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ABSTRACT 

The aim of this paper is to present a finite element modeling of the dynamic motion of a turbine rotor and its controller 
design with the mass unbalance under a crack on a rotating shaft. This process is an advanced method to the mathe- 
matical description of a system including an influence of a mass unbalance and a crack on the rotor shaft. As the first 
step, the shaft is physically modeled with a finite element method and the dynamic mathematical model is derived by 
using the Hamilton principle; thus, the system is represented by various subsystems. The equation of motion of a shaft 
with a mass unbalance and a crack is established by adapting the local mass unbalance and stiffness change through 
breathing and gaping from the existence of a crack. This is a reference system for the given system. Based on a ficti-
tious model for transient behavior induced from vibration phenomena measured at the bearings, an elementary estimator 
is designed for the safety control and detection of a mass unbalance on the shaft. Using the state estimator, a bank of an 
estimator is established to get the diagnosis and the system data for a controller. 
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1. Introduction 

To meet high requirement of the structure of modern 
control systems and to satisfy the reliability of a system, 
first of all, it is strongly necessary to introduce the ma- 
thematical precise description of the given system. Given 
system used the “Finite Element” which involved the cha- 
racteristics of the kinetics and kinematics. Especially, 
when the interest comes to the dynamic behavior by high 
signal amplitude or various operating points, the safe 
operation is getting more and more important. This is ob- 
viously verified when a part of systems suddenly goes out 
of function. It can cause an entire system defect, and this 
is able to bring up a dangerous situation for employee 
and material losses. To take precautions against these kinds 
of troubles, many scientists in the world have been mak- 
ing efforts for a long time. For this, it required the inspec- 
tion during the operation: certainty and system assess- 
ment. Only by this way, the sudden appearance of defects 
and the alteration of the processes can be found out, and 
the reason for the troubles and the place are detected 
(Fault Detection and Isolation, FDI). It is important that 

the fault must be sensed early enough for avoiding the 
damages in the system (Fault Detection, Isolation and 
Accommodation, FDIA). When this process goes without 
man’s help, it’s called automated fault detection, in an-
other word, “gnosis”. Under meaning of fault, we can 
understand that every abnormal derivation or divergence 
from the required process behavior and the abrupt fault is 
meaningful for the safe operation. The FDI process needs 
certain characteristics being able to give the threshold of 
the decision: residuum and residue. The method of fault 
estimated by using the Hardware-redundancy is very 
costly and less practicable. The model-based methods 
were presented by [1]. The methods by creating the pa-
rameters or state space estimate were given in [2]. There 
have been some other ways to settle the problem with 
fault through the consideration of the property of the ro-
bustness [3]. A practical solution to this problem was the 
estimation of the states or its velocities by the use of ob-
servers which can estimate a system characteristics of 
linear or nonlinear states and effects as a mode, so called, 
“Indirect measurement” [4]. In this work, for this proce- 
dure, the mathematical model of the concerned physical  
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system which in the operation time consists of a long 
shaft and two journal bearings at the ends of the shaft, is 
derived with the significant remarks such as friction, 
gravitation, and Coriolis force. With the indirect meas-
urements on two bearings, an observer is designed and is 
going to be used for the system diagnosis through the 
comparison within phases. 

2. Finite Element Modeling of a Constrained 
Rotor  

In order to control and diagnose complex systems, one 
would like to obtain quantitative mathematical model of 
a system by symbolic representation involving an ab-
stract mathematical formulation. Though a mathematical 
model can be adequate for a certain purpose in mind, it 
never describes the physical phenomenon exactly. Since 
the final goal of this work is to develop a diagnosis 
strategy, the inevitable conclusion is that the modeling 
problem and the diagnosis problem are not independent. 
Here, the necessary adequate models for the proposed 
diagnosis policies are built by “finite element models”. 
These were comprised of the rotor model, the environ-
ment model, and model for the interaction between shaft 
and bearings. Industrial rotors are usually composed of 
shafts connected by couplings into a kinematic chain 
with the journal bearing in the operation situation. The 
shafts can be either cylindrical or revolute, and are driven 
by given actuators. In this work only cylindrical shaft 
will be considered. For the purpose of modeling, the 
three interacting parts such as the blade of the wind 
driver, the transmission, and the bearings which are con-
nected with the shaft is considered first as an example of 
the physical model, the (see Figure 1) shaft is modeled  
 

 

Figure 1. A constraint rotor system with bearings 

into N(=7) segments of shaft i.e. N(=7) sub-finite systems 
in the numerical matrix form (see Figure 2). 

Each one is called a subsystem. At both ends of the 
shaft, there exist dynamics of the bearings. They have the 
task of system control. For the initial data needed in the 
operating system, the displacements of the journals are 
measured up on the bearings at the left and the right side 
of the shaft (see Figure 1). 

Assuming that the material properties are homogenous, 
the energy balances, which include the inner kinetics 
energy, the inner transform energy, damp energy and the 
energy from outside, are set up for the mathematical de- 
scription in form of differential equation as following 
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Figure 2. A consistent matrix with bearings. 
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degree of freedom of considered elementary subsystem. 
The consistent matrix is built.  

From now on, the index will be left out with respect to 
the whole dynamic system. The dynamic behavior of 
joint system can be modeled by analogy to [5] as follows 

        e e M U t D G U t KU t f t       (4) 

The geometrical data and other detailed information 
are given in the appendix. It is normally convenient for 
further operation to write the equation above via state 
space notation    

T
,x U t U t 

   the nonlinearities of 
the motion created by any defects in system.  

           , ,R R u ux t Ax t Bu t N n x t t N n x t t    (5) 

The equation of the measurement is given by 

   y t C t               (6) 
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where, A  is  n nN N  dimensional system matrix 
which is responsible for the system dynamic with 

 and . B is the input matrix in the form as: 2nN  nn
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The factors 1akf  and 2akf  denote mass unbalances 
in x and y coordinates respectively as follows 

2
1 cosakf m t                (9) 

 2
2 sin  akf m t               (10) 

 y t  is the output vector and the measurement matrix 
C(t) presents C  e nm N  dimensional measurement 
matrix, respectively. Tie mass as an input is given as 
follows 

T
0 0 0 0 0 0 0g g gf m m        (11) 

 u t  denotes  dimensional vector of the excitation 
inputs due to gravitation and unbalances. 

r

Here, the vector  and   ,Rn x t   un t  characterizes 
the fn  dimensional vector of nonlinear functions due to 
the fault such as mass unbalance and crack, respectively. 

u  and N RN  are the input matrices of the linear and the 
nonlinearities, and the order of RN  is of n fN n . It is 
presupposed that the matrices , , , RA В С N  the vector 
 u t  and  y t  are already known. Now it remains to 

reconstruct the unknown line arvector u  and 
nonlinear vector 

  ,n x t t 
  ,Rn x t t  which mentions the dis-

turbance force caused by a fault such as mass unbalance 

and crack. The basic idea is to get the signals from 
  ,Rn x t t  approximated by the linear fictitious model, 

see [6,7]. In terms of the fictitious model, an observer [7] 
is designed and to get a signal phase an estimator 
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Is built. For the guarantee of the observer ability of 
estimator, the requirement: 
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and the requirement of the control ability 

 nrank IN AB N   n       (15) 

must be satisfied. The output equation for the measure-
ment is presented as follows.  
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where matrices xL  and v  are the gain matrix of the 
observer. The above Equation (12) means that the ob-
server consists of a simulated model with a correction 
feedback of the estimation error between real and simu-
lated measurements. The matrix o

L

A  has 
 n f n f . dimensions and represents the dy-
namic behavior of the elementary observer. The asymp-
totic stability of the elementary observer can guaranteed 
by a suitable design of the gain matrices 

N n  N n

xL



 and which 
are possible under the conditions of detect ability or y  
observability of the extended system. To enable the suc-
cessful estimation under the asymptotic stability, the ei-
genvalue of the considered observer o

L

A  must be set-
tled on the left side of the eigenvalue of the given system 
 eA  to make the dynamic of the observer faster than 
the dynamic of the system. The fictitious model of the 
fault behaviors is able to be designed using integrator 
model [7,8] based on the chosen crack model as follows. 
The observer gain matrices xL  and yL  can be calcu-
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lated by pole assignment or by the Riccati equation [4] as 
follows. 

T T 1 0e e eA P PA PC R PC Q         (17) 

T 1
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The weighting matrix Q  and  has to be suitably 
chosen by the trial and errors.  

mR

3. Design of the Estimator 

In the above section it has been studied how to design the 
elementary estimator for the detection at a given local 
position. It means that a certain place on the shaft is ini-
tially given as the position. The elementary estimator on 
the bearing has to survey not only the assigned local po-
sition but also any other place on the shaft and to give the 
signals whether a fault exists or not. As it has been 
known, it is possible to detect the fault assigned certain 
place along on the shaft. In the case a fault appears at any 
subsystem in running time, it must be detected as well. 
But in many cases, it has been shown that it is impossible 
or very difficult to estimate the position of the fault at all 
subsystem on the shaft with one estimator. Generally, it 
depends on the number of the subsystem and the number 
of estimator. For the estimation of a position of mass 
unbalance or crack, an estimator bank based on estimator 
is designed. The main idea is to reconstruct the related 
forces of a mass unbalance or crack from certain local 
position to the arranged elementary estimator. This is 
main task in this section. The structure of the estimator 
considered is in the work [7,8] presented. It consists of a 
few elementary estimator depends on the number of the 
subsystem is modeled. Every elementary estimator which 
is distinguished from the distribution vector  ei

 gets 
the same input (excitation)

Ls
  u t  and the feedback of 

the measurements, and is going to be set up at a suitable 
place on the given system. For the appreciate arrange-
ment of Beo, the distribution matrix on the analogy of 
(15) has been applied. In this way the estimator bank is 
established with the estimator. To estimate the local 
place of the fault, there are two steps. First of all, the 
estimator must be observable to certain local place in the 
meaning of the asymptotical stability in the system. The 
requirement has been satisfied by the criteria from [7,8]. 
This means that the estimator has to be capable of esti-
mating the fault at any location, where estimator is situ-
ated on the given system. The unknown fault position is 
to be found by the estimator arranged in a certain local 
place with the related crack forces resulting from the 
crack. To guarantee this condition (14) is supposed to be 
fulfilled. In this work three estimators are arranged on 

the left and right bearings  

   T1 1 0 0 0 0 0 1 1sL i       (19) 

The unknown position of a fault is found by the esti-
mator according to the related forces, displacement, and 
torque of some other location on the shaft. 
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4. Numerical Evaluation through the  
Simulation on Rotating Shaft 

The estimator bank consists of two elementary estimators. 
The 1st estimator A is situated at the left bearing and 2nd 
estimator B is placed at the right bearing. The criteria to 
detect a fault, it is necessary to choose the maximal mag-
nitude of the phase from all estimators by the comparison 
among the phase turned out: forces, displacements and 
torque. In the case, the estimator shows none of the force, 
there is not any mass unbalance in this system considered. 
If any one of the estimator gives the signal of a force the 
system has a crack in a corresponding position. The fig-
ure illustrates the phases with the mass unbalance under 
the rpm (107.5). As the 1st example, the nominal system 
behavior is considered with given mass unbalance is at 
the 1st of the node in the system. 

The y axis shows the force which denotes nonlinearity 
and the x axis illustrates the corresponding torque. This 
phase is nominated as a phase of zero fault. The Figure 3 
shows that the estimator recognizes the non existence of 
a fault. By the comparison of the forces, there is some 
difference between estimated and simulated phase. 
However, the derivation is small enough and acceptable. 
The results in the Figure 4 describe the fault existence 
(force of mass unbalance) in the 2nd node under the in-
fluence of a crack in the runtime operation. Up to 3 [sec], 
the forces of mass unbalance and crack have been over-
lapped. This denotes that mass unbalance and crack exist 
in the same place (node) on the shaft. It has been already 
mentioned that the breathing direction of a crack and the 
position of the mass unbalance on the radius of the diameter 
of shaft are on the same line. By the comparison, the Figure 
3 with Figure 4, it is clear to appear a defect. The result in 
the Figure 5 illustrates the appearance of the fault as phase 
4th node: the forces of mass unbalance, in the middle of the 

Open Access                                                                                            ENG 



R. PARK 

Open Access                                                                                            ENG 

1016 

shaft.  
The result in the Figure 6 tells us the coming up of the fault 

as phase: the forces of mass unbalance, the forces of mass 
unbalance, in the 1st node under the influence according to the 
same direction between mass unbalance and the crack on. 

5. Conclusion 

From physical model, the mathematical model of the rotat-
ing shaft with bearings using the energy balances, which  
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include the inner kinetics energy, the inner transform energy, 
damp energy and the energy from outside setup for the mathe- 
matical description in forms of differential equation, has been 
presented. Based on this mathematical model, the elementary 
observer with the measurement only on the bearings and the 
observer bank have been developed. With this observer bank, 
the estimation of the fault has been detected in phase. The 
above method gives a clear relation between the shaft with a 
mass unbalance and the damaged shaft by a crack and the 
phenomena caused in phase by means of the measurement at 
both bearings. Successful theoretical results have been given in 
graphics. The forces and torques in the results are the internal 
one, which have been reconstructed as disturbance forces cre-
ated by the mass unbalance and crack. It has been theoretically 
shown that it is possible to estimate localization of a mass 
unbalance with the opposite direction of a crack. The sug-
gested methods are very significant not only for the further 
theoretical research and development but also for the transfer 
in experiments. 
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REFERENCES Figure 3. Pase 1. 
 

[1] R. V. Beard, “Failure Accommodation in Linear System 
through Self Recognition,” Report MVT-71-1, Man Ve- 
hicle Laboratory, MIT, Cambridge, 2005.  
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[2] R. J. Patton and S. M. Kangetehe, “Robust Fault Diagno- 
sis Using Eigen Structure Assignment of Observers,” In: 
R. Patton, P. Frank and R. Clark, Eds., Fault Diagnosis in 
Dynamic Systems, Prentice Hall, Herausgeber, 1984.  

[3] R. Iserman, “Identification Dynamischersysteme, Band I 
and II,” Spring Verlag, Berlin, 1984.  

[4] P. C. Mueller, “Estimation and Compensation of Nonlin- 
earities,” Proceedings of 1st Asian Conference, Tokyo, 
27-30 July 1994, pp. 228-234. Figure 4. Phase 2. 

 
[5] R. W. Park, “Estimation of a Mass Unbalance under the 
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Figure 5. Phase 3. 
 

 

 

 

 

 

 

 Figure 6. Phase 4.  


