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Abstract 
 
The risk-sensitive filtering design problem with respect to the exponential mean-square cost criterion is con-
sidered for stochastic Gaussian systems with polynomial of second and third degree drift terms and intensity 
parameters multiplying diffusion terms in the state and observations equations. The closed-form optimal fil-
tering equations are obtained using quadratic value functions as solutions to the corresponding Focker- 
Plank-Kolmogorov equation. The performance of the obtained risk-sensitive filtering equations for stochastic 
polynomial systems of second  and third degree is verified in a numerical example against the optimal po-
lynomial filtering equations (and extended Kalman-Bucy for system polynomial of second degree), through 
comparing the exponential mean-square cost criterion values. The simulation results reveal strong advan-
tages in favor of the designed risk-sensitive equations for some values of the intensity parameters. 
 
Keywords: Optimal Nonlinear Filtering, Risk-Sensitive Filtering, Extended Kalman-Bucy Filtering 

1. Introduction 
 
Since the linear optimal filter was obtained by Kalman 
and Bucy (60’s), numerous works are based on it, see for 
example [1-5], of the variety of all those. The determi-
nistic filter model introduced by Mortensen [6] provides 
an alternative to stochastic filtering theory. In this model, 
errors in the state dynamics and the observations are 
modeled as deterministic “disturbance functions”, and an 
exponential mean-square cost criterion disturbance error 
is to be minimized. Special conditions are given for the 
existence, continuity and boundedness of   f X t  in 
the state equation, which is considered nonlinear, and the 
linear function   h X t  in the observation equation. A 
concept of stochastic risk-sensitive estimator, introduced 
more recently by McEneaney [7], regard a dynamic sys-
tem where   f X t  is a nonlinear function, linear ob-
servations and existence of parameter   multiplying 
the diffusion term in both equations (state and observa-
tions). In [8] were obtained the suboptimal risk-sensitive 
filtering equations for polynomial systems of third de-
gree and applied to the pendulum equations [9], in which 
the original system was linearized applying Taylor series 
around the equilibrium point. In [10,11] it is regarded 

  f X t  as nonlinear function. This paper presents an 

application of the equations obtained in [10,11] for sin-
gular form of   f X t  (polynomial of second and 
third degree). 

The goal of this work is to obtain the optimal risk- 
sensitive filtering equations when the form of   f X t  
is polynomial of second and third degree and parameter 
  multiplying the diffusion term in the state and obser-
vations equations. There filtering equations are obtained 
taking a value function as solution of the nonlinear pa-
rabolic partial differential equation and exponential 
mean-square exponential cost criterion to be minimized. 

Undefined parameters in the value function are calcu-
lated through ordinary differential equations composed 
by collecting terms corresponding to each power of the 
state-dependent polynomial in the nonlinear parabolic 
PDE equations. This procedure leads to the obtention of 
the optimal risk-sensitive filtering equations. 

The closed-form for risk-sensitive filtering equations 
is explicitly obtained in this work. Although the diffi-
culty presented by systems of second and third degree, in 
this work is shown an advantage for risk-sensitive filter-
ing equations versus extended Kalman-Bucy and poly-
nomial filtering equations under certain values of the 
parameter  . This performance is shown verified in a 
numerical example against the mean-square optimal for 
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polynomial filtering equations (and extended Kalman- 
Bucy for systems of second degree), through comparing 
the exponential mean-square cost criterion values in fi-
nite horizon time. The simulation results reveal strong 
advantages in favor of the designed risk-sensitive filter-
ing equations for all values of the intensity parameters 
(in Table 1) multiplying diffusion terms in state and ob-
servation equations. Tables of the criterion values and 
graphs of the simulations are included. This exponential 
mean-square cost criterion function contains the parame-
ter   which appear in the dynamic system, which leads 
to a more robust solution. This work is organized as fol-
lows: filtering problem statement, optimal risk-sensitive 
filtering for stochastic system of second degree, optimal 
risk-sensitive filtering for stochastic system of third de-
gree, application for systems of second degree, applica-
tion for systems of third degree, conclusions and refer-
ences. 
 
2. Filtering Problem Statement 
 
Consider the following stochastic model (1), where  X t  
denotes the state process,  Y t  denotes a continuous 
accumulated observations process,  X t  satisfies the 
diffusion model given by 

      22
dX t f X t dt dW t




          (1) 

where   f X t  represents the nominal dynamics, and 
W is a Brownian motion, and the observation process 
 Y t  satisfies the equation: 

        2
,   0 0,

2
dY t h X t dt dW t Y




    (2) 

where   is a parameter and W and W  are independ-
ent Brownian motions, which are also independent of the 
initial state  0X .  0X  has probability density 

   1exp 0k X    for some constant k . 
Let us consider 

      
0

1
log exp , ,

T
J E L X t m t t dt Y t


      (3) 

the exponential mean-square cost criterion to be mini-
mize. In the rest of the paper the assumptions (A1)-(A4) 
(from [10]) are hold: 
● (A1) , , nf g h with ,x xf h  bounded. 
● (A2)      2 2

1 21 1D x x D x    . Here xf  is 
the matrix of partial derivatives of f with xh  defined 
similarly.  x  is a continuous, real-valued function 
satisfying (A2) for some positive 1D , 2D . 
● (A3) , nf h  with f, h bounded and xxf , xxh  bounded 

and globally Hölder continuous. (A function u is globally 

Hölder continuous if there exists  0,1 , K     such 
that    u x u y K x y

    for all ,x y ). 
● (A4) Given R   , there exists RK    such that 

    Rx y K x y     for all ,  x y   . 
Let   ,q T X t  denotes the unnormalized condi-

tional density of  X T , given accumulated observa-
tions  Y t  for 0 t T  . It satisfies the Zakai stochas-
tic PDE, in a sense made precise, for instance in [12]. It 
is assumed that 

      
          

1

1

0, exp ,

, , exp ,

q X t X t

q T X t p T X t Y T h x t

 







 

    
(4) 

where   ,p T X t  is called pathwise unnormalized 
filter density. p satisfies the following linear second- 
order parabolic PDE with coefficients depending on 
 Y t : 

  * .
p K

L T p p
T 


 



             (5) 

where, for every ng  , let 

 

    

           

   2
                 

,
2

1
,

2
1

  
2

 

g XX X

XX

X X

L tr ag f g

L T g Lg a Y T h g

K T X t a X t Y T h Y T h

L Y T h h


  

   

   

  



 (6) 

L denotes the differential generator of the Markov dif-
fusion  X t  in (1). By assumptions (A1) and (A3) in 
[10], K is bounded and continuous.   *L T


 is the for-

mal adjoint of  L T


. Since  0 0,Y     0,p X t  
  0,q X t . The initial condition for (5) is (4). For 

some given  0 0,Y C T , (where 0C  denote the space 
of continuous  Y t  such that  0 0Y  , with the sup 
norm ). The pathwise filter density p is the unique 
“strong” solution to (5) and (4) in a sense made precise 
in [12]. Further, p is a classical solution to (5) and (4) 
with p continuous on  10, nT   and partial derivatives 

, , , , 1, ,
i i jT X X Xp p p i j n   continuous for 10 T T   

[13,14]. 
Moreover,   , ; 0p T X t Y  . We rewrite (5) as fol-

lows: 

   1

2 XX X

p B
tr a X t p A p p

T 


   


    (7) 

where 

           
        

X

X

A f X t a X t Y t h x t

div a t

   


 (8) 

  ,B T X t                             
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2

  
2

     ( ( ))

     , ,

XX

X

tr a X t

div f X t a X t Y T h X t

K T X t







    


 

     
   

, 1

, 1

, 1, ,
i

i j

n

X iji j Xj

n

XX iji j X X

div a t a j n

tr a a





 








           

These assumptions imply uniform bounds for A and B, 
depending on the sup norm Y  on  10,T , but not on 
 . Taking log transform:      , log ,Z T X t p T X t , 
which satisfies the nonlinear parabolic PDE: 

  1
,

2 2XX X X X

Z
tr Z A Z Z Z B

T


     


      (9) 

with initial condition      0,XZ X t X t  . The 
optimal risk-sensitive filtering problem consists in found 
the estimate  C t , of the state  X t  through verifica-
tion that 

              
      

1
,

2

                   ,

T
Z T X t X t C t Q t X t C t

T Y T h X t

  

  
(10) 

is a viscosity solution of (9). 
Where   ,nX t     ,mw t     ,Y t    ,pv t   
,f  nh  with ,  X xf h  bounded is assumed through- 

out. Here xh  is the matrix of partial derivatives of h and 
the same form for XZ . 
 
3. Optimal Risk-Sensitive Filtering Problem 
 
3.1. Optimal Risk-Sensitive Filtering for     

Stochastic System of Second Degree 
 
Taking               1 2 ,Tf X t A t A t X t A t X t X t     

        1h X t E t E t X t   with   ,nA t    1 ,n nA t M   
 2 ,n n nA t T       1 ,pE t E t   n pM   where i jM   

denotes the field of matrixes of dimension i j  and 

i j kT    denotes the field of tensors of dimension 
 i j k   n. The following stochastic equations system is 
obtained: 

             
 

         

1 2

1

t

            ,

,

TdX A t A t X t A t X t X t

dB t

dY t E t E t X t dB t





  



  




(11) 

where  22 .    The optimal filtering problem con-

sists in to obtain the estimate of the state  X t  given 

the observations equations, which minimizes the expo-

nential mean-square cost criterion, taking   ,Z T X t  

(10) as solution of the nonlinear parabolic partial differ-
ential Equation (9). 

Theorem 1. The solution to the filtering problem, for 
the system (11) with criterion (3) takes the form: 

             
          
   

             
   

1
1

1
1

1
2

1 1

1 1

          

          2 ,

          .

T T

T

C t A t A t C t Q t Q t C t

Q t E t dy E t Q t C t

A t Q t

Q t A t Q t Q t A t Q t Q t

E t E t









  

   



   



 


 (12) 

where  C t  is the state estimate vector with initial 
conditions with initial condition   00C C , and  Q t  
is a symmetric matrix negative defined, where the initial 
condition   00Q q  is derived from initial conditions 
for Z. If         ,  0TX t X t KX t Q K    . 

Proof: The value function is proposed 

            
      

1
, ( )

2

                   ,

T
Z T X t X t C t Q t X t C t

T Y T h X t

  

  
(13) 

            0, ,  ,  ,  XZ X t X t C t Q t t    are func-
tions defined on      0, , ,nT C t Q t  is a symmetric 
matrix of dimension n n  and ( )t  is a scalar func-
tion) as a viscosity solution of the nonlinear parabolic 
PDE (9). ,X XXZ Z  are the partial derivatives of Z re-
spect to  X t  and Z  is the gradient of Z. Then the 
partial derivatives of Z are given by: 

         

          
        

      

          

 

1

1

1

2

       

       

1

2
1

      ,
2

.

T

T

T

X

T

XX

Z X t C t Q X t C t

X t C t Q t C t t

Y t E t E t X t

Z Q t X t C t

X t C t Q t Y t E t

Z Q t



  

  

 

 

  





 


     (14) 

Let us consider: 

           
   

1 2

1     

TA A t A t X t A t X t X t

Y T E t

   


    (15) 

          
           

         

2

2 1 1

1 2

2

1 1

      

1
2

2
–

1
      

2

T

B A t X t A t Y T E t

A t A t X t A t X t X t

Y T E t E t E t X t
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Substituting (14) and the expressions for A, B in (9); 
we obtain: 

               

             
             

             

            

            

            

1

1 2

1

1

1 1

2

1 1 2

1
0

2

     
2

     

1 1
     

2 2

     
1 1

2 2
1

     
2
1

    
2

T T

T

T

T

T

X t C t Q t X t C t Q t C t

t Y t E t E t X t tr Q t

A t A t X t A t X t X t Y t

E t Q t X t C t X t C t

Q t Y t E t Q t X t C t

X t C t Q t Y t E t A t

Y t E t A t A t X t A t X





   

  

    

      
 

  


   


   



 



 
            2

1 1

1
    .

2

t

X t Y t E t E t E t X t   

 

(16) 

Collecting the          ,T T TX t X t X t X t X t  and 
       T TX t X t X t X t  terms, and replacing  X t  

by  C t ; we obtain the matrix equation for  Q t . Col-
lecting the  X t  terms, the vectorial equations for 
 C t  are obtained (12). 

 
3.2. Optimal Risk-Sensitive Filtering for     

Stochastic System of Third Degree 
 
Taking               1 2

Tf X t A t A t X t A t X t X t     
       3 ,T TA t X t X t X t          1h X t E t E t X t   

with   ,nA t    1 ,n nA t M    2 ,n n nA t T     3 ,n n n nA t T     
  ,pE t    1 n pE t M   where i jM   denotes the field 

of matrixes of dimension i j , i j kT    denotes the field 
of tensors of dimension i j k   and i j k lT     denotes 
the field of tensors of dimension i j k l   . The fol-
lowing stochastic equations system is obtained: 

             
         

           

1 2

3

1 0

t A

            ,

,  ,0

T

T T

dX t A t X t A t X t X t

A t X t X t X t dB t

dY t E t E t X t dB t X X





  

 

   




(17) 

where  22   . 
Theorem 2. The solution to the filtering problem, for 

the system (17) with criterion (3) takes the form: 

             

         

1
1

1
1

1
         ,

2

C t A t A t C t Q t Q t C t

Q t E t dy E t Q t C t





  
     
 

 
  (18) 

               
            

1 1 2

2 2          

T

T

Q t A t Q t Q t A t A t Q t C t

A t Q t C t A t Q t C t

  

 


 

       

        
       

        
         
   

3

3

3

3

1

1 1

          

          

          

          

          

           

T

TT

T

TT

T

T

A t C t C t Q t

A t C t C t Q t

A t Q t C t C t

A t Q t C t C t

Q t Q t div f C Y t E t

E t E t











    



 

where  C t  is the state estimate vector with initial 
conditions with initial condition   00C C , and  Q t  
is a symmetric matrix negative defined, where the initial 
condition   00Q q  is derived from initial conditions 
for Z. If         ,  0TX t X t KX t Q K    . 

Proof: In similar form to Theorem 1. 
 
4. Applications 
 
4.1. Application for Systems of Second-Degree. 

Optimal Risk-Sensitive Filtering Equations 
 
Consider the following dynamical stochastic system as-
sociated to a continuous stirred tank reactor in which is a 
chemical reaction occurs. This reaction is in liquid phase 
and has isothermal character between multicomponents 
[15]. 

       

   

1 1 1 12

2
2 1 1 2 2 2 22

1 ,
2

.
2

a

a a

X t D X u t dW t

X t D X X D X dW t







    

   




  (19) 

where  1X t  represents the unnormalized concentra-
tion PoP C  of a certain specie P of the reactor,  2X t  
represents unnormalized concentration Q PoC C  of a 
certain specie Q. The control variable u is defined as the 
relation between the alimentation molar rate by volumet-
ric unit of P, designated by PFN  and the nominal con-
centration PoC , this is PF Pou N FC , where F is the 
volumetric flow of alimentation on 3 1m s . 1 1aD k V F , 

2 2a PoD k VC F  where V is the volume of reactor in 
3m , 1k  and 2k  are constants of first degree given in 
1s . It can take that 1aD  and 2aD  are considering by 

1 1aD   and 2 1aD  . Q is highly sour while P is neuter. 
Then, the following dynamical stochastic system is ob-
tained: 

     

   

1 1 12

2
2 1 2 2 22

2 ,
2

.
2

X t X u t dW t

X t X X X dW t







   

   




    (20) 



M. A. ALCORTA-GARCIA  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  ICA 

51

Applying the equations (12) to the system (20), the 
equations of the optimal risk-sensitive filtering are ob-
tained: 

 

 

2 2
11 11 11 12

12 12 11 11 12 12 22

2 2
22 22 12 12 22

11
1 11 22 1 12 22

11 22 12

12 11 2 12 1 1 22 2 12

1 11 1 12 2

12
2 12 22

11 22 12

4 1,

3

2 2 1,

      

      

,

2 ,

Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q

Q
C Q Q C Q C

Q Q Q

Q Q C Q C Y Q Y Q

C Q C Q C

Q
C Q Q

Q Q Q

  

   

    

  

    

  












 

  

   

 

2 1 12 2

22 11 2 12 1 1 12 2 11 11

1 2 12 1 22 2

    

.

  2

      

C Q C

Q Q C Q C Y Q Y Q Q

C C Q C Q C



 

     

   

  

(21) 

The initial conditions for the risk-sensitive filtering 
equations are:      1 2 10 20, 0 10, 0 2,X X Y     2 0 1,Y   

 1 0 1,C    2 0 5,C    11 0 6,Q    12 0 0.0001,Q   
 22 0 7Q   , the final time is 2T s . The system 

formed by the equations (20) and (21), is simulated using 
Simulink in MatLab7. The performance of the designed 
equations is compared versus the equations of the poly-
nomial filtering [1] and the equations of the extended 
Kalman-Bucy filtering [16], applied to the system (20), 
that is optimal with respect to the conventional exponen-
tial mean-square cost criterion. 
 
4.1.1. Polynomial Filtering Equations 
The corresponding equations for the polynomial filtering 
[1] are given by: 

 

 

 

   

   

2
2 2

11 11 12 112

2

12 11 12 2 12 11 12 12 22

2
2 2

22 22 12 2 22 12 222

2

1 1 11 1 1 12 2 2

2
2 1 1 2 22

2

12 1 1 22 2 2 

2
4 ,

2

2
3 2 ,

2
2 2 4 ,

2

2
2 ,

2
      .

P P P P

P P P m P P P P P

P P P m P P P

m m P Y m P Y m

m m m m P

P Y m P Y m

 




 








   

    

     

       

   

     







 



 

  (22) 

where the initial conditions are  1 0 20,X    2 0 10,X   
 1 0 2,Y    2 0 1,Y    1 0 1,m    11 0 100,P    12 0 1,P    
  7

22 0 1 10P   . 

4.1.2. Extended Kalman-Bucy Filtering Equations 
The equations of the extended Kalman-Bucy [13] filter-
ing are given by: 

 

 

 

   

2
2 2

11 12 112

2

12 11 12 11 12 12 22

2
2 2

22 12 22 12 222

2

1 1 11 1 1 12 2 2

2
4 ,

2
2

3 ,

2
2 2 ,

2
2

2 ,

P P P P

P P P P P P P

P P P P P

m m P Y m P Y m

 



 





   

   

    

       







 

(23) 

   
2

2 1 1 12 1 1 22 2 2

2
.m m m P Y m P Y m




       
   

1) Consider the stochastic dynamical system associ-
ated to a continuous stirred tank reactor and the follow-
ing initial conditions for the state and observations equa-
tions:        1 2 1 20 20,  0 10,  0 2,  0 1,X X Y Y     the 
final time is 2T s . The initial conditions for the fil-
tering equations in which case are given by: 

a) For risk-sensitive filtering equations:  
       
 

1 2 11 12

22

0 1,  0 5,  0 6,  0 0.0001,  

0 7.

C C Q Q

Q

   

 
 

b) For polynomial filtering equations:  

       
 

1 2 11 12

7
22

0 1,  0 5,  0 100,  0 1,

0 1 10 .

m m P P

P

    

 
 

c) For Extended Kalman-Bucy filtering equations:  
       
 

1 2 11 12

22

0 1,  0 5,  0 5,  0 3,

0 5.

m m P P

P

   


 

Table 1 presents comparison between the exponential 
mean square cost criterion J for the three types of filter-
ing equations; you can see that the R SJ   values are the 
smallest for all values of the intensity parameter  . 

2) Consider the stochastic dynamical system associ-
ated to a continuous stirred tank reactor and the follow-
ing initial conditions for the state and observations equa-
tions:        1 2 1 20 50,  0 1,  0 2,  0 1,X X Y Y     the 
final time is 2T s . The initial conditions for the fil-
tering equations in which case are given by: 

a) For risk-sensitive filtering equations:  
       
 

1 2 11 12

22

0 1,  0 5,  0 7,  0 0.0001,

0 7.5.

C C Q Q

Q

    

 
 

b) For polynomial filtering equations: 

       
 

1 2 11 12

7
22

0 1,  0 5,  0 85,  0 10

.

,  

0 2 10

m m P P

P

    

 
 

c) For Extended Kalman-Bucy filtering equations:  
       
 

1 2 11 12

22

0 1,  0 5,  0 2,  0 5,

0 10.

m m P P

P
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Table 2 presents comparison between the exponential 
mean square cost criterion J for the three types of filter-
ing equations; you can see that the R SJ   values are the 
smallest for all values of the intensity parameter  . 

3) Consider the stochastic dynamical system associ-
ated to a continuous stirred tank reactor and the follow-
ing initial conditions for the state and observations equa-
tions:        1 2 1 20 0.05,  0 50,  0 2,  0 1,X X Y Y      
the final time is 2T s . The initial conditions for the 
filtering equations in which case are given by: 

a) For risk-sensitive filtering equations:  
       
 

1 2 11 12

22

0 1,  0 5,  0 6,  0 0.0001,

0 7.

C C Q Q

Q

    

 
 

b) For polynomial filtering equations:  

       
 

1 2 11 12

7
22

0 1,  0 5,  0 100,  0 5,

0 1 10 .

m m P P

P

    

 
 

c) For Extended Kalman-Bucy filtering equations: 
       
 

1 2 11 12

22

0 1,  0 5,  0 1.85,  0 3,

0 5.

m m P P

P

   


 

Table 3 presents comparison between the exponential 
mean square cost criterion J for the three types of filter-
ing equations; you can see that the R SJ   values are the 
smallest for all values of the intensity parameter  . 

With these tables, showed that the filter risk-sensitive 
is the best, because the values obtained are lower. 

The Figures 1, 2 and 3 show the 1Error  and 2Error  
which are defined as    1 1 1Error X t C t   (in same 
form for 2Error ); and the exponential mean-square cost 
criterion values in 2T s . 

 
Table 1. Comparison of exponential mean-square cost cri-
terion values J(3) in T = 2s for risk-sensitive, polynomial 
and extended Kalman-Bucy filtering equations. 

  
R SJ   PolJ  K BJ   

0.1 53.4293 69.2292 (t = 0.17s) 69.0816(t = 0.14s) 

1 53.5165 145.7323 277.3136 

10 53.7994 157.2172 235.5110 

100 54.7621 858.7622 189.6937 

1000 58.5054 58230 185.7343 

 
Table 2. Comparison of exponential mean-square cost cri-
terion values J(3) in T = 2s for risk-sensitive, polynomial 
and extended Kalman-Bucy filtering equations. 

  
R SJ   PolJ  K BJ   

1 505.8493 705.1152 (t = 1.64s) 686.3813 (t = 0.28s)

10 513.3591 712.2522 527.0787 

100 537.8120 1430.4728 587.0328 

1000 622.1946 59067 641.1202 

10000 960.423 5597700 673.6555 

Table 3. Comparison of exponential mean-square cost cri-
terion values J(3) in T = 2s for risk-sensitive, polynomial 
and extended Kalman-Bucy filtering equations. 

  
R SJ   PolJ  K BJ   

0.1 42.0377 55.6339 70.3916 (t = 0.36s) 

1 41.9340 56.1153 144.2845 

10 41.6143 70.7942 317.9369 

100 40.6851 763.7829 678.2942 

1000 38.5611 57957 812.9141 

10000 36.1603 55918000 859.8006 
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Figure 1. Graphs of the 1Error , 2Error , and exponential 
mean square cost criterion corresponding to the risk-sensi- 
tive optimal filtering equations for a continuous stirred 
tank reactor for 10,     ,1 0 20X     ,2 0 10X    1 0 2,Y   

 2 0 1Y  . 

 
4.2. Application for Polynomial System of Third 

Degree 
 
4.2.1. Optimal Risk-Sensitive Filtering Equations 
The risk-sensitive control equations for third degree po-
lynomial systems will be applied to the problem of ori-
entation of a monoaxial satellite [15]. The description is 
as follows: a satellite rotates around a fixed axis without 
gravity. The rotation torques is produced by a system of 
mini-engines through a controlled explosion of gases in 
the opposite direction. The state equations for this model 
are given by: 

        2
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X t X t X t dW t
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         2 2 12 2
,   .

2 2
X t dW t Y t X t dW t

 
 

    (24) 

where  1X t  represents the orientation angle of the 
satellite, measured with respect of a secondary axis 
which does not coincide with the principal one.  2X t  
represents the angular velocity with respect to the prin-
cipal axis. Applying the system of equations (18) to the 
system (24), the following optimal risk-sensitive filtering 
equations are obtained: 
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Figure 2. Graphs of the 1Error , 2Error , and exponential 
mean square cost criterion corresponding to the polynomial 
filtering equations for a continuous stirred tank reactor for 

10,     ,1 0 20X     ,2 0 10X    1 0 2,Y    2 0 1Y  . 
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Figure 3. Graphs of the 1Error , 2Error , and exponential 
mean square cost criterion corresponding to the extended 
Kalman-Bucy filtering equations for a continuous stirred 
tank reactor for 10,     ,1 0 20X     ,2 0 10X    1 0 2,Y   

 2 0 1Y  . 
 

The initial conditions are:  1 0 0.115,X    2 0 0.073,X   
 1 0 0,Y   1 0 0.92,C   and  2 0 0.5,C    11 0 4500,Q    
 12 0 100,Q    22 0 8500,Q    1.8T s . 

 
4.2.2. Polynomial Filtering Equations 
The corresponding equations for the polynomial filter [1] 
are given by: 
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(26) 

1) Consider the stochastic dynamical system associ-
ated to a problem of orientation of a monoaxial satellite 
and the following initial conditions for the state and ob-
servations equations:    1 20 0.09,  0 0.65,X X    1 0 2,Y   

 2 0 1Y  , the final time is 1T s . The initial condi-
tions for the filtering equations in which case are given 
by:  
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a) For risk-sensitive filtering equations:  
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b) For polynomial filtering equations:  
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Table 4 presents comparison between the exponential 
mean square cost criterion J for the two types of filtering 
equations; it can be saw, that the R SJ   values are the 
smallest for all values of the intensity parameter  . 

2) Consider the stochastic dynamical system associ-
ated to a problem of orientation of a monoaxial satellite 
and the following initial conditions for the state and ob-
servations equations:    1 20 0.115,  0 0.073,X X   
   1 20 2,  0 1Y Y  , the final time is 1T s . The initial 

conditions for the filtering equations in which case are 
given by:  

a) For risk-sensitive filtering equations:  
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0 100,  0 8500.
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b) For polynomial filtering equations:  
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m m P
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Table 5 presents comparison between the exponential 
mean square cost criterion J for the two types of filtering 
equations; it can be saw, that the R SJ   values are the 
smallest for all values of the intensity parameter  . 

The system Equations (24), (25) and (26) is simulated 

using Simulink in MatLab7. The performance of the de-
signed equations is compared versus the equations of the 
polynomial filter [1], with respect to the exponential 
mean-square exponential criterion J. 

The Figures 4 and 5 show the 1Error  and 2Error  
which are defined as    1 1 1Error X t C t   (in same 
form for 2Error ); and the exponential mean- square cost 
criterion values. 

 
Table 4. Comparison of mean-square exponential criterion 
J(3) for r-s filtering equations and polynomial filtering eq-
uations. 

  
R SJ   PolJ  

0.01 0.3239 2.0321 

0.1 0.3232 1.1319 

1 0.3198 0.6655 

10 0.3063 0.3319 

100 0.2800 26.8974 

 
Table 5. Comparison of mean-square exponential criterion 
J(3) for r-s filtering equations and polynomial filtering eq-
uations. 

  
R SJ   PolJ  

0.01 0.3842 0.5895 

0.1 0.3835 0.4287 

1 0.3691 0.4013 

10 0.2841 0.3054 

100 0.1454 0.2454 
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Figure 4. Graphs of the 1Error , 2Error , and exponential mean square cost criterion corresponding to the risk-sensitive op-
timal filtering equations for satellite monoaxial for 10,     ,1 0 0.115X     ,2 0 0.073X    1 0 2,Y    2 0 1Y  . 
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Figure 5. Graphs of the 1Error , 2Error , and exponential mean square cost criterion corresponding to the polynomial filter-
ing equations for satellite monoaxial for 10,     ,1 0 0.115X     ,2 0 0.073X    1 0 2,Y    2 0 1Y  . 

 
5. Conclusions 
 
In this paper the equations have been obtained for the 
optimal risk-sensitive filtering problem, when the system 
is polynomial of second and third degree, with presence 
of Gaussian white noise, exponential mean-square cost 
criterion to be minimized, with parameter   multiply-
ing the Gaussian white noise in the state and observa-
tions equations, and taking into account a value function 
as a viscosity solution of the nonlinear parabolic PDE. 

Numerical application is solved for risk-sensitive and 
polynomial filtering equations for system of second and 
third degree (and Kalman-Bucy for system of second 
degree) for some values of parameter  . The perform-
ance for optimal risk-sensitive filtering equations is veri-
fied through of the comparison between the values of the 
exponential mean-square cost criterion J for polynomial 
and extended Kalman Bucy filtering equations. 

It can be seen that the values of the mean square cost 
criterion R SJ   in final time, are smaller than PolJ  and 

K BJ   for all values given to the intensity parameter  . 
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