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ABSTRACT

In this paper, we are concerned with the Riesz means of Dirichlet eigenvalues for the sub-Laplace operator on the Engel
group and deriver different inequalities for Riesz means. The Weyl-type estimates for means of eigenvalues are given.
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1. Introduction

The Engel group G is a Carnot group of step r=3
(see [1]), its Lie algebra is generated by the left-invariant
vector fields
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where P =(X,X,,X,W) is a point of G. It is easy to
see that

[X],Xz]:X3,[X],X3]=X4,[X2,X3]=0,

[X.. X,]=[X,,X,]=0,
and [X;,X,]=0. So the Lie algebra of G is

g=V @V, ®V,,

where V, =span{X,,X,}, V,=span{X;} and
V, =span{X,}. The sub-Laplace operator on G is of
the form Ag = X7+ X, .

In the paper, we investigate the Riesz means of the
Dirichlet problem
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—Au=A4u, inQ,
(1.1)

u=0, on 0Q.

in the Engel group G. Here Q is a bounded and
noncharacteristics domain in G, with smooth boundary
0Q). The existence of eigenvalues for (1.1) is from [2].
Let us by R (z) denote the Riesz means of order o
of the sequence {4} of eigenvalues of (1.1).

The Riesz means of Dirichlet eigenvalues for the
Laplace operator in the Euclidean space have been
extensively studied(see [3-5]). In recent years, E. M.
Harrell II and L. Hermi in [6] treated the Riesz means
R,(z) of order o of {4} on the bounded domain

QcR’ and pointed out that: for 0<o<2 and
>4,
dy1
R,5(z)z|1+—|=-R_ (2
0—1( ) ( 4)2 0( )

(1.2)

d)o
dR’ >1+—|—R R
and R’ (2) (+4jz ,(2)

and is a nondecreasing function of z; for

2<o<+40 and 7224,

Rm4@)2(1+£L)%RG@)

20
(1.3)

zde;&)2(0+%JlRU@)

z
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R, (2)

d
o+
2

and is a nondecreasing function of z, and then

z
the Weyl-type estimates of means of eigenvalues is
derived.

Jia et al. in [7] extended (1.2), (1.3) to the Heisenberg
group.

The main results of this paper are the following.

Theorem 1.1 For 0<o<2 and z2> 4, we have

3
R >2—R , 1.4
()2 2R, (2 (14
3o
R’ >=—R 1.5
J(Z) 2 7 o’(z)’ ( )
R.(2) . . .
and 3 is a nondecreasing function of z; for
27

2<o<+o and z2 4 ,wehave

1)1
R _(z)2]1+— |—R_(2z), 1.6
O e
R (2)2 (o +1)2R, (2). (17)
z
R.(2) . . .
and ——=* is a nondecreasing function of z.
z
Theorem 1.2 Suppose that z >34, , then
4jz’
R,(2)>———, 1.8
(020 (18)
and therefore
2jz°
R(z)>—, 1.9
(@257 (19
jz
N z :R z 2:, 110
(=R ()2 (110
Moreover, for all k > j>1, we have the upper bound
Ao <7, (L11)
J
4]
Theorem 1.3 For k >? , we have
i£9—k_. (1.12)
4 8]

Authors in [6] combined the Weyl-type estimates of
means of eigenvalues established in [6] and the result in
[8] to obtain the Weyl-type estimates of eigenvalues. But

it is not easy to extend the result in [8] to the Engel group.

The Weyl-type estimates of eigenvalues for (1.1) still are
open questions.
This paper is arranged as follows. In Section 2 the

Open Access

definition of Riesz means and Lemmas are described;
Section 3 is devoted to the proof of Theorem 1.1. The
proof of Theorem 1.2 is appeared in Section 4. In Section
5 the proof of Theorem 1.3 is given.

2. Preliminaries

Definition 2.1 For an increasing sequence {4} of

real numbers and z>0, the Riesz means R (z) of
order o>0 of {4} isdefined by
R, (2)=2(2-4)7

0
k=

where (z-4,), =max{0,2—4,} is the ramp function.
Clearly,

R.(z)=0R,,(2). (2.1)
Similarly to Theorem 1 of [9], we immediately have
Lemma 2.2 Denoting the L*-normalized eigenfunc-
tions of (1.1) by {u;}, let
T 'm:‘(x u,u )2

aj aj>¥m

for a=12;j,m=12,---.
have

Then for each fixed a, we

“T 2.2)

a jm
JRUIEY ﬂ’m -4

+4 Y —(Z_lj)aT

alq
JAj<z<iq ﬁq _ﬁj

Lemma 2.3 ([10])Let 0<x<y and o>0,then

<C, (y"" + x""),

where

3. The Proof of Theorem 1.1

In this section, we prove Theorem 1.1 and two coro-
llaries.

Proof. Let us use (2.2) and denote the first term on the
right-hand side of (2.2) by G(o,z,a). Applying Lem-
ma 2.3 it follows
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(-4 )j —(z—/im)fT

G(o,z,a)=2 Y

jm
j‘m:/ljwlm lm _lj “
o o
, (z2-4) -(z-24,) .
- ajm
j,m:/ljszjmsz,/lj#.m ﬂm _ﬂj

<2C, > [(z—/lj)a_l+(z—/1m)a_'}Tajm

JsMA<2,Am <2, # A

=4c, Y (z-4) T
j,m:/ijﬁz,ﬂmsz

=4c, ¥ (z-4) T
Jidj<zallm

~4c, Y (2-4) T
J:Aj<z<iyg

here we used the symmetry on j and m in the last
step.
Putting the above estimate into (2.2), we have

R, (2)<4C, Y (2-4) T,
jiAj<zallm *
—4C, Z (Z_/IJ' )iH Taiq

j,q:ﬂjsqu

+4 > —(Z_ij)GTa

j,q:}ngzdﬂ ﬂq _lj

=4c, Y (z-4)T

ajm
j:ljSZ,allm

R e
q ]

j,q:ﬂjsqu

=4C, Y

j:ﬂ.jsz,allm

ia

3.1)

(z-4, )‘Tl T, +4H (0,2,0),

where we denote

H(O',Z,a)
= Z Toig (Z_’ij )0_1{

j‘q:/ljszd11
Since {u,} isacomplete orthonormal set, it follows

22, —cg(/lq—/lj)] (3.2)

A2

©
=1

ZTajm:|
m

2
Xauj"

and
2 ® 2 2 2
D2 o = X0y |+ 300 = [[Vey;|
a=lm=1

=I(VEuj)-(VEuj)=—juj “AgU,
=j/1juj2=,1j.

Returning to (3.1) with them, it yields
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2Rg(z)s4ccz(z—zj)f‘l,1j+4§2:H (0,2,a). (3.3)
i

a=1

Since

namely,
2
(1+2C,)R,(z)-22C, R, (z)<2D> H(o,z,a). (3.4)
a=1
We consider three cases: 1) 1<0<2;2) 0<o<l1
and3) o>2.
1) 1<o<2.Inthiscase,itsees C_ =1 and
2-2,-C, (4 -4) 2-4
Aq =4, g =4

]

Since ﬂq > 7, it follows

Z_’ij _Cv(ﬂ’q _/11)

<0,

and therefore
H(o,z,a)<0.
Substituting this into (3.4), we obtain
(1+2C, )R, (z)-22C,R, (2)<0

o ‘o-l1

and

Now (1.4) is proved.
Using (2.1), we have

1
—R’! >—R ,
o -(2) 2z -(2)

and (1.5) is proved.
Since

it follows that

- 1s a nondecreasing function of
27

APM



2) 0<o<l. Now C e[O,%j, so 1-C_>0
and
2-2;-C, (4 —4) A —4-C,(4-2)
A =4 A =4 (3.5)
=1-C,.
Then
o-1
H(O"Z’a) ( ) Z an( )
JILPIES:
o-1
S(l_co)ZTozjq(Z_’ij)+
1.9
and

1

ZH(G,Z,a)S(l—CJ)Z(Z—AJ—)j A

=(1-C,)(R,.(2)-R, (2))-

Substituting this into (3.4), we obtain
(1+2C,)R,(2)- 2zCJRg (2)
<(2-2C,)[ R, (2)-R,(2)].
namely,

3R, (2)<2zR,(z),

and (1.4) is proved.
The remainders are discussed similarly to 1).

3) o0>2. In this case CU:%>1, so 1-C_<0

and

H(o,z,a)<(1-

C.) X Tu(z-4)" <o

§.0:4q>2
Substituting this into (3.4), we have
(1+2C, )R, (z)<2zC R, (2)

and (1.6) is proved.
Noting (2.1), it implies
1 1)1
—R(2)2|1+— |—R_(z
LRI 1 iR.(0)

and (1.7) is proved.

Similarly,
R,(2)) R.(2)27"-R, (2)(c+1)2°
7041 - 22(0'+1)
_T[R(2)-(o+DR,(2)]
- ZZ(o‘+1) >

R, ()

thus —
z

is a nondecreasing function of z .
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Corollary3.1Forall o>2 and z>(1+0)4,

oA (ng <R, (2)<L,|9Qz",  (3.6)
F(0'+1)

47'EF(G+2).

Proof. 1) Noting R, (z,)=2(z,—4) 2(z,-4)

for any z, > /4, it follows from Theorem 1.1 that for all
z2>7z,,

cd
where L, =

R, (2)
o+l T

z

R, (2,)

o+l

Zy

(Zo_ﬂi)i_

Z,

>

So

Rxnz@fwﬁ(ifﬂ (3.7)

Since (3.7) holds for arbitrary z, > 4,, it yields

o+l
R (2)2 max[(zo A) (LJ ]
70>4 + Z,
Due to

b%—affiyﬂ]

~(o+1)(z-4)7 7

2(o+1)
ZO
_(Zo_ﬂl)j_l [GZO_(GJFI)(ZO_%)J,]
Z(())'+2 4
we see that when z, =(o+1) 4, , it gets
I+o
z
rz?flf[ (Z_J ] oA (1+aj '
For z>17,=(o+1)4, we have

%2042

and the inequality in the left-hand side of (3.6) is valid.
2) By the Berezin-Lieb inequality (see [11]), we have

R—() L, ]9,z > .

Zo'+1

R,(2)

Notice that
7 o+l

is nondecreasing to  Z , it follows
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and the inequality in the right-hand side of (3.6) is
proved.
Corollary3.2 1) For 1<o<2 and z>(c+2)4,

RU(Z)Z (G+1) — ﬂ(lfl o'+1 (38)
(o+2)
2)For 0<o<1 and z2(c+3)4,
3(0‘+2)cHl N
R >— o, 3.9
O’(Z) 2(O_+3)o'+2 A'l z ( )

Proof. 1) By Corollary 3.1 we know that for 1<o <2
and z>(o+2)4, it holds

g+2
o+l ,_ z
R,.(2)=(c+1) 1211((”2) : (3.10)
Using Theorem 1.1, we have
1 )1
> - |= <og<
RU(Z)_(1+G+JZRm,(z),forl_J_Z. (3.11)

Combining (3.10) and (3.11), it follows

RG(Z)Z(I_{—ﬁJé(G"_l)GH/ll_l(ﬁj

(6+1)

(O' 2)U+1

and (3.8) is proved.
2) By Corollary 3.1, it shows that for 0 <o <1 and
2> (0 +3) 4, it holds

2171 o+l

o+3
o+2 z
R,.,(2)>(c+2) zal(mj : (3.12)
From Theorem 1.1, we see that for 0<o <1,
3 9
RJ(Z)ZERM(Z)ZFRM(Z). (3.13)

In the light of (3.12) and (3.13), it obtains

9 9 o2 z VP
R >—R > +2 —_
(2)2 R ()2 (o2 4
3(o+2) 3(o+2)" P
2(0+3) 2(c+3)"" '
. 3(0‘+2) 3( 1 j
Noting that =—|1- 21, for 0<o <],
2(U+3) 2 o+3
we have
3 2 o+l
RO_(Z)Z(O-+—)()_+_2217120-+1
2(o+3)

and (3.9) is proved.
Remark 3.3 Specially, we have
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3 2
Rl(z)zsz(z)zgﬂ1 z, (3.14)
3 9
N(Z):RO(Z)ZER,(Z)ZPRZ(Z)Zi. (3.15)

4. Proof of Theorem 1.2

Denote

2/11 and

|<]

Z&

|<]

and let ind(z) be the greatest integer i such that
A<z

Let ind(z)=i, it implies that 4 <z and 4, >z,
S0

R (1)=3(-4)
=(2-4) +(2-2) 4+ (2= 4
=iz’ =2z(A4 + 4, +~--+/1,,)+(ﬂ12+/122 +--~+/7,,2)

M+ A+t A +i/112+/122+"'+ﬂ“'2 4.1)
i [

=iz’ -2iz

=i(22—2zz,+/l_f)

=ind(Z)(Z _22/1md +A’|nd ))
For any integer j and z > 4,, it implies ind(z)> j,
and
R,(2)2Q(zj)= j(z2 —2zﬂ_j+/1_j2)
Using Theorem 1.1, we have that for 2>z = lj ,
R2 (Z) > Q(Zja J)
3 - 3
z Zj
or
3
A oz
R,(2)2Q(z;, j){z—j . (4.2)
i
By the Cauchy-Schwarz inequality, it follows
and
Q(Zj,j) jlz2 =224, +12)
=j(2*-224,+2; +/12 /1_2)
4.3)

(
(

= i[(z=2) +(4-77)]
[
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Proof of Theorem 1.2 1) Substituting z; :3/1_j into
(4.2) and noticing (4.3), we have

. —e 7 4jr

R z 2 Z. —ﬂ.- — =T ==

:(7) J( ! ’) 7, 274

and (1.8) is proved.
2) We take (1.8) into (3.14) to obtain

3 4z 22

2Z 27/1 9/1j
and (1.9) is proved.
3) Combining (1.8) and (3.15), it implies

N(z)=R,(z)=

and (1.10) is proved.

) i3
42* 274 34,

4) If 4, SS/I_J-, then (1.11) is clearly valid; if
Jn >34, , then (1.10) shows by letting z — 4,,, that
@sﬁ.
A,

]

So (1.11) is proved and Theorem 1.2 is proved. J
Corollary 4.1 We have

ﬂ“k+l S 3Z
and
Ay <3kA,. (4.4)

5. Proof of Theorem 1.3

We first recall the following definition before proving
Theorem 1.3.

Definition 5.1 If f(z) issuperlinearinzas z— oo,
then its Legendre transform is defined by

L[f](w):sgp{wz— f(z)}.

Remark 52 If f(z)>g(z) for all z, then
L[ f](w)<L[g](w) for all w; Since the maximizing
value of z in(5.1) is a nondecreasing function of w, it
follows that for_w  sufficiently large, the maximizing z
exceeds z; =34, .

Proof of Theorem 1.3 From (1.9), we have

L[R](w)< {“Z}wy

.1

52
o1 (5.2)

Now let us calculate L[R ](w). Since

R(1)-3(2-4),

is piecewise linear function of z, it implies that the
maximizing value of z in the Legendre transform of
R, is attained at one of the critical values.

Open Access

In factif A, <z<A4,,,then

L[Rl](w)zsup{WZ—Rl(z)}

{ +}
(2 A)-(2-Aa) (-4
(W=K)Z+ A+ 2, +-+ A}

ip |
sup{
z
Noting that the maximizing value of z is a non-
decreasing function of w, we see W—k >0, therefore
the critical value z, =4,,,.
It is easy to check k =[w] and

L[R1](W)=s121p{(W—k)Z—|r/?1 + 2y et A

2
Next we calculate L 2 Ji
94,

2jz 2jz
L| — |(W)=supswz———
[9/1. ]( ) zp{ 9.

J

](W) . Noting

—_——

and letting
2
f(z):wz—zji ,
92,
, 4jz , .
we know f'(z)=w——=".By f'(z)=0, itsolves
92,
WA,
P N (5.4)
4]

Therefore

— —\2
owA, i [9wA,
=w-—_1—2_1.[__’J (5.5)
4j

8]
Taking (5.3) and (5.5) into (5.2), we have

2

(=[] + [T <

By (5.4), it has

(5.6)
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4]
W=—12,.
91,

4

From Theorem 1.2, z. > 3/1_1, SO W> -3/1_j =—J.

41
94, 3
Then it follows that if w is restricted to the value w> %,
then (5.6) is valid.

Meanwhile, for any W, we can always find an integer
k suchthat k—1<w<k and

[w]=k-1.

If k>4—3J and w approaches to k from below,

then we obtain from (5.5) that

— 9
Bt Iyt = A+ (k1) A S
J
Therefore

A 9

2. 8

]

and Theorem 1.3 is proved. [
Remark 5.3 Ifwe let j=1,then

(5.7)

We point out that (5.7) is sharper than (4.4). In fact,
we get from (4.4) that

gﬁg_?,kilj :—3k(k_1) gikz
oA D 2 2
and
APED
A 2

But % < % is always valid, so (5.7) is sharper than

(4.4).
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