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ABSTRACT 

The analogy between eigenvalues and singular values has many faces. The current review brings together several ex-
amples of this analogy. One example regards the similarity between Symmetric Rayleigh Quotients and Rectangular 
Rayleigh Quotients. Many useful properties of eigenvalues stem are from the Courant-Fischer minimax theorem, from 
Weyl’s theorem, and their corollaries. Another aspect regards “rectangular” versions of these theorems. Comparing the 
properties of Rayleigh Quotient matrices with those of Orthogonal Quotient matrices illuminates the subject in a new 
light. The Orthogonal Quotients Equality is a recent result that converts Eckart-Young’s minimum norm problem into 
an equivalent maximum norm problem. This exposes a surprising link between the Eckart-Young theorem and Ky Fan’s 
maximum principle. We see that the two theorems reflect two sides of the same coin: there exists a more general maxi-
mum principle from which both theorems are easily derived. Ky Fan has used his extremum principle (on traces of ma-
trices) to derive analog results on determinants of positive definite Rayleigh Quotients matrices. The new extremum 
principle extends these results to Rectangular Quotients matrices. Bringing all these topics under one roof provides new 
insight into the fascinating relations between eigenvalues and singular values. 
 
Keywords: Eigenvalues; Singular Values; Rayleigh Quotient; Orthogonal Quotient Matrices; The Orthogonal 

Quotients Equality; Eckart-Young Theorem; Ky Fan’s Extremum Principles 

1. Introduction 

Let G  be a real symmetric n n  matrix and let  

 T

1, , n
nx x x    be a given nonzero vector. Then 

the well-known Rayleigh Quotient is defined as 

  T T, .G G  x x x x x           (1.1) 

One motivation behind this definition lies in the fol- 
lowing observation. Let   be a given real number. 
Then there exists an eigenvalue   of G  such that 

2 2
,G    x x x             (1.2) 

and the value of   that solves the minimum norm 
problem 

  2
minimize f G  x x          (1.3) 

is given by  . In other words,   provides an estimate 
for an eigenvalue corresponding to x . Combining this 
estimate with the inverse iteration yields the celebrated 
Rayleigh Quotient Iteration. Other related features are 
the Courant-Fischer minimax inequalities, Weyl mono- 
tonicity theorem, and many other results that stem from 

these observations. In particular, the largest and the 
smallest eigenvalues of G  satisfy 

 T T
1 sup ,nG   x x x x x x 0      (1.4) 

and 

 T Tinf ,n
n G   x x x x x x 0      (1.5) 

respectively. For detailed discussion of the Rayleigh 
Quotient and its properties see, for example, [1-41]. 

The question that initiates our study is how to extend 
the definition of Rayleigh Quotient in order to estimate a 
singular value of a general rectangular matrix, where the 
term “rectangular” means that the matrix is not neces- 
sarily symmetric or square. More precisely, let A  be a 
real m n  matrix, m n , and let mu   and 

nv   be a pair of nonzero vectors. Then we seek a 
scalar function of ,A u , and v ,  , ,A u v  say, whose 
value approximates the “corresponding” singular value 
of A . The answer is given by the Rectangular Quotient, 

   T

2 2
, , ,A A  u v u v u v      (1.6) 
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where  1 2T

2
u u u  denotes the Euclidean vector  

norm. The justifications behind this definition are given 
in Section 3. It is demonstrated there that the properties 
of the Rectangular Quotient (1.6) resemble (extend) 
those of the Rayleigh Quotient (1.1). Indeed, as our re-
view is aimed to show, the above similarity reflects a 
more general rule: the optimality properties of Orthogo-
nal Quotient matrices resemble (extend) those of 
Rayleigh Quotient matrices. 

Let  1, ,m mX  x x   be a real m m   matrix with  
m  orthonormal columns. Let  1, ,n nY  y y   be a real  

n n   matrix with n  orthonormal columns. Then an 
m n   matrix of the form 

T
m nZ X AY                   (1.7) 

is called an Orthogonal Quotient matrix. Note that 
T ,ij i jZ A x y                (1.8) 

so the entries of Z  have the same absolute value as the 
corresponding rectangular quotients. Matrices of the 
form (1.7) can be viewed as “rectangular” Rayleigh Quo-
tient matrices. The traditional definition of symmetric 
Rayleigh Quotient matrices refers to symmetric matrices 
of the form 

T ,n nY GY                    (1.9) 

where G  and nY  are defined as above, e.g., [20,30,36]. 
Symmetric Rayleigh Quotient matrices of this form are 
sometimes called sections. A larger class of Rayleigh 
Quotients matrices is considered in [34]. These matrices 
have the form 

,IC WC                   (1.10) 

where W  is a general (nonnormal) square matrix of 
order n . The n k  matrix C  is assumed to be of full 
column rank, and the k n  matrix IC  denotes a left 
inverse of C . That is, a matrix satisfying IC C I . 
Matrices of the forms (1.9) and (1.10) play important 
roles in the Rayleigh-Ritz procedure and in Krylov 
subspace methods, e.g., [30,34]. In this context there is 
rich literature on residual bounds for eigenvalues and 
eigenspaces. See, for example, [19-21,30,32,34,36]. An-
other applications of Rayleigh Quotient matrices arise in 
optimization algorithms that try to keep their approxima-
tions on a specific Stiefel manifold, e.g., [6,7,9,35]. 

A third class of Rayleigh Quotient matrices is obtained 
from (1.7) by taking m n k   . These matrices are 
involved in residual bounds for singular values and 
singular spaces, e.g., [2,21]. 

However, our review turns into different directions. It 
is aimed to explore the optimality properties of Orthogo-
nal Quotients matrices. Comparing these properties with 
those of symmetric Rayleigh Quotients matrices reveals 

highly interesting observations. At the heart of these ob-
servations stands a surprising relationship between 
Eckart-Young’s minimum norm theorem [5] and Ky 
Fan’s maximum principle [10]. 

The Eckart-Young theorem considers the problem of 
approximating one matrix by another matrix of a lower 
rank. The solution of this problem is also attributed to 
Schmidt [31]. See [17, pp.~137,138] and [33, p.~76]. 
The need for low-rank approximations of a matrix is a 
fundamental problem that arises in many applications, 
e.g., [3-5,8,14,15,18,33]. The maximum principle of Ky 
Fan considers the problem of maximizing the trace of a 
symmetric Rayleigh Quotient matrix. It is also a well- 
known result that has many applications, e.g., [1,10-12, 
16,22,28]. Yet, so far, the two theorems have always 
been considered as independent and unrelated results 
which are based on different arguments. The Orthogonal 
Quotients Equality is a recent result that converts Eckart- 
Young’s minimum norm problem into an equivalent 
maximum norm problem. This exposes a surprising 
similarity between the Eckart-Young theorem and Ky 
Fan’s maximum principle. We see that the two theorems 
reflect two sides of the same coin: there exists a more 
general maximum rule from which both theorems are 
easily derived. 

The plan of our review is as follows. It starts by 
introducing some necessary notations and facts. Then it 
turns to expose the basic properties of the Rectangular 
Quotient (1.6), showing that it solves a number of least 
norm problems that resemble (1.3). An error bound, 
similar to (1.2), enables us to bound the distance between 
  and the closest singular value of A . 

Another aspect of the analogy between eigenvalues 
and singular values is studied in Section 4, in which we 
consider “rectangular” versions of the Courant-Fischer 
minimax theorem and Weyl theorem. This paves the way 
for “traditional” proof of Eckart-Young theorem. Then, 
using Ky Fan’s dominance theorem, it is easy to con-
clude Mirsky’s theorem. 

The relation between symmetric Rayleigh Quotient 
matrices and Orthogonal Quotients matrices is studied in 
Section 5. It is shown there that the least squares proper-
ties of Orthogonal Quotient matrices resemble those of 
symmetric Rayleigh-Quotient matrices. One consequence 
of these properties is the Orthogonal Quotients Equality, 
which is derived in Section 6. As noted above, this 
equality turns the Eckart-Young least squares problem 
into an equivalent maximum problem, which attempts to 
maximize the Frobenius norm of an Orthogonal Quo-
tients matrix of the form (1.7). 

The symmetric version of the Orthogonal Quotients 
Equality considers the problem of maximizing (or mini-
mizing) traces of symmetric Rayleigh Quotients matrices. 
The solution of these problems is given by the celebrated 
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Ky Fan’s Extremum Principles. The similarity between 
the maximum form of Eckart-Young theorem and Ky 
Fan’s maximum principle suggests that both observations 
are special cases of a more general extremum principle. 
The derivation of this principle is carried out in Section 8. 
It is shown there that both results are easily concluded 
from the extended maximum principle. 

The review ends by discussing some consequences of 
the extended principle. One consequence is a mini-
mum-maximum equality that relates Mirsky’s minimum 
norm problem with the extended maximum problem. A 
second type of consequence is about traces of Orthogonal 
Quotients matrices. The results of Ky Fan on traces of 
symmetric Rayleigh Quotients matrices [10] were ex-
tended in his latter papers [11,12] to products of eigen-
values and determinants. The new extremum principle 
enables the extension of these properties to Orthogonal 
Quotients matrices. 

The current review brings together several old and 
new results. The “old” results come with appropriate 
references. In contrast, the “new” results come without 
references, as most of them are taken from a recent re-
search paper [3] by this author. Yet the current paper 
derives a number of contributions which are not included 
in [3]. One contribution regards the extension of Theo-
rem 11 behind the Frobenius norm. Another contribution 
is the minimum-maximum equality, which is introduced 
in Section 9. The main difference between [3] and this 
essay lies in their concept. The first one is a research 
paper that is aimed at establishing the extended extre-
mum principle. The review exposes some fascinating 
features of the analogy between eigenvalues and singular 
values. For this purpose we present several apparently 
unrelated results. Putting all these topics under one roof 
gives a better insight into these relations. The description 
of the results concentrates on real valued matrices and 
vectors. This simplifies the presentation and helps to fo-
cus on the main ideas. The treatment of the complex- 
valued case should be quite obvious.  

2. Notations and Basic Facts 

In this section we introduce notations and facts which are 
needed for coming discussions. As before A  denotes a 
real m n  matrix with m n . Let 

TA USV                  (2.1) 

be an SVD of A , where  1, , mU  u u  is an m m  
orthogonal matrix,  1, , nV  v v  is an n n  or-  

thogonal matrix, and  1diag , , nS     is an m n  
diagonal matrix. The singular values of A  are assumed 
to be nonnegative and sorted to satisfy 

1 2 0.n                  (2.2) 

The columns of U  and V  are called left singular 
vectors and right singular vectors, respectively. These 
vectors are related by the equalities 

Tand , 1, , .j j j j j jA A j n   v u u v    (2.3) 

A further consequence of (2.1) is the equality 

T

1

.
n

j j j
j

A 


  u v                (2.4) 

Moreover, let r  denote the rank of A . Then, 
clearly, 

1 0 and 0

for 1, , .

r j

j r n

     

 




      (2.5) 

So (2.4) can be rewritten as 

T

1

.
r

j j j
j

A 


  u v                (2.6) 

Let the matrices 

 
 

1

1

, ,

and , ,

m k
k k

n k
k k

U

V





 

 

 

 

u u

v v
        (2.7) 

be constructed from the first k  columns of U and V , 
respectively. Let  1diag , ,k kS     be a k k  di-  

agonal matrix. Then the matrix 

T T

1

k

k k k k j j j
j

T U S V 


   u v            (2.8) 

is called rank- k  Truncated SVD of A . 
Let , ,ij ij ija u v , denote the  ,i j  entries of the matri-  

ces , ,A U V , respectively. Then (2.4) indicates that 

1

for 1, , ,
n

ii j ij ij
j

a u v i n


          (2.9) 

and 

1 1 1

1 1 1

.

n n n

ii j ij ij
i i j

n n n

j ij ij j
j i j

a u v

u v



 

  

  

 

  

 

  
      (2.10) 

where the last inequality follows from the Cauchy- 
Schwarz inequality and the fact that the columns of U  
and V  have unit length. 

Another useful property regards the concepts of ma- 
jorization and unitarily invariant norms. Recall that a 
matrix norm   on m n  is called unitarily invariant if 
the equalities 

T TA X A AY X AY          (2.11) 

are satisfied for any matrix m nA  , and any pair of 
unitary matrices m mX   and n nY  . Let B  and 
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C  be a given pair of m n  matrices with singular val-
ues 

1 2

1 2

0

and 0,
n

n

  
  

   

   




 

respectively. Let  T

1, , n     and  T

1, , n     

denote the corresponding n -vectors of singular values. 
Then the weak majorization relation    means 
that these vectors satisfy the inequalities 

1 1

for 1, , .
k k

j j
j j

k n 
 

           (2.12) 

In this case we say that   is weakly majorized by  , 
or that the singular values of B are weakly majorized by 
those of C . The Dominance Theorem of Ky Fan [11] 
relates these two concepts. It says that if the singular 
values of B  are majorized by those of C  then the 
inequality 

B C                  (2.13) 

holds for any unitarily invariant norm. For detailed proof 
of this fact see, for example, [1,11,17,22]. The most 
popular example of a unitarily invariant norm is, perhaps, 
the Frobenius matrix norm 

1 2

2

1 1

,
m n

ijF
i j

A a
 

 
  
 
            (2.14) 

which satisfies 

   2 T T 2

1

trace trace .
n

jF
j

A A A AA 


      (2.15) 

Other examples are the Schatten p -norms, 
1

1

, 1 ,

p
n

p
j

j

A p


 
    
 
         (2.16) 

and Ky Fan k -norms, 

1

, 1, , .
k

j
j

A k n


               (2.17) 

The trace norm, 

tr
1

n

j
j

A 


                 (2.18) 

is obtained for k n  and 1p  , while the spectral 
norm (the 2-norm) 

12
max j

j
A                 (2.19) 

corresponds to 1k   and p   . 
Finally, let m  and n  be a pair of positive integers 

such that 

1 and 1 .m m n n      

Then 

  T
1 2, , , and ,

m

m m
m m m m mX X X X I



  



     x x x


(2.20) 

and 

  T
1 2, , , and ,

n

n n
n n n n nY Y Y Y I



  




    y y y


     (2.21) 

denote the corresponding Stiefel manifolds. That is, m  
denotes the set of all real m m   matrices with or-
thonormal columns, while n  is the set of all real n n   
matrices with orthonormal columns. 

3. Rectangular Quotients 

Let A  be a real m n  matrix with m n , and let  

 T

1, , m
mu u u    and  T

1, , n
nv v v    be a  

pair of nonzero vectors. To simplify the coming discus-
sion we make the assumptions that T 0A u v , and that 
u  and v  are unit vectors. That is, 

 

 

1 2
1 2T 2

2
1

1 2
1 2T 2

2
1

1

and 1.

m

i
i

n

j
j

u

v





    
 

 
   

 





u u u

v v v

 

With these assumptions at hand the Rectangular Quotient 
(1.6) is reduced to the bilinear form 

  T, , .A A  u v u v            (3.1) 

In this section we briefly derive the basic minimum norm 
properties that characterize this kind of bilinear forms. 
We shall start by noting that   solves the one parame-
ter minimization problem 

 
2Tminimize .
F

A    uv      (3.2) 

This observation is a direct consequence of the equali-
ties 

  22 2 2T

2 2
1 1

1,
m n

i j F
i j

u v
 

   uv u v  

T

1 1

,
m n

ij i j
i j

A a u v
 

 u v  

and 

 2 2T

1 1

2 T 22 .

m n

ij i jF
i j

F

A a u v

A A

 

 

 

  

  

uv

u v

      (3.3) 

Similar arguments show that T A  u v  solves the least 
squares problems 
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  2

2
minimize ,A   v u         (3.4) 

and 

 
2T

2
minimize .A   u v        (3.5) 

Furthermore, substituting the optimal value of   into 
(3.3) yields the Rectangular Quotient Equality 

   2 22T T T ,
FF

A A A A  u v uv u v     (3.6) 

which means that solving the rank-one approximation 
problem 

 
2Tminimize ,
F

f A x y xy          (3.7) 

is equivalent to solving the maximization problem 

  T

2 2

maximize ,

subject to 1 and 1.

g A

 

u v u v

u v
        (3.8) 

Using the SVD of A  the unit vectors in the last pro- 
blem can be expressed in the form 

2 2

1 1 1 1

and , where 1.
m n m n

i i j j i j
i j i j

   
   

      u u v v  

Therefore, since 
T 0 for ,i jA i j u v            (3.9) 

the objective function of (3.8) satisfies 

T
1 1

1 1

,
n n

j j j j j
j j

A       
 

   u v  

where the last inequality comes from the Cauchy- 
Schwarz inequality. Moreover, since T

1 1 1A u v , this 
pair of vectors solves (3.8), while 1  satisfies 

 
1

T

2 2
max , 1, , 1 .m nA

 

   u v u u v v    (3.10) 

The last result is analogous to (1.4). Yet, in contrast to 
(1.5), here the orthogonality relations (3.9) imply that 

 T

2 2
0 min , 1, , 1 .m nA    u v u u v v   (3.11) 

Further min-max properties of scalar rectangular quo-
tients are obtained from the Courant-Fischer theorem, see 
the next section. 

Another justification behind the proposed definition of 
the Rectangular Quotient comes from the observation 
that the Rayleigh quotient corresponding to the matrix  

T

O A
G

A O

 
  
 

 and the vector 
 

  
 

u
x

v
 is T A  u v . 

Hence in this case the bound (1.2) implies the existence 
of a singular value of A , ̂ , that satisfies 

 
T

T T

2 2

ˆ

2 .T

A

A A A A

 

   

u v

v u v u u u v v
  (3.12) 

The last bound can be refined by applying the follow-
ing retrieval rules, derived in [3]. Let nv   be a given 
unit vector that satisfies A v 0 , and let 

2
A Au v v  

and 
T

2
A A  v u v  

provide the corresponding estimates of a left singular 
vector, and a singular value, respectively. Then 

 2 2
A A A A A   v u v v v v 0  

and (3.12) is reduced to 

 T T T

2
ˆ 2 .A A A   u v u u v v     (3.13) 

Similarly let mu   be a given unit vector that 
satisfies TA u 0 , and let 

T T

2
A Av u u  

and 
T T

2
A A  u u v  

denote the corresponding estimates of a singular vector, 
and a singular value, respectively. Then here  

 T TA A u u v v 0  

and (3.12) is reduced to 

 T T

2
ˆ 2 .A A A   u v v u v u    (3.14) 

We shall finish this section by noting the difference 
between the Rectangular Quotient (1.6) and the General-
ized Rayleigh Quotient (GRQ) proposed by Ostrowski 
[26]. Let W  be a general (nonnormal) square matrix of 
order n and let x  and y  be two n -vectors that sat-
isfy * 0x y  where *x  denotes the conjugate trans-
pose of x . Then the GRQ, 

   * *, , ,W W  x y x y x y        (3.15) 

is aimed to approximate an eigenvalue of W  that is 
“common” to x  and y . For detailed discussions of the 
GRQ and its properties see [25-27,29,40]. 

4. From Eigenvalues to Singular Values 

The connection between the singular values of A  and  

the eigenvalues of the matrices ATA, AAT, and T

0

0

A

A

 
 
 

,  

is quite straightforward. Indeed, many properties of 
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singular values are inherited from this connection. Yet, 
as our review shows, the depth of the relations is far be-
yond this basic connection. The Courant-Fischer mini-
max theorem and Weyl’s theorem provide highly useful 
results on eigenvalues of symmetric matrices. See [1,30] 
for detailed discussions of these theorems and their con-
sequences. Below we consider the adaption of these re-
sults when moving from eigenvalues to singular values. 
The adapted theorems are used to provide a “traditional” 
proof of the Eckart-Young theorem. 

As before A  denotes a real m n  matrix whose 
SVD is given by (2.1)-(2.7). The first pair of theorems 
provides useful “minimax” characterizations of singular 
values. In these theorems k  denotes an arbitrary sub-
space of n  that has dimension k . Similarly,   de- 
notes an arbitrary subspace of m  that has dimension 
 . 

Theorem 1 (Right Courant-Fischer Minimax Theo-
rem) The jth singular value of A  satisfies 

 2 2
max min , 1

j
j jA   v v v


       (4.1) 

and 

 *
*

2 2
min max , 1

j

j j
A   v v v


       (4.2) 

where the integer *j  is defined by the equality 
* 1.j j n                   (4.3) 

(The maximum in (4.1) is over all j  dimensional 
subspaces j  of n . The minimum in (4.2) is over all 

*j  dimensional subspaces *j
  of n .) Moreover, the 

maximum in (4.1) is attained for  1span , ,j j v v , 
while the minimum in (4.2) is attained for  

 * 1span , , ,j j nj  v v v . 

Yet the solutions of both problems are not necessarily 
unique.                                       

Theorem 2 (Left Courant-Fischer Minimax Theo- 
rem) The ith singular value of A  satisfies 

 T

22
max min , 1

i
i iA   u u u


      (4.4) 

and 

 *
*

T

22
min max , 1 ,

i

i i
A   u u u


     (4.5) 

where the integer *i  is defined by the equality 
* 1.i i m                    (4.6) 

Moreover, the maximum in (4.4) is attained for  

 1span , ,i i u u , 

while the minimum in (4.5) is attained for 

 * 1span , , ,i i mi  u u u .          

Note that Theorem 2 is essentially Theorem 1 for TA . 
The proof of Theorem 1 is based on the following idea. 
The condition (4.3) ensures the existence of a unit vector, 
x , that belongs both to j  and *j

 . Thus 

 
 *

2 2 2

2 2

min , 1

max , 1 ,

j

j

A A

A

  

  

v v v x

v v v




 

and 

 

 *
*

2 2

2 2

sup min , 1

inf max , 1 ,

j

j

j

j

A

A

 

  

v v v

v v v








 

So the proof is concluded by verifying that equality holds 
when using the specified subspaces. 

Let B  denote another m n  real matrix and let 

C A B                 (4.7) 

denote the corresponding difference matrix. The singular 
values of B  and C  are denoted as 

1 2 1 20 and 0,n n               (4.8) 

respectively. The coming corollaries of Theorem 1 an-
swer the question of how the rank of B  affects the 
singular values of C . 

Lemma 3 Assume that  rank B k . In this case 

1 1.k                    (4.9) 

Proof. Take  * Null
j

B . Then *j n k   and 
1j k  . Consequently 

  
    

  

1 22

22

12 2

max , 1

max Null , 1

max Null , 1 ,

n

j k

A B

A B B

A B



  

   

   

    

v v v

v v v

v v v



 

where the last inequality follows from (4.2).          
Theorem 4 (Weyl) Let B  and C  be as in (4.7) - 

(4.8). Then 

1,i j i j                    (4.10) 

under the convention that 0   when n . 
Proof. Let 1iB   be a rank 1i   Truncated SVD of 

B , and let 1jC   to be a rank 1j   Truncated SVD of 
C . Then the largest singular value of 1iB B   is i , 
while the largest singular value of 1jC C   is j . That 
is, 

  1 22
max , 1n

i iB B    v v v    (4.11) 

and 

  1 22
max , 1n

j jC C    v v v    (4.12) 
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Let the m n  matrix F  be defined by the equality 

1 1.i jF B C    

Then  rank 2F i j   , and 

   1 1 .i jA F B B C C       

Hence from (4.11) and (4.12) we see that 

   122
max , 1 ,n

i j i jA F         v v v  

where the last inequality follows from Lemma 3.      
Corollary 5 (Majorization) Assume further that 

 rank B k , which means 0i   for 1, ,i k n   . 
Then substituting 1i k   in (4.10) gives 

for 1, , .j j k j n k              (4.13) 

In other words, if  rank B k  then the singular values 
of C  majorize the singular values of kA T .        

Recall that kT  denotes a rank- k  Truncated SVD of 
A , as defined in (2.8). Roughly speaking the last corol-

lary says that a rank- k  perturbation of A  may cause 
the singular values to “fall” not more than k  “levels”. 
The next corollary shows that they are unable to “rise” 
more than k  levels. 

Corollary 6 Observe that (4.7) can be rewritten as 
 A C B    while B  has the same singular values 

as B . Hence a further consequence of Theorem 4 is 

1.i j i j                    (4.14) 

Moreover, if  rank B k  then 

for 1, , .j j k j n k              (4.15) 

  
The next results provide useful bounds on the per- 

turbed singular values. 
Corollary 7 (Bounding and Interlacing) Using (4.10) 

and (4.14) with 1i   gives 

1 1, 1, , ,j j j j n               (4.16) 

and 

1, 1, , .j j j n              (4.17) 

Furthermore, consider the special case when B  is a 
rank-one matrix. Then using (4.13) and (4.15) with 1k   
gives 

1 1, 1, , ,j j j j n              (4.18) 

where 0    and 1 0n   .                   
Theorem 8 (Eckart-Young) Let B  and C  be as in 

(4.7)-(4.8) and assume that  rank B k . Then 

2 2

1

.
n

iF
i k

A B 
 

               (4.19) 

Moreover, let kT  be a rank- k  Truncated SVD of A , 
as defined in (2.8). Then kT  solves the minimum norm 
problem 

 
 

2
minimize

subject to rank ,
F

F B A B

B k

 


       (4.20) 

giving the optimal value of 
2

2 T 2

1 1

.
n n

k j j j jF
j k j kF

A T  
   

   u v  

Proof. Using (4.13) we see that 

2 2 2 2 2 2

1 1 1 1

.
n n k n k n

j j j k iF F
j j j i k

A B C    
 


    

          

  
The last theorem says that kT  is a best rank- k  ap-

proximation of A , regarding the Frobenius norm. Ob-
serve that Lemma 3 proves a similar claim for the 2- 
norm. The next extension is due to Mirsky [23]. 

Theorem 9 (Mirsky) Let   denote a unitarily in- 
variant norm on m n . Then the inequality 

,kA B A T                (4.21) 

holds for any matrix m nB   such that  rank B k . 
In other words, kT  solves the minimum norm problem 

 
 

minimize

subject to rank .

B A B

B k

  


          (4.22) 

Proof. From Corollary 5 we see that the singular values 
of A B  majorize those of kA T . Hence (4.21) is a 
direct consequence of Ky Fan Dominance Theorem.   

Another related problem is 

 

2
minimize

subject to ,

F

m n
k

C

A C  
         (4.23) 

where m n
k
  denotes the set of all real m n  matrices 

of rank k . Below we will show that the residual matrix 

T

1

n

k k j j j
j k

R A T 
 

    u v             (4.24) 

solves this problem. In other words, kR  is the smallest 
perturbation that turns A  into a rank- k  matrix. 

Theorem 10 Let B  and C be as in (4.7) and assume 
that 

   rank rank .k B A r    

Then 
22 2

1

.
r

k jF F
j k

C R 
 

              (4.25) 

Proof. Using the Eckart-Young theorem we obtain 

2 22 2 2

1

.
r

k k jF F F F
j k

C A B A T R 
 

        

  
Observe that kR  remains the solution of (4.23) when 

this problem is defined by any other unitarily invariant 
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norm. Note also that Total Least Squares problems give 
rise to a special form of (4.23) in which 1k r  . In 
this case the solution matrix, kC , is reduced to the 
rank-one matrix T

r r r u v , e.g., [14,15]. Further conse- 
quences of the Eckart-Young theorem are presented in 
Section 6. 

5. Least Squares Properties of Orthogonal 
Quotients Matrices 

The optimality properties of symmetric Rayleigh Quo-
tient matrices form the basis of the celebrated Rayleigh- 
Ritz procedure, e.g., [30,34]. In this section we derive the 
corresponding properties of Orthogonal Quotients matri-
ces. As we shall see, Orthogonal Quotient matrices ex-
tend symmetric Rayleigh Quotient matrices in the same 
way that Rectangular Quotients extend Rayleigh Quo-
tients. 

Theorem 11 Let 

 1, ,m m mX  x x     and  1, ,n n nY  y y     

be a given pair of matrices with orthonormal columns, 
and let 

T
m nZ X AY                   (5.1) 

denote the corresponding orthogonal quotient matrix. 
Then Z  solves the following three problems. 

  Tminimize

subject to ,

m n F

m n

R A X RY

R




 



 

 
      (5.2) 

 minimize

subject to ,

n m F

m n

R AY X R

R




 



 

 
      (5.3) 

and 

  T Tminimize

subject to .

m n F

m n

R A X Y R

R




 



 

 
     (5.4) 

Proof. Completing the columns of mX   to be an or-
thonormal basis of m  gives an orthogonal m m  
matrix, mX , whose first m  columns are the columns 
of mX  . Similarly there exists an orthogonal n n  ma-
trix, nY , whose first n  columns are the columns of nY . 
Therefore, since the Frobenius norm is unitarily invari-
ant, 

   T T

T ,

m m n n
F

m n F

R X A X RY Y

X AY R

  

 

 
         (5.5) 

where 

T T 0
.

0 0m m n n

R
R X X RY Y

 
   

 
            (5.6) 

The validity of the last equality is easily verified by 

noting that the m m   matrix T
m mX X   is composed of 

the first m  columns of the m m  identity matrix, while 
the n n  matrix T

n nY Y  is composed of the first n  rows 
of the n n  identity matrix. Note also that the corre-
sponding principle submatrix of T

m nX AY  is T
m nX AY  . 

Hence the choice T
m nR X AY    minimizes  R . 

The other two problems are solved by similar argu-
ments, using the equalities 

   T T ,m n m m nF F
R X AY X R X AY R         (5.7) 

and 

   T T T T ,n m n m n FF
R Y A X Y R X AY R        (5.8) 

where 

 and ,0 .
0

m n m nR
R R R 

  
    
 

        (5.9) 

  
Remark A further inspection of relations (5.7)-(5.9) 

indicates that Z  solves problems (5.3) and (5.4) even if 
the Frobenius norm is replaced by any other unitarily 
invariant matrix norm. However the last claim is not 
valid for problem (5.2), since “punching” a matrix may 
increase its norm. To see this point consider the matrices  

1 1

1 1
A

 
  
 

 and 
0 1

1 1
B

 
  
 

, whose trace norms are 2  

and 5 , respectively. That is, punching A  increases 
its trace norm. Nevertheless, punching a matrix always 
reduces its Frobenius norm. Hence the proof of Theorem 
11 leads to the following powerful results. 

Corollary 12 Let m n   denote the set of all real 
m n   matrices that have a certain pattern of zeros. (For 
example, the set of all tridiagonal matrices.) Let the 
matrix m nZ      be obtained from T

m nX AY   by setting 
zeros in the corresponding places. Then Theorem 11 
remains valid when m n   and T

m nX AY   are replaced 
by m n   and Z , respectively.                    

Corollary 13 Assume that m n k    and let 

  1diag , ,k k kxk
kD D d d      

denote the set of all real diagonal k k  matrices. Let 
 1, ,k k kX  x x   and  1, ,k k kY  y y   be a 

given pair of matrices with orthonormal columns. Then 
the matrix 

 T T T
1 1 2 2diag , , ,k k kD A A A x y x y x y       (5.10) 

solves the following three problems. 

  Tminimize =

subject to ,

k k F

k k

D A X DY

D







       (5.11) 

 minimize

subject to ,

k k F

k k

D AY X D

D




 


       (5.12) 
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and 

  Tminimize

subject to .

k k F

k k

D A X Y D

D




 


       (5.13) 

  
As in the scalar case, the residual functions,  R  

and  R , enable us to bound the “distance” between 
the singular values of R  and A . Assume for a moment 
that m n k    and let 1, , k   denote the singular 
values of R . Then there exists a permutation   of 
 1, ,n  such that 

      
2

2 2

1

2,
j

k

j
j

R R   


       (5.14) 

see [2,21]. The relations (5.7)-(5.9) indicate that the 
minimal values of     and  R  equal the Froben-
ius norm of the corresponding off-diagonal blocks in the 
matrix T

m nX AY . The next observations regard the mini-
mal value of  R . 

6. The Orthogonal Quotients Equality and 
Eckart-Young Theorem 

In this section we derive the Orthogonal Quotients 
Equality and discuss its relation to the Eckart-Young 
theorem. 

Theorem 14 (The Orthogonal Quotients Equality) 
Let m mX    and n nY    be a given pair of matrices 
with orthonormal columns. Then 

  2 22T T T .m m n n m nF FF
A X X AY Y A X AY            (6.1) 

Proof. Following the proof of Theorem 11 we see that 

  2 2T T T ,m m n n m n FF
A X X AY Y X AY R     

       (6.2) 

where 

 T T T 0
.

0 0m m m n n n

Z
R X X X AY Y Y

 
   

 
   

  

Therefore, since T
m nZ X AY    is a principal submatrix 

of T
m nX AY , 

2 2 2T T

22 T .

m n m n FF F

m nF F

X AY R X AY Z

A X AY

  

   


 

Corollary 15 Let  ijT t  be any m n  matrix whose 
entries satisfy the following rule: Either T

ij i jt A x y  or  

0ijt  . In other words, T  is obtained from T
m nX AY   by  

setting some entries to zero. Then 
2 2 2T .m n F FF

A X TY A T             (6.3) 

Corollary 16 (The Orthogonal Quotients Equality 
in Diagonal Form) Let  1, ,k k kX  x x   and 

 1, ,k k kY  y y   be a given pair of matrices with 
orthonormal columns. Then the diagonal matrix (5.10) 
satisfies 

2 22T .k k k kF FF
A X D Y A D          (6.4) 

In vector notations the last equality takes the form 

   
2

22T T T

1 1

.
k k

j j j j j jF
j jF

A A A A
 

   x y x y x y   (6.5) 

  
Let us return now to consider the Eckart-Young 

problem (4.20). One way to express an m n  matrix, 
whose rank is at most k , is 

T
k kB X RY                 (6.6) 

where  1, ,k k kX  x x  ,  1, ,k k kY  y y   and 
k kR  . Alternatively we can write B  in the form 

T T

1

,
k

k k j j j
j

B X DY d


   x y          (6.7) 

where  1diag , , kD d d   is a real diagonal k k  
matrix. (The first form results from complete orthogonal 
decomposition of B , while the second form is obtained 
from the SVD.) Substituting (6.6) in the objective 
function of (4.20) results in the function  2 R . Hence, 
by Theorem 11, there is no loss of generality in replacing 
R  with T

k kX AY . Similarly D can be replaced with kD , 
the solution of (5.11). These observations lead to the 
following conclusions. 

Theorem 17 (Equivalent Formulations of the Eckart- 
Young Problem) There is no loss of generality in 
writing the Eckart-Young problem (4.20) in the forms 

    2
T Tminimize ,

subject to and ,

k k k k k k
F

k k k k

F X Y A X X AY Y

X Y

 

  
 (6.8) 

or 

  2Tminimize ,

subject to and .

k k k k k F

k k k k

F X Y A X D Y

X Y

 

  
 (6.9) 

Moreover, both problems are solved by the SVD ma- 
trices kU  and kV . (See (2.1)-(2.7) for the definition of 
these matrices.)                                

The objective functions of the last problems form the 
left sides of the Orthogonal Quotients Equalities 

  2 22T T T
k k k k k kF FF

A X X AY Y A X AY      (6.10) 

and 
2 22T .k k k kF FF

A X D Y A D         (6.11) 

These relations turn the minimum norm problems 
(6.8)-(6.9) into equivalent maximum norm problems. 
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Theorem 18 (Maximum Norm Formulations of the 
Eckart-Young Problem) The Eckart-Young problems 
(6.8) and (6.9) are equivalent to the problems 

2Tmaximize

subject to and ,

k k F

k k k k

X AY

X Y  
     (6.12) 

and 

 2T

1

maximize

subject to and ,

k

j j
j

k k k k

A

X Y



 

 x y

 
      (6.13) 

respectively. The SVD matrices kU  and kV  solve both 
problems.                                     

Let  T , 1, ,j j k kX AY j k     , denote the singular 
values of the orthogonal quotients matrix T

k kX AY . Then, 
clearly, 

2T 2 2
1 ,k k kF

X AY                 (6.14) 

and the Eckart-Young problem (6.12) can be rewritten as 

2 2
1maximize

subject to and .
k

k k k kX Y

  
 

 
 

     (6.15) 

In the next sections we consider extended problems of 
this type. The key for solving the extended problems lies 
in the properties of symmetric orthogonal quotients 
matrices. 

7. The Symmetric Quotients Equality and 
Ky Fan’s Extremum Principles 

Let  ijG g  be a real nn  symmetric matrix with 
spectral decomposition 

T ,G Q Q                 (7.1) 

where  1diag , , n     is a diagonal n n  matrix,  
and  1, , nQ  q q  is an orthogonal n n  matrix,  

T TQ Q QQ I  . It is assumed that the eigenvalues of 
G  are sorted to satisfy 

1 2 .n                  (7.2) 

Let  1, ,k k kY  y y   be a given n k  matrix 
with orthonormal columns and let 

 T T
1 1diag , ,k k kD G G y y y y  

denote the k k  diagonal matrix which forms the 
diagonal of T

k kY GY . Recall that 

 
1 1

trace ,
n n

jj j
j j

G g 
 

    

is invariant under (orthogonal) similarity transformations. 
Hence by following the proof of (6.1) we obtain the 
following results. 

Theorem 19 (The Symmetric Quotients Equality) 
Using the above notations, 

  
   

T T

T

trace

trace trace

k k k k

k k

G Y Y GY Y

G Y GY



 
           (7.3) 

and 

 
   

Ttrace

trace trace ,

k k k

k

G Y D Y

G D



 
              (7.4) 

where 

   T T

1

trace trace .
k

k k k j j
j

Y GY D G


  y y  

  
Note that Theorem 19 remains valid when G  is re- 
placed by any real n n  matrix. The role of symmetry 
becomes prominent in problems that attempt to maximize 
or minimize  Ttrace k kY GY , as considered by Ky Fan 
[10]. In our notations Ky Fan’s problems have the form 

 Tmaximize trace

subject to

k k

k k

Y GY

Y 
          (7.5) 

and 

 Tminimize trace

subject to .

k k

k k

Y GY

Y 
          (7.6) 

The solution of these problems lies in the following 
well-known properties of symmetric matrices, e.g., 
[16,30,40].  

Theorem 20 (Cauchy Interlace Theorem) Let the 
k k  matrix G  be obtained from G  by deleting 

n k   rows and the corresponding   columns. Let 

1 2 k        

denote the eigenvalues of G . Then 

1 1

1, , ,

1, , .

j j

k i n i

for j k

and for i k

 

    

 

 

 
 

        (7.7) 

In particular, when 1k n  , 

1 1 2 2 3 1 1 .n n n                      (7.8) 

  
Corollary 21 (Poincaré Separation Theorem) Let 

k kY   be a given n k  matrix with orthonormal co- 
lumns, and let n nY   be an orthogonal n n  matrix, 
whose first k  columns are the columns of kY . Then 

T
k kG Y GY  is obtained from T

n nY GY  by deleting the 
last n k   rows and the last   columns. Therefore, 
since T

n nY GY  has the same eigenvalues as G , the 
eigenvalues of G  satisfy (7.7) and (7.8). 

Corollary 22 (Ky Fan’s Extremum Principles) Con- 
sider the spectral decomposition (7.1)-(7.2) and let the 
matrix  1, ,k k kQ  q q   be constructed from the 
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first k columns of Q . Then kQ  solves (7.5), giving the  

optimal value of 
1

k

j
j



 . That is, 

  T

1

max trace .
k

j k k k k
j

Y GY Y


         (7.9) 

The minimum trace problem (7.6) is solved by the 
matrix 

 1
ˆ , , ,k n k n kQ   q q   

which is composed of the last k  columns of Q . The  

optimal value of (7.6) is, therefore, 1
1

k

n i
i

  

 . That is, 

  T
1

=1

min trace .
k

n i k k k k
i

Y GY Y          (7.10) 

  
The symmetric quotients equality (7.3) means that Ky 

Fan’s problems, (7.5) and (7.6), are equivalent to the 
problems 

  T Tminimize trace

subject to ,

k k k k

k k

G Y Y GY Y

Y




    (7.11) 

and 

  T Tmaximize trace

subject to ,

k k k k

k k

G Y Y GY Y

Y




    (7.12) 

respectively. Note the remarkable similarity between 
Eckart-Young problems (6.8) and (6.12), and Ky Fan 
problems (7.11) and (7.5), respectively. 

A further insight is gained by considering the case 
when G is positive semidefinite. In this case the spectral 
decomposition (7.1)-(7.2) coincides with the SVD of G  
and the k k  matrix T

k kY GY  is also positive semide- 
finite. Let 

1 2 0,k                    (7.13) 

denote the eigenvalues (the singular values) of this ma- 
trix. Then here the interlacing relations (7.7) imply 
majorization relations between the singular values of 

T
k kY GY  and the singular values of the matrices T

k kQ GQ   

and Tˆ ˆ
k kQ GQ . Consequently, for any unitarily invariant  

norm on k k , the matrix kQ  solves the problem 

Tmaximize

subject to ,

k k

k k

Y GY

Y 
             (7.14) 

while ˆ
kQ  solves the problem 

Tminimize

subject to .

k k

k k

Y GY

Y 
             (7.15) 

In the next section we move from symmetric or- 
thogonal quotients matrices to rectangular ones. In this 
case singular values take the role of eigenvalues. Yet, as 
we shall see, the analogy between the two cases is not 
always straightforward. 

8. Maximizing (Minimizing) Norms of 
Orthogonal Quotients Matrices 

Let us return to consider orthogonal quotient matrices of 
the form (5.1). Define 

 min , ,k m n    

and let 

1 2 0k         

denote the singular values of the orthogonal quotients 
matrix T

m nX AY  . We shall start by investigating the 
problems 

 
1

maximize ,

subject to and

k
p

p m n j
j

m m n n

F X Y

X Y






 

 

   



 
     (8.1) 

and 

 
1

minimize ,

subject to and

k
p

p m n j
j

m m n n

F X Y

X Y






 

 

   



 
     (8.2) 

where p  is a given positive real number, 0 p   . 
Yet the coming results enable us to handle a larger family 
of objective functions. Perhaps the more interesting pro- 
blems of this type occur when 1p   and 2p  . In 
these cases the objective function is reduced to 

 1
1

, ,
k

m n j
j

F X Y 


                 (8.3) 

and 

 
22 T

2
1

, ,
k

m n j m n F
j

F X Y X AY


             (8.4) 

respectively. In particular, when 2p   and m n k    
problem (8.1) coincides with the Eckart-Young problem 
(6.12). The solution of (8.1) and (8.2) is based on 
“rectangular” extensions of Theorems 20 and 21. The 
first theorem is due to Thompson [37]. We outline its 
proof to clarify its close relation to Cauchy Interlace 
Theorem. 

Theorem 23 (A Rectangular Cauchy Interlace 
Theorem) Let the m n   matrix A  be obtained from 
A  by deleting m  rows and n  columns of A . That 

is, m m m   and n n n  . Define 

 min ,k m n    

and let 
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1 2 0k         

denote the singular values of A . Then 

for 1, , .j j j k             (8.5) 

Furthermore, the number of positive singular values of 
A  is bounded from below by 

  ,r m n     

where  rankr A . Consequently k , and if 1  
the first   singular values of A  satisfy the lower 
bounds 

1 1 for 1, , .i r i i                 (8.6) 

Proof. The proof is by induction on  , where 
m n     is the overall number of deleted rows and 

columns. For 1   there are two cases to consider. 
Assume first that A  is obtained by deleting one row of 
A . Then using Theorem 20 with TG AA  and 

TG AA    gives the desired results. The second possi- 
bility is that A  is obtained by deleting one column of 
A . In this case Theorem 20 is used with TG A A  and 

TG A A   . Similar arguments enable us to complete the 
induction step.                                 

Observe that the bounds (8.5) and (8.6) are “strict” in 
the sense that these bounds can be satisfied as equalities. 
Take, for example, a diagonal matrix. 

Corollary 24 (A Rectangular Poincaré Separation 
Theorem) Consider the m n   matrix T

m nA X AY  
 , 

where m mX    and n nY   . Let 

1 2 0k         

denote the singular values of A , where  min ,k m n   . 
Then 

for 1, , .j j j k            (8.7) 

Furthermore, define  r m n     where r = rank 
(A), m m m    , and n n n    . Then k  and if 

1  the first   singular values of A  satisfy the lower 
bounds 

1 1 for 1, , .i r i i                (8.8) 

Proof. Let the matrix m mX   be obtained by com- 
pleting the columns of mX   to be an orthonormal basis 
of m . Let the matrix n nY   be obtained by com- 
pleting the columns of nY  to be an orthonormal basis of 

n . Then the m n  matrix T
m nX AY  has the same sin- 

gular values as A , and A  is obtained from T
m nX AY  

be deleting the last m  rows and the last n  columns. 
Corollary 25 Using the former notations,          

for 1, , ,p p
j j j k               (8.9) 

and 

1 1

.
k k

p p
j j

j j

 
 

                  (8.10) 

Furthermore, if 1  then 

1 1 1, , ,p p
i r i for i               (8.11) 

and 

1
1 1

.p p
j r i

j i

   
 

 
 
             (8.12) 

Similar inequalities hold when the power function 
  pf    is replaced by any other real valued function 

which is increasing in the interval  0, . 
Theorem 26 (A Rectangular Maximum Principle) 

Let the m m   matrix  1, ,m mU  u u   be constructed 
from the first m  columns of U , and let the n n   
matrix  1, ,n nV  v v   be constructed from the first n  
columns of V . (Recall that U  and V  form the SVD 
of A , see (2.1)-(2.8).) Then this pair of matrices solves 
the maximum problem (8.1), giving the optimal value of  

1

k
p
j

j



 . That is, 

1 1

max , .
k k

p p
j j m m n n

j j

X Y 
 

     
  

           (8.13) 

However, the solution matrices are not necessarily 
unique. 

Proof. The proof is a direct consequence of (8.10) and 
the fact that T

m nU AV   is a diagonal m n   matrix whose 
diagonal entries are , 1, ,j j k   .                

Corollary 27 (A rectangular Ky Fan Maximum 
Principle) Consider the special case when 1p  . In this 
case 

1 1

max , ,
k k

j j m m n n
j j

X Y 
 

     
  

           (8.14) 

and the optimal value is attained for the matrices mU   
and nV . 

Corollary 28 Consider the special case when 2p  . 
In this case 

 22 T

1

max , ,
k

j m n m m n nF
j

X AY X Y


            (8.15) 

and the optimal value is attained for the matrices mU   
and nV . Furthermore, if m n k    then (8.15) is 
reduced to (6.12). This gives an alternative way to prove 
the Eckart-Young theorem. 

Theorem 29 (A Rectangular Minimum Principle) 
Let the m m   matrix  1

ˆ , ,m m mU  u u   be obtained 
from U  by deleting the first m  columns of U . Let  

the n n   matrix n̂V  be obtained from V  by deleting  

n  columns in the following way: If m n    then n̂V  is 
composed from the first n  columns of V . Otherwise, 
when m n   , the first m  columns of n̂V  are the first 
m  columns of V , and the rest columns of n̂V  are the 
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last n m  columns of V . Then the matrices ˆ
mU   and 

n̂V  solve the minimum problem (8.2). The optimal value 
of (8.2) depends on the integer  r m n    . If 

0  the optimal value equals zero. Otherwise, when  

1 , the optimal value equals 1
1

p
r i

i

  




. 

Proof. Let the m m   matrix M  be obtained from 
the m m  identity matrix, I , by deleting the first m  
columns of I . Then, clearly, ˆ

mU UM . Similarly, 
define N  to be an n n   matrix such that n̂V VN . 
That is, N  is obtained from the n n  identity matrix 
by deleting the corresponding columns. With these 
notations at hand (2.1) implies the equalities 

T T T T .m nU AV M U AVN M SN    

So the matrix T
m nU AV   is obtained from S  by deleting 

the corresponding m  rows and n  columns. 
Observe that the remaining nonzero entries of TM SN  

are the singular values of this matrix. Note also that the 
rule for deleting rows and columns from S  is aimed to 
make the size of the remaining nonzero entries as small 
as possible: The product TM S  deletes the first m  
rows of S , which contain the largest m  singular 
values. Then the product  TM S N  annihilates the next 
n  largest singular values. The remaining nonzero 
entries of S  are, therefore, the smallest that we can get. 
The number of positive singular values in T

m nU AV   is, 
clearly,  max 0, . The optimality of our solution stems 
from (8.8) and (8.12).                            

Another pair of matrices that solve (8.2) is gained by 
reversing the order in which we delete rows and columns 
from S : Start by deleting the first n  columns of S , 
which contain the n  largest singular values. Then dele- 
te the m  rows of S  that contain the next m  largest 
singular values. 

Corollary 30 (A rectangular Ky Fan Minimum Prin- 
ciple) Consider the special case when 1p   and 1 . 
In this case 

1
1 1

min , ,
k

r i j m m n n
i j

X Y  
 

     
  

 


          (8.16) 

and the optimal value is attained for the matrices ˆ
mU   

and n̂V . 
Corollary 31 Consider the special case when 2p   

and 1 . In this case 

 22 T
1

1

min , ,r i m n m m n nF
i

X AY X Y  


  


         (8.17) 

and the optimal value is attained for the matrices ˆ
mU   

and n̂V . 
The next theorem extends our results to arbitrary uni- 

tarily invariant norms. 
Theorem 32 Let   be a unitarily invariant norm on 

m n  . Then the matrices mU   and nV , which solve (8.1), 
also solve the problem 

  Tmaximize ,

subject to and .

m n m n

m m n n

F X Y X AY

X Y



 
   

    
      (8.18) 

Similarly the matrices ˆ
mU   and n̂V , which solve (8.2), 

also solve the problem 

  Tminimize ,

subject to and .

m n m n

m m n n

F X Y X AY

X Y



 
   

    
      (8.19) 

Proof. From (8.7) we see that the singular values of 
T
m nX AY   are majorized by those of T

m nU AY  . This shows 
that 

T T ,m n m nU AV X AY               (8.20) 

which proves the first claim. Similarly, (8.8) means that 
the singular values of Tˆ ˆ

m nU AV   are majorized by those of 
T
m nX AY  . This shows that 

T Tˆ ˆ ,m n m nX AY U AV              (8.21) 

which proves the second claim.                    

9. A Minimum-Maximum Equality 

The Orthogonal Quotients Equality (6.1) connects the 
Eckart-Young minimum problem with an equivalent 
maximum problem. The validity of this equality depends 
on specific properties of the Frobenius matrix norm. The 
question raised in this section is whether it is possible to 
extend this equality to other unitarily invariant matrix 
norms. In other words, Mirsky’s minimum norm problem 
(4.22) is related to the maximum norm problem (8.18) 
The next theorems answer this question when using the 
Shatten p -norm (2.16) in its power form, 

1

, 1 .
n

p p
j

j

A p


              (9.1) 

Theorem 33 (A Minimum-Maximum Equality) As- 
sume that m n k   . In this case the power function 
(9.1) satisfies the equality 

 

 
T T

T

ˆ ˆ ˆ ˆ ˆ ˆmin ,

max , .

p

k k k k k k k k

p p

k k k k k k

A X X AY Y X Y

X AY X Y A

    
 

      

 

 
 (9.2) 

Proof. The optimal value of the minimized term is 
given by Theorem 9 (Mirsky’s theorem), and this value 

equals 
1

n
p
j

j k


 
 . The optimal value of the other problem  

is determined by the maximum principle (8.13), and this  

value equals 
1

k
p
j

j



 .                             
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If 1p   the power function (9.1) coincides with the 
trace norm (2.18). In this case (9.2) yields the following 
elegant result. 

  
 

T T

T

ˆ ˆ ˆ ˆ ˆ ˆmin ,

max , .

k k k k k k k k
tr

k k k k k k trtr

A X X AY Y X Y

X AY X Y A

  

      

 

 
  (9.3) 

We have seen that Mirsky’s minimization problem 
(4.22) and the maximum problem (8.18) share a common 
feature: The optimal values of both problems are ob-
tained for the SVD matrices, kU  and kV . This observa-
tion enables us to extend the minimum-maximum equal-
ity to other unitarily invariant norms. Consider, for ex-
ample, the spectral norm (2.19). In this case (9.3) is re-
placed with 

  
 

T T

2

T
1 12

ˆ ˆ ˆ ˆ ˆ ˆmin ,

max , .

k k k k k k k k

k k k k k k k

A X X AY Y X Y

X AY X Y   

  

       

 

 
  (9.4) 

Recall further that the jth columns of the SVD matri-
ces form a pair of singular vectors that correspond to j . 
Indeed, it is this property that ensures the equality in 
(9.2). This paves the way for another variant of the Or-
thogonal Quotients Equality. 

Theorem 34 Let the matrices  1, ,k k kX  x x   
and  1, ,k k kY  y y   be composed from pairs of 
singular vectors of A . That is, T T

k k k kX X Y Y I  , and 
for 1, ,j k  , the jth columns of these matrices satisfy:  

   T T T,j j j j j j j jA A A A y x y x x x y y , and the rectan-  

gular quotient T
j jAx y  is a singular value of A . In this 

case the power function (9.1) satisfies the equality 

 T T T .
p p p

k k k k k kA X X AY Y X AY A       (9.5) 

Proof. The term 
p

k kX AY  consists of k  powers of 
singular values, while the other term consists of the rest 
n k  powers.                                 

10. Traces of Rectangular Matrices 

We have seen that Ky Fan’s extremum principles maxi-
mize and minimize traces of symmetric Rayleigh Quo-
tient matrices. In this section we bring analog results in 
terms of rectangular matrices. For this purpose we define 
the trace of a rectangular m n  matrix as 

 
1

trace
q

ii
i

A a


                 (10.1) 

where  min ,q m n . With this definition at hand the 
new problems to solve are 

 Tmaximize trace

subject to and

m n

m m n n

X AY

X Y 
 

    
      (10.2) 

and 

 Tminimize trace

subject to and

m n

m m n n

X AY

X Y 
 

    
     (10.3) 

Using (2.10) we see that 

 
1 1

trace
n n

j j
j j

A 
 

     

and 

 T

1 1 1 1

trace .
k k k k

j j m n j j
j j j j

X AY   
   

            (10.4) 

On the other hand, the matrices mU   and nV  that 
solve (8.1) satisfy 

 
1

trace
k

m n j
j

U AV 


             (10.5) 

and 

 
1

trace ,
k

m n j
j

U AV 


            (10.6) 

which leads to the following conclusions. 
Corollary 35 The matrices mU   and nV  solve (10.2)  

giving the optimal value of 
1

k

j
j



 . That is, 

  T

1

max trace , .
k

j m n m m n n
j

X AY X Y


           (10.7) 

Corollary 36 The matrices mU   and nV  (or mU   and  

nV  ) solve (10.3) giving the optimal value of 
1

k

j
j




 .  

That is 

  T

1

min trace , .
k

j m n m m n n
j

X AY X Y


            (10.8) 

Finally we note that when m n k    the matrix 
T
m nX AY   turns to be a square matrix and Corollary 35 is 

reduced to the following known result. 

  T

1

max trace , ,
k

j k k k k k k
j

X AY X Y


       (10.9) 

e.g., [17, p.~195], [22, p.~515], [24]. 

11. Products of Eigenvalues versus Products 
of Singular Values 

Ky Fan has used his extremum principles (Corollary 22) 
to derive analog results on determinants of positive 
semidefinite Rayleigh Quotient matrices (see below). In 
this section the new principle (Theorem 32) is used to 
extend these results to Orthogonal Quotient matrices. 
The interest in these problems stems from the following 
properties of symmetric matrices. Let G be a real sym-
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metric positive semidefinite n n  matrix with eigen-
values 

1 2 0.n       

Let k kY   be an arbitrary n k  matrix with ortho- 
normal columns, and let 

1 2 0k         

denote the eigenvalues of the k k  matrix k
T

k GYY . 
Then, clearly, 

 T

1

det ,
k

k k j
j

Y GY 


            (11.1) 

while Corollary 21 implies the inequalities 

1
1 1 1

.
k k k

n i j j
i j j

   
  

             (11.2) 

Let the matrices kQ  and ˆ
kQ  be defined as in Corol-

lary 22. Then the eigenvalues of the matrices T
k kQ GQ  

and Tˆ ˆ
k kQ GQ  are 

1 1, and ,k n k n          

respectively. Hence from (11.2) we see that 

 T

1 1

max det
k k

j k k j k k
j j

Y GY Y 
 

     
  

       (11.3) 

and 

 T
1

1 1

min det ,
k k

n i k k j k k
i j

Y GY Y  
 

     
  

     (11.4) 

where optimal values are attained for the matrices kQ  
and ˆ

kQ , respectively. A further strengthening of (11.4) 
is gained by applying Hadamard determinant theorem, 
which says that the determinant of a symmetric positive 
semidefinite matrix, T

k kY GY , is smaller than the product 
of its diagonal entries. That is, 

 T T

1

det ,
k

k k j j
j

Y GY G


 y y            (11.5) 

where jy  denotes the jth column of kY . Combining 
(11.5) with (11.1) and (11.2) gives the inequality 

T
1

1 1

,
k k

n i j j
i j

G  
 

  y y               (11.6) 

for any matrix  1, ,k k kY  y y  . Also, as we have 
seen, equality holds in (11.6) when ˆ

k kY Q . This brings 
us to the following observation of Ky Fan [12]. 

Theorem 37 (Ky Fan) 

T
1

1 1

min ,
k k

n i j j k k
i j

G Y  
 

    
  

 y y        (11.7) 

and the optimal value is attained for ˆ
kQ .            

Let us return now to consider rectangular orthogonal 

quotients matrices. Using the notations of Section 8, the 
problems that we want to solve are 

 
1

maximize ,

subject to and ,

k

m n j
j

m m n n

P X Y

X Y






 

 

   



 
     (11.8) 

and 

 
1

minimize ,

subject to and ,

k

m n j
j

m m n n

P X Y

X Y






 

 

   



 
     (11.9) 

(Compare with (8.1) and (8.2), respectively.) Let the 
matrices mU   and nV  be defined as in Theorem 26. 

Using (2.1) one can verify that  
1

,
k

m n j
j

P U V 


  , 

which is the maximal possible value, see (8.7). This 
brings us to the following conclusions. 

Theorem 38 

1 1

max , ,
k k

j j m m n n
j j

X Y 
 

     
  

            (11.10) 

and the optimal value is attained for mU   and nV .    
Corollary 39 If m n k    then 

 

  

T

1

T

det

max det , ,

k

j k k
j

k k k k k k

U AV

X AY X Y






  



 
   (11.11) 

where kU  and kV  are defined in (2.7).            
The solution of (11.9) is found by following the 

notations and the proof of Theorem 29. 
Theorem 40 The matrices ˆ

mU   and n̂V  solve (11.9). 
The number of positive singular values of the matrix 

Tˆ ˆ
m nU AV   is r m n    . If k  then 

1

0 min , .
k

j m m n n
j

X Y


     
  
              (11.12) 

Otherwise, when k , 

1
1 1

min , .
k

r i j m m n n
i j

X Y  
 

     
  

 


        (11.13) 

  
Recall that m n . Hence the equality k  is pos-

sible only when r = n. If m n  then the equalities k  
and r = n imply 0m   and m m . Otherwise, when 
m n r  , the equality k  implies that either 

0m   or 0n  . 
Corollary 41 If m n   then 

 
  T

ˆ ˆdet

min det , .

m n

m n m m n n

U AV

X AY X Y  

 

      
   (11.14) 
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12. Concluding Remarks 

According to an old adage, the whole can sometimes be 
much more than the sum of its parts. The Rayleigh-Ritz 
procedure, the Eckart-Young theorem, and Ky Fan 
maximum principle are fundamental results that have 
several applications. The observation that these topics are 
closely related is new and surprising. It illuminates these 
issues in a new light. 

The extended maximum principle is a powerful tool 
that has important consequences. In particular we see that 
both Eckart-Young’s maximum problem and Ky Fan’s 
maximum problem are special cases of this observation. 
The minimum-maximum theorem connects the extended 
maximum problem with Mirsky’s minimum norm prob-
lem. 

The review provides a second look at results of Ky 
Fan that consider eigenvalues of symmetric Rayleigh 
Quotient matrices. It extends these results to “rectangu-
lar” versions that consider singular values of Orthogonal 
Quotients matrices. The proofs illustrate the usefulness 
of Ky Fan’s dominance theorem. With this theorem at 
hand Mirsky’s theorem is easily derived from Weyl 
theorem. Similarly, it helps to establish the extended ex-
tremum principle. 
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