stock price at 
time w . This is clearly not Markovian. An optimal 
exercise strategy performed on the above moving aver- 
age process 

t
t t

tA  has to consider t , 
wt t  and all stock 

prices w  in between. Since all the values 
 are used in computing the moving average t

S S 

, >u u > t tS t

uS A , and 

tA  in turn determines the MWAO payoff in (3), there 
are infinitely many prices involved in the computation of 
an optimal exercise strategy. This is a challenging infi- 
nite-dimensional problem in continuous time [6,7]. 

2.2. Discretizations 

To implement the pricing problem for the MWAO, we 
consider the finite dimensional case with discretely sam- 
pled observations. Define a set of times 

 0 10, , , nt t t T   , 

with , and jt  for . At time 
, the value of  and V  is respectively denoted as 
 and V . 

, 0, ,it i  
S

n <i t



<i j

it

tS
i it

We consider constant weight t  in defining a dis- 
cretely sampled moving average tA  

 
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0,  for  

t m
t
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


  

              (6) 

where  denotes the number of samples used in com- 
puting the moving average. Using the weight function 

m

 t  in defining the moving average tA , the boundary 
condition (3) at times   has the following 
discretized form 

1, ,m nt t 
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   (7) 

where the weight function  assigns a zero 
weight to an initial observation in the moving window 
and a weight of one to the rest of the observations. With 
this weight function we have effectively used the past  
samples to form the moving window. The above condi- 
tion holds for , after an initial allowance for the 
window length. The dimension of this MWAO problem 
equals to the number of discrete samples  used in the 
averaging window. 

i j 

m

i m

m

Our method for valuing the MWAO uses the discre- 
tized process and a quadrature of  . The valuation pro- 
ceeds backwards in time, starting at the option maturity 

, where condition (7) holds with equality. Then we 
solve for the option value at current time 
T

 , tV V t S
00 . 

For short window length  and thus low dimensional- 
ity, this procedure can be reformulated in a PDE setting 
and solved numerically. However, due to the “curse of 
dimensionality”, the PDE method is ineffective for di- 

mensions of more than three or four. For window length 
 larger than four, the high dimensional problem has to 

be solved using approximate representations or special 
numerical techniques. 

m

m

3. Numerical Procedure 

The previous sections provided the mathematical formu- 
lations and discussed the discretization issues related to 
the MWAO. This section details the numerical methods 
we use for pricing MWAOs. The algorithm proposed by 
this paper is effectively a combination of three tech- 
niques that are well established in their respective fields. 
The three techniques that we use as a practical tool for 
valuing a MWAO are Monte Carlo simulation, least 
squares regression and sparse grids. Especially in quanti- 
tative finance, sparse grids technique has not yet lived to 
its full potential. This paper contributes to use sparse 
grids in solving high-dimensional problems. Since all the 
three techniques have been documented in full detail by 
the cited sources, we summarize in the following the 
main aspects of each technique. Without explicitly men- 
tioning it, all prices in our computations are discounted 
prices, meaning that prices are already normalized by the 
bank account numeraire. We use ,  and V  to de- 
note discounted stock prices, discounted payoffs and 
discounted option values. 

S P 

3.1. Monte Carlo Simulation 

A standard method that is used when dimensionality 
causes numerical difficulties is the Monte Carlo simula- 
tion method. This method alone does not resolve our issue, 
but provides the framework for our algorithm. We as- 
sume that the stock price underlying a MWAO follows the 
GBM process defined in (1). The discretized stock price 
process is sampled at the set of discrete times it   so 
that each of the realizations jS ,  1  with 11, ,j  s s  
denoting the number of Monte-Carlo paths, has the fol- 
lowing normalized representation 

 2
1 1 1

1

1

2 ,
j

i i i i ti

i i

t t t t
j j

t tS S
    



     
          (8) 

where 
1

j

it



 is drawn from a standardized Normal dis-

tribution. 
The price of the MWAO is the expected value of the 

(discounted) payoff at the optimal stopping time. The 
optimal stopping time provides a strategy that maximizes 
the option value without using any information about 
future stock prices. 

3.2. Least Squares 

At each exercise time it , the option holder decides 
whether to exercise the option and get the payoff 
 , iP S t  or to continue holding the option. In order to 
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maximize the option value  at time , the holder 
exercises if 

it
V it

  1
,

ii tP S t V S t


 
  , ,i




             (9) 

where  denotes the expectation taken under the risk 
neutral measure. In the LSM approach, the value of 



1
,

it iV S t





 
  is approximated by a function  ,e
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i

e
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The value of  ,e
iP S t  is computed using a least square 

regression on many path-realizations 1i
. 

The regressions start at one time step before the maturity 
. 

, 1, ,S j s j
t


T
The function  is a linear combination of the 
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The coefficients  are found by minimizing the 
-norm 
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where 
i

j
tV  is the option value of a Monte Carlo path 

realization jS  at time i . The option value 
i

t j
tV  is 

given as the maximum between the estimated continua- 
tion value and the intrinsic value. A numerically more 
stable algorithm is to set 
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where the computed  is used only in early- 
exercise decisions, this avoids the accumulation of ap- 
proximation errors when stepping backwards in time.  

 ,e j
iP S t

Given the option payoff V P  at maturity   ,j
T S  

time, a backward induction dynamic programming me-  

thod solves for all values 
i

j
tV , starting at time  and  T

iterating back to . Based on the values 
0

, 
we compute an estimated option value, known as the 
in-sample price 

0t 1, 1, ,V j s j
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This approach has an obvious shortcoming. Each of 
the estimated option values 

0

j
tV

,
i

j
t iS t 

 contains information 
about its future stock path . In order to avoid 
this perfect foresight bias, we compute an out-of-sample 
option price: we generate additional simulation paths , 

 but use the coefficients  fitted 
to the old set of simulation paths 

 


lS

 1 11, ,l s s s   2
i
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Consequently, the out-of-sample value does not depend 

on knowledge of the future paths. The out-of-sample 
option value is computed by 
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with 

   
 

1
if   , ,

.
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In our implementations, we compute only the out-of- 
sample value since it is the value for which we can state 
the optimal exercise policy without information about the 
future. The expected value of the out-of-sample price 

 is always a lower bound for the option value, and 
the estimate  is crucial for the convergence of the 
least squares Monte Carlo simulation method. We are 
confined to finitely many samples and to finite degrees of 
freedom in the regressions, thus are not able to perfectly 
represent the real shape of 

outV
eP

1it i   using the esti- 
mate . A less than optimal exercise strategy is per- 
formed and provides a lower biased option value. 

,V S t 
eP

3.3. Basis Functions 

An important issue in the LSM approach is a careful 
choice of the basis functions k  in (11). We will use in 
this paper a linear combination of the sparse grid type 
basis functions to approximate the conditional expected 
value 

1it i
,V S t 

   involved in the optimal exercise 
rules. We need one dimension for each observation in the 
averaging window, this leads to a high dimensionality in 
the computational problem. Sparse grid [8] is a discreti-
zation technique designed to circumvent this “curse of 
dimensionality” problem. It gives a more efficient selec-
tion of basis functions. This technique has been success-
fully applied in the field of high-dimensional function 
approximations [15] and many others [10,13,16,18]. 



In the following we provide a brief description of the 
sparse grid approach. We start from constructing one- 
dimensional basis functions in a general case and show 
how to build multi-dimensional basis functions from the 
one-dimensional ones. Next we create a finite set of basis 
functions for numerical computations. Sparse grid then 
efficiently combines the sets of basis functions in a way 
such that the resulting function set is linearly independ- 
ent. Following this, we detail on two specific types of 
sparse basis functions - a polynomial function and a 
piecewise linear function - to be used as the basis func- 
tions in the LSM regressions in this paper. 

3.3.1. Constructing the Basis Functions 
When approximating a function with simpler functions or 
numerically extracting the shape of a function, it is com- 
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mon to build such a function representation using some 
basis functions. We consider here a set of basis functions 

 1 2, , , n      and we call the set (sets) of basis 
functions “function basis (bases)”. From the set  , we 
construct an approximating function f  as a linear com- 
bination of the basis functions 

   
1

,
n

k k
k

f x a x


               (17) 

with coefficients k  for a , 1, ,k k n   , and x X  
for some set . The basis functions X  k x  can be a 
one-dimensional or multi-dimensional mapping from  
to . 

X
R

For the one-dimensional case, many function bases are 
well known and widely used. Examples include polyno- 
mials, splines, B-splines, Bessel functions, trigonometric 
functions, and so on. For the multi-dimensional case, the 
set of basis functions that are commonly used is more 
scarce. There are two common approaches to construct- 
ing multi-dimensional basis functions from the one-di- 
mensional ones: the radial basis functions [19] and the 
tensor product functions [20]. In this paper we focus on 
the tensor product approach. To construct a tensor 
product basis function, we select one-dimensional func-
tions   and multiply their respective function value 
evaluated at the corresponding component of x . 
Specifically, for  and each m-dimensional basis 
function 

mX R
k , we choose a set of one dimensional func-

tions 

 ,1 ,2 ,, , ,k k k m     

and 

 1 2, , , mx x x x  , 

then multiply the -th function ,k jj   evaluated at the 
-th element jj x , for , to have the following 

representation of an -dimensional basis function 
1, ,j   m

m

       ,1 1 ,2 2 , .k k k k m mx x x x          (18) 

3.3.2. Creating a Function Basis 
Having created multi-dimensional basis functions in a 
general case, we now select a finite set of these functions 
to be our basis for numerical analyses. Since we will do 
computations on different levels of accuracy, we will 
also need a set of basis functions on different levels. 
Naturally, the more basis functions we put in the set, the 
more accurate are our function approximations. 

We decide that on a level  there are L   1L   ba- 
sis functions. The one-dimensional function basis L  
with  functions is the following set   1L 

  1 2 1, , , ,L L     

where   , 1, , 1i i L    are one-dimensional basis 
functions, and  L  is a monotonously increasing 
function that determines the size of our basis at level . L

In order to create an -dimensional function basis, 
we choose a level 

m
 1 2, , , mL L L L . For each dimen- 

sion  1, ,j  m jL, the level  implies a function ba-  

sis   1 2 1
, , ,

j j
L L

  


    via (19). Using the ten-  

sor product function, the -dimensional function basis m

L  is constructed as 

 

      
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1 1 2 2 , 1, ,

m

j
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m m j L ,x x x x j m   

   

 



     
(20) 

where  j jx  denotes any of the one-dimensional ba- 
sis functions from 

jL , evaluated at the j t  element of h
 1 2, , , mx x x x . 

It was our original goal to construct a function basis 
with increasing expressiveness for increasing levels. This 
multi-dimensional level  is not a very good starting 
point. Consider the case where all dimensions are equally 
important, we would have to use a level of the form 

L

 , , ,L      . The size of the resulting function set 
would be extremely large, a phenomenon known as the 
“curse of dimensionality” problem: 

 , , , .
m

L                 (21) 

Choosing 10m   dimensions and   3   results 
in  functions with a corresponding number of coeffi- 
cients to be solved. 

103

3.3.3. Sparse Grids 
Sparse grids were developed as an escape from the 
“curse of dimensionality” problem. They allow reasona- 
bly accurate approximations in high dimensions at low 
computational cost. The idea behind the sparse grid is to 
combine the tensor basis of different levels. 

Let *L
  be the set of basis functions on level . 

We define it as the union of all tensor function bases 

*L

L  where the sum of  levels    is 
equal to , with  and  denoting the set of 
all non-negative numbers 

m

0
1 2 mL L L  

0*L *L 

 

*
*

1 2
1 , ,

.
m
m

LL
L L L L

L L L
   


 



              (22) 

Considering a simple example with  dimen- 
sions on level 

2m 
* 2L  , i.e. . For 0k

*
1 2L L L   2 L   

with 1,2k  , there are three possible combi- nations of 
the levels 1  and 2  that sum to 2: , L L  20,  11,  and 
 2,0 . From this, we could create a set * 2L 


  

 as the  
union of the tensor function bases: .      2,0 1,1 0,2

           (19) The first set  2,0  has high resolution in the first di-
mension , while the last set  mainly resolves 


1L  0,2
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the second dimension 2 . By construction, basis func-
tions with high resolution in both dimensions, such as 

 2,2 , are left out in the sparse set, making the sparse 
basis ideal for approximating functions with bounded 
mixed derivatives. 

L



The computational effort of sparse grids compared with 
conventional full grids decreases radically while the error 
rises only slightly: for the representation of a function f  
over an m-dimensional domain with minimal mesh  

size 2 L
L

h , a sparse grid employs  11 log
m

L LO h h
   

points and a full grid has  m
LO h  grid points. At the  

same time, the  interpolation error for smooth func-  2L

tions is  2 logLO h h 1m

L


 for sparse grids and  2

LO h   

for full grids. 
Having constructed a sparse basis *L

  on a top 
level, we now create two specific types of sparse basis 
functions that will be used as the function sets in our 
LSM regression problem: a polynomial sparse function 
basis and a piecewise linear function basis. Compared 
to the piecewise linear basis functions, the polynomial 
sparse basis functions are easier to understand and eas-
ier to implement. As solutions to higher dimensional 
problems, the piecewise linear basis functions are more 
adaptive. They can be extended to effectively place the 
basis functions on the dimension that contributes more 
to the problem solution. As a result, piecewise linear 
basis functions have seen wide applicability to solving 
PDEs [18] and interpolating functions [21]. In our paper, 
we use these two types of sparse basis functions to cross 
validate the results of our high dimensional pricing 
problem. 

3.3.4. A Polynomial Sparse Basis 
A polynomial function basis with  basis func- 
tions in the one-dimensional case has the following con- 
struction 

  1L 

  2 31, , , , .L
L x x   ,x x          (23) 

From the one-dimensional functions L , we can 
build a multi-dimensional tensor basis according to (20). 

As an example, for the two-dimensional case  2m  , 
we have the first dimension in x  with one-dimensional 
functions 

  1

1

2 31, , , , L
L x x  ,x x

,y y

, 

and the second dimension in  with one-dimensional 
functions  

y

  2

2

2 31, , , , L
L y y   . 

Equation (20) then gives the following list of tensor basis 
functions 

 

 

 

         

1 2

1

1

2 2 2 1

,

2

2

2

1

L L

L

L

L L L L L

x x x

y xy x y x y

y xy x y x y





    

 

2

 
 
 
 
 
 
 




    



   (24) 

Building upon the two-dimensional function basis 

 1 2,L L , we construct a sparse basis function set for the 
three sparse levels 


* 0L  , , and * 1L  * 2L  , where 
*L L1 L2  . We let the three levels correspond to 
 *L 0 0  ,  * = 1 =L 2  and  * 6L 2   num- 

ber of basis functions. Using (22) to unite the function 
sets, our sparse bases for the two dimensional function 
space are the following sets 

   

      
 

     




*

*

*

0,00

2 2
1,0 0,11

2 2

2,0 1,1 0,22

2 3 4 5 6 2 3 4

5 6 2 2 2 2

1

1, , 1, ,

1, , , ,

1, , , , , , , , , , ,

, , , , , .

poly

L

poly

L

poly

L

x x y y

x x y y

x x x x x x y y y y

y y xy x y xy x y







   

    



    



 

 
     (25) 

The above sparse basis function sets *
poly

L
  are cre-  

ated by taking the unions of the tensor bases of  1 2,L L
 

according to (22). As an example, the sparse set * 1

poly

L 
   

is constructed as a union of 

     
1 2

2
1,0 1, 0 1, ,L L x x      

and 

     
1 2

2
0,1 0, 1 1, ,L L y y     . 

The set  1,0  is arrived at by having   1 1 2L    
number of basis functions in the x  direction and 
 2 0L 0   basis functions in the  direction from 

the two-dimensional set 
y

 1 2,L L

We have just created a polynomial sparse basis *

 , ceteris paribus. 
poly
L

 
in two dimensions. Higher dimensional function bases 
can be similarly constructed using the tensor product 
approach, depending on the dimension of the problem we 
intend to solve. In our LSM regression problems, we 
have for example used 10m   dimensions and a poly- 
nomial sparse level of  2* 0,1,L  . 

While the polynomial sparse basis functions aim for a 
global fit, the piecewise linear basis functions fit locally 
to the approximated functions and it is to the task of con- 
structing the piecewise linear basis functions that we now 
turn. 
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3.3.5. Piecewise Linear Functions on [0,1] It has been found computationally advisable to have 
only one basis function on the first level. Hence we start 
with the constant 1 on level  and transform * 0L    
on successive levels. This construction avoids the inclu- 
sion of costly boundary points by creating boundary func- 
tions that are less scaled than inner functions. Klimke 
and Wohlmuth [21] is a good reference on piecewise 
linear basis functions. 

The piecewise linear function is a type of basis function 
that is commonly used in sparse grid applications. To 
create a piecewise basis for various levels, we utilize a 
construction approach known from multi-resolution 
analysis. We define a mother function  x  and gen- 
erate our basis by scaling and translating from  x  

 
 
 

1   when  1,0

1    when  0,1

0        otherwise

x x

x x x

   


  



       (26) 
The one-dimensional function bases of levels 1 0L  , 

1 1L  , 1 2L  , , 1 L k  in x  as generated from 
the one-dimensional basis functions   in (26) are the 
following sets 

 
 

    
        

1

1 1

1 1

0

1 0

2 1

1

2 , 2 2

4 , 4 4 8 3 , 8 5

L

L L

L L

x x

x x x x

 

   



 

 

 

   

     



  
                      (27) 

  

    
        

1 1 1

1 1 1 1 1

2 , 2 2

2 3 , 2 5 , 2 7 , , 2 2 3

k k k
L k L k

k k k k k

x x

x x x x

 

   

  

    

   

    



   ,
        (28) 

 
where the series  13,5,7, , 2 3k   in (28) is a se- 
quence of odd numbers. The one-dimensional function 
bases in  can be analogously generated from (26). y

The construction of a two-dimensional sparse basis in 
the x  and  directions respectively for levels y * 0L  , 
L* = 1 and *L 2 , where , follows from (22) *

1L L L  2



 

   

            
     

                
                 
   

*

*

*

0,00

1,0 0,11

2,0 1,1 0,22

1

1, 2 , 2 2 , 2 , 2 2

1, 2 , 2 2 , 4 , 4 4 , 8 3 , 8 5 , 2 , 2 2 , 4 ,

4 4 , 8 3 , 8 5 , 2 2 , 2 2 2 , 2 2 2 ,

2 2 2 2 .

piece

L

piece

L

piece

L

x x y y

x x x x x x y y

y y y x y x y x y

x y

   

        

        

 







   

      

    

     

    

 



 

y
    (29) 

 
As an example, the sparse basis function set * 2

piece

L 
  is 

created by taking the unions of the function bases of  

 2,0 , , and , where  1,1  0,2    1 22,0 2, 0L L     is  

the tensor product of  and , with 
1 2L 

2 0L 
1 2L    

given in (27) and 
2 0 . The set  1 2,1L   L L  is con- 

structed using the tensor product function (20). 


The two-dimensional sparse bases can be extended to 
higher dimensions depending on the problem dimensions 
we intend to solve. The resulting higher-dimensional 
function sets can then be used in the LSM regressions by 
selecting an optimal sparse level for that problem dimen- 
sion. 

3.3.6. Implementations 
We perform the regressions required by (12) on sparse 
polynomial basis functions *

poly

L
  and sparse piecewise 

linear basis functions *
piece
L

 as explained in Section 
3.3.4 and 3.3.5, respectively. As an example, in the case 
of sparse polynomial basis functions of  dimen- 
sions, the approximating function  of (11) is a linear 
combination of the basis functions in the polynomial 
sparse basis set 

2m 
eP

*
poly

L
  in (25). At sparse level * 1L  ,  

 2
1 2, , 2

1

poly

L
the set * 11, , 2x x x x

1 2

4 2

i i

i j

a a

a x

 

 


  , and the approximating  

function 

 ,e j
it  2

1

.

jx

 
3

2

2

i

j

P x x

x

 




1

5

j

i

a

a




 

For the sparse piecewise linear basis functions of 
2m   dimensions, the approximating function  is a 

linear combination of the basis functions in the piecewise 
linear sparse basis set 

eP

*
piece

L
  in (29). At sparse level 
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* 1L 

* 1

piec

L 



0

j

, the set 

        1 1 2 21, 2 , 2 2 , 2 , 2 2e x x x x       , 

and the approximating function  

    
   

1 2 1 3 1

4 2 5 2

, 2 2

2 2 2

e j i i j i j
i

i j i j

P x t a a x a x

a x a x

 

 

     

    

2

m

 

In our implementations, we use sparse levels  from 
 up to 3  and dimensions  for computing the 

basis functions. This is sufficient for our purposes. But, 
we do not perform the regressions on  directly. In- 
stead, we use scaled values of  such that for each path 

, we compute 

*L
10m 

S
S

   1 1 1 1, , , ,
i i

j j j j j j j
m t m tx x x S S 

      , 

where  1 , ,j j
m   1  are defined such that   1

0,1
mjx
 . 

For discretely sampled observations, the dimension of 
the problem is effectively  dimensions because of the 
weight function 

m
  used in computing the moving av- 

erages. When extrapolating to the continuous case, the 
dimension of the problem approaches infinity as  
goes to . 

m


The regression itself is performed solving the least 
squares problem of (12) via QR-decomposition. Fur- 
thermore, the regression is only performed on paths with 
a positive exercise value . This sig- 
nificantly decreases the computational effort. 

 : , >j j
iS P S t  0

4. Numerical Example 

We provide in this section a numerical case study of us- 
ing sparse grid basis functions in LSM pricing MWAOs. 
We will use a discretely sampled averaging window 
spanning ten observations with the weight function α in 
(6). 

The properties of the MWAO are defined in Table 1. 
The underlying stock prices are sampled at a regular fre-
quency, e.g. every trading day at a specific time. 

To analyze the convergence of our pricing algorithm  

for MWAOs, we use the notation   *, ,
i

V n L m  to de-  

note the out-of-sample result  as defined in (15). 
Each Monte Carlo value 

outV
  *, ,V n L

i
m

n
 depends on the 

number of sample paths , the level of the sparse grid 
function basis , the number of observations in the 
averaging window , and the quadrature scheme 

*L
m  .  

We compute different   *, ,
i

V n L m  with , ,   n *L m

and   fixed in order to get an estimate for the mean 

   *

1

1
, , , ,

I i

i

V n L m V n L m
I 



  *          (30) 

of I  different Monte Carlo prices. Each  valua- 
tion 

i I
  *, ,

i
V n L m  is based on a randomly generated 

Table 1. Specifications of a moving window Asian option 
with a floating strike. The moving averages are based on 
discretely sampled stock prices. 

Option type moving window Asian option 

Maturity T 0.4 years 

Initial stock price  0S 100 

Risk free rate  r 5% 

Volatility   0.40 

Dividend rate  d 0 

Daily observations obst 1/250 years 

Length of observation 

period  m 10 days 

Exercise value  1
max ,0

j i

i

t t
j i m

i j S S
m


 

  
   

  
  

 
Monte Carlo seed. The number of I  ranges from 10 to 
1000 depending on an estimate of the Monte Carlo error. 
For instance, if the error is acceptable based on our 95% 
confidence level at 10I  , we stop the computation and 
obtain the mean price estimate using (30). Otherwise, we 
continue computing   *, ,L

i
V n m  by increasing the 

value of I  until the error is acceptable. The number of 
samples  per Monte Carlo price results from combin- 
ing the in-sample paths 

n
1, ,1 sS 

2

S  and the out-of-sam- 
ple paths 1 1, , 1s s sSS    such that 1 2 . We use 
30% of the sample paths for regressions and 70% for 
option valuation out-of-sample. 

n s s 

Figure 1 presents the mean  *, ,10V n L  for differ- 
ent numbers of samples  and different levels , but 
with the dimensions 

n
10

*L
m   and the weights   fixed. 

Included in the figure are the results from the polynomial 
and the piecewise linear sparse basis functions. The op- 
tion values at sparse level  converge quickly to a 
value of about 

* = 0L
7.17

m
V  which does not change after 

30,000 simulations. With , the sparse level  
consists of just one basis function (i.e. a constant) and the 
resulting exercising decision is almost trivial. Sparse 
level 


10 0

* 1L   consists of 21 basis functions. This allows 
for a more sophisticated strategy with a better utilization 
of the option. After about 300,000 simulations, the option 
value saturates at 7.62 for both polynomial and piecewise 
linear basis functions. The sparse level  with 241 
basis functions results in similar values after 1,000,000 
simulations. For the polynomial sparse basis functions, a 
third level 

* 2L 

* 3L   with 2001 basis functions already 
exceeds our available computational resources, such that 
the saturation level could not be computed. The values 
for polynomial sparse level 3 are thus not presented. One  
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Figure 1. The option values for MWAO. The figure shows MWAO values estimated by least squares Monte Carlo combined 
respectively with polynomial sparse basis functions and with piecewise linear sparse basis functions. The sparse level ranges 
from 0 to 3 and the number of simulation paths runs from  to . In the figure, “polynomial basis level #” refers 
to the MWAO values estimated with the polynomial basis functions at a sparse level #, where # is the number for the sparse 
level. Similarly, “piecewise basis level #” points to MWAO values estimated with the piecewise linear basis functions at the 
sparse level #. The data for the MWAO are specified in Table 1. 

21 10 61 10

 
thing worth mentioning is that higher sparse levels ini- 
tially perform inferior to lower sparse levels due to the 
over-fitted regression functions. 

The corresponding values in Figure 1 are presented in 
Table 2 for polynomial sparse basis functions and in 
Table 3 for piecewise linear sparse basis functions. The 
mean values of a series of valuations ,    *, ,10

i
V n L

1, ,i   I , is denoted by  *, ,10V n L  (30), the stan-  

dard deviation of the series across I  valuations is de- 
noted by ̂ . For a single evaluation  with 
LSM, 

  *, ,10
i

V n L 
̂  can be seen as a measure of how close the 

value is to the mean of I  valuations. Thus ̂  does not 
measure the error relative to the true option value. The 
mean estimate  *, ,L 10V n  (30) will be biased lower 
than the true values due to the suboptimal estimate of the 
optimal exercise strategy 

1it i
, tV S 

  . At sparse level 
 both polynomial and piecewise linear basis func- 

tions deliver similar MWAO prices up to two decimal 
points after  sample paths. At sparse level 


* 1L 

53 10 *L 2  
with  sample paths the MWAO prices are the 
same up to three decimal point in both cases. Based on 
the results, both types of sparse basis functions solve our 

high-dimensional least squares problem and the prices 
converge to a level of  at  sample paths for 
sparse levels 

601 1

7.62 61 10
* 1L   and sparse level . Since the 

polynomial sparse basis functions are easier to construct 
and easier to implement, we recommend them as the 
bases of choice for our MWAO pricing problem. 

* 2L 

L

The price of our moving average window option has 
three main sources of error: the number of simulation 
paths , the level of the function basis  and the 
number of integration samples . The best possible 
approximation would have to reduce the errors originated 
from using these limiting parameters. 

n *

m

5. Conclusion 

This paper presents a general and convergent algorithm 
for pricing early-exercisable moving window Asian op- 
tions. The computational difficulty of the pricing task 
stems from what defines the option’s underlying: an ei- 
ther discretely or continuously sampled average over a 
moving window. We have applied a generalized frame- 
work to solve this high-dimensional problem by com- 
bining the least-squares Monte Carlo method with the   
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Table 2. The option value for MWAO with data in Table 1 estimated by least squares Monte Carlo with polynomial sparse 

basis functions. The mean estimate  , ,* 10αV n L   (30) is based on sample , sparse level , number of observations in the 

averaging window , and the weight function 

n *L

10m  . The number of samples  ranges from  to , and the 

sparse level  goes from 0 to . The standard deviation of the series 

n 21 10 61 10
*L 2   , ,* 10L

i

αV n  is denoted by ̂ . 

\ level *L  * 0L    * 1L    * 2L   
 

# samples  n  ,0,10V n  ̂   ,1,10V n  ̂   , 2,10V n  ̂  

21 10  7.158912 0.234 4.378564 0.470 4.446816  

23 10  7.171716 0.134 6.950492 0.264 3.399907  

31 10  7.172727 0.073 7.385057 0.114 3.325619 0.148 

33 10  7.176859 0.043 7.543586 0.061 6.296143 0.083 

41 10  7.168296 0.022 7.594902 0.034 7.159272 0.041 

43 10  7.172753 0.014 7.617092 0.018 7.464719 0.018 

51 10  7.171619 0.007 7.621127 0.010 7.572837 0.009 

53 10  7.173722 0.005 7.627301 0.005 7.613978 0.006 

61 10  7.171411 0.004 7.624000 0.003 7.625142 0.002 

 
Table 3. The option value for MWAO with data in Table 1 estimated by least squares Monte Carlo with piecewise linear 

sparse basis functions. The mean estimate  , ,* 10αV n L   (30) is based on sample , sparse level , number of observations 

in the averaging window , and the weight function 

n *L

10m  . The number of samples  ranges from  to , 

and the sparse level  goes from 0 to . The standard deviation of the series 

n 21 10 61 10
*L 3   *V n , ,10L

i

α  is denoted by ̂ . 

\ level *L  * 0L    * 1L    * 2L    * = 3L   

# samples  n  ,0,10V n  ̂   ,1,10V n  ̂   , 2,10V n  ̂   ,3,10V n  ̂  

21 10  7.157866 0.257 7.271832 0.293 6.527391 0.427 5.631500 0.468

23 10  7.171375 0.172 7.432182 0.146 7.035495 0.154 6.130585 0.240

31 10  7.172456 0.062 7.459452 0.094 7.306664 0.080 6.103082 0.354

33 10  7.176906 0.050 7.555757 0.052 7.459485 0.051 7.067918 0.077

41 10  7.168270 0.029 7.586647 0.046 7.521104 0.043 7.313780 0.036

43 10  7.172753 0.016 7.614570 0.020 7.576200 0.019 7.444699 0.021

51 10  7.171629 0.009 7.617702 0.012 7.601458 0.011 7.524500 0.010

53 10  7.173733 0.005 7.624306 0.007 7.621602 0.007 7.578699 0.006

61 10  7.171410 0.003 7.621104 0.004 7.625030 0.004 7.606029 0.004

 
sparse grid basis functions. The sparse grid technique has 
been specifically developed as a cure to the “curse of 
dimensionality” problem. It allows more efficient selec- 
tion of basis functions and can successfully approximate 
high-dimensional functions with less computational ef- 
fort. We have used both the polynomial and the piece- 
wise linear sparse basis functions in the least-squares 
regressions and found that the results converge to values 
up to two decimal points, independent of the type of ba- 
sis functions used. We recommend the polynomial sparse 

basis as the basis of choice for this type of pricing prob- 
lems since they are easier to construct and easier to im- 
plement. The approach presented in this paper can be 
generalized to pricing other high-dimensional early-ex- 
ercisable derivatives that use a moving average as the 
underlying.  
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Appendix 

ThetaML Implementation of the MWAO 

This appendix gives a ThetaML (Theta Modeling Lan- 
guage)1 implementation of the MWAO pricing problem 
described in the text. To help understand the code, we 
first provide a brief description of the ThetaML language 
and some ThetaML specific commands and operators 
used in the models. 

ThetaML supports standard control structures such as 
loops and if statements. It operates on a virtual timing 
model with the theta command. The theta command de- 
scribes the time-determined behavior of financial deriva- 
tives. It allows time to pass. The fork command makes it 
possible to model simultaneous processes and enables 
cross-dependencies among the stochastic variables. The 

future operator “!” allows forward access to the future 
values of a variable, this operation is based on forward 
algorithms. 

ThetaML modularizes the pricing task of MWAO into 
a simulation model for the stock prices and the numeraire, 
an exercise model for obtaining future early-exercise 
values, and a pricing model for computing the MWAO 
prices. ThetaML virtually parallels and synchronizes the 
processes—stock prices, numeraire, early exercise cash 
flows and MWAO prices—to the effect that it is as if 
these four processes step forward in time as they would 
have behaved in real life financial markets. ThetaML 
specific commands and operators are briefly explained in 
the models where they appear. Process variables in 
ThetaML models, such as “S”, “CUR”, “A”, implicitly 
incorporates scenario- and time-indices. 

 
1  model StateProcesses 
2  % This model simulates stock prices that follow a Geometric Brownian motion process, 
3  % and a numeraire process that are discounted at a constant interest rate; 
4  % the arguments are in troduced into the model after the “import” keyword, results 
5  % computed by the model are exported 
6      import  S0     “Initial stock prices” 
7      import  r      “Risk_free interest rate” 
8      import  sigma  “Volatility of stock prices” 
9      export  S      “Stock price process” 
10     export  CUR   “Numeraire process in currency CUR” 
11 
12     % initialize the stock prices at  “S0” 
13     S = S0 
14     % initialize the numeraire at 1 CUR 
15     CUR = 1 
16     % “loop inf” runs till the expiry time of a pricing application 
17     loop inf 
18        % “@dt” extracts the smallest time interval from this model time to the next 
19        theta @dt 
20        % updates the GBM process of the stock prices for the time step “@dt” 
21        S = S * exp((r - 0.5*sigma^2)*@dt + sigma*sqrt(@dt)*randn()) 
22        % update the numeraire for the time step “@dt” 
23        CUR = CUR*exp(-r*@dt) 
24     end 
25  end 
 
1  model MWAOExerciseValue 
2  % This model computes the Early exercise values for MWAO, assuming daily exercises. 
3  % Early exercises are possible after an initial allowance of a window length “m” 
4      import  S             “Stock prices” 
5      import  CUR          “Numeraire in currency CUR” 
6      import  m             “Window length” 
7      import  T             “Option maturity time” 
8      export  ExerciseValue  “Exercise value” 
9      export  TimeGrid      “A set of exercise times” 

 

*ThetaML is a payoff description language that explicitly incorporates the passage of time. Product path dependencies, settlements, and early exer-
cises are all appropriately addressed. ThetaML also offers the benefit to specify the complete structure of a structured product independent of the 
underlying stochastic processes. For details on ThetaML, please consult the references Dirnstorfer et al. [22], Dirnstorfer et al. [23] and Schraufstetter 
[24]. 
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10 
11     % initialize an array with length “m” to hold a past window of “m” stock prices 
12    C = 0 * [1:m] 
13    % initialize the moving average to “S/m”, where “S” are the time 0 stock prices 
14    A = S/m 
15    % initialize “C[m]” to the time 0 stock prices “S” 
16    C[m] = S 
17 
18    ExerciseValue = 0 
19    index = 1 
20    % early exercise times range from “1/250” to “T”, equally spaced at “1/250” 
21    TimeGrid = [1/250:1/250:T] 
22 
23    % “t” loops through the exercise time sand takes the value of the pointed element 
24    loop t: Time Grid 
25       % “theta” advances “t_@time” time units to the next time point 
26       theta t_@time 
27       % update the moving average by adding “S” evaluated at this time divided by “m”; 
28       % at the end of “m” periods, subtract “S/m” evaluated at the start window time 
29       A = A + S/m - C[index]/m 
30       % record the stock price “S” at this time in “C” 
31       C[index] = S 
32       % increment the index by 1 
33       index = index + 1 
34       % reset “index” to 1 if “index” is bigger than “m” 
35       if index > m 
36          index = 1 
37       end 
38 
39       % store the discounted exercise values for in-the-money paths 
40       if @time >= 1/250 * (m-1) 
41          ExerciseValue = max(A-S,0)*CUR 
42       end 
43 
44       theta @dt 
45       % reset Exercise Value to 0 at non-exercising times 
46       ExerciseValue = 0 
47 
48     end 
49  end 
 
1  model MWAOPrice 
2  % This model returns the MWAO prices across all the Monte-Carlo paths, using the 
3  % early-exercise strategies obtained from the model MWAO Exercise Values 
4      import Exercise Value “Exercise value” 
5      import TimeGrid “A set of exercise times” 
6      export Price “MWAO prices” 
7 
8      % at time 0, “Price” is assigned expected value of “value!”; the future operator “!” accesses the 
9      % values of the variable “value” determine data later in stance 
10     Price = E(value!) 
11     % loop through the exercise times 
12     loop t: TimeGrid 
13        % early exercise evaluations, the “E” function computes the conditional expected 
14        % discounted “value!”, using the Least Squares Monte Carlo regressions combined 
15        % with the Sparse Grid type basis functions 
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16        if E(value!) < ExerciseValue 
17            value = ExerciseValue 
18        end 
19        % time passing of “t-@time” with the “theta” command 
20        theta t-@ time 
21     end 
22     % at the option maturity time, set the option pay off values 
23     if ExerciseValue>0 
24        value = ExerciseValue 
25     else 
26        value = 0 
27     end 
28  end 
 

The stock prices and numeraire are first simulated in 
the external models “StateProcesses”, then imported as 
processes into the exercise model “MWAOExercise 
Values” to compute future early-exercise values. The 
early-exercise cash flows are next imported as a process 
into the pricing model “MWAOPrice” to determine the 
MWAO price. 

The ThetaML future operator “!” appears in the model 

“MWAOPrice”. It allows the possibility to use the 
variable “value” at the model time when its values are 
not pre-assigned. Computationally, whenever the com- 
piler encounters the future operator “!”, it evaluates the 
codes backward in time. So, when computing the time 0 
option price, the compiler goes from the option maturity 
back to time 0, and assigns the computed time 0 value to 
“Price”. 

 


