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ABSTRACT 

In this paper, first, we introduce the notion of weakly compatible maps for coupled maps and then prove a coupled fixed 
point theorem under more general t-norm(H-type norm) in Menger spaces. We support our theorem by providing a suit- 
able example. At the end, we obtain an application. 
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1. Introduction 

In 1942, Menger [1] introduced the notion of a probabil- 
istic metric space (PM-space) which was, in fact, a gener- 
alization of metric space. The idea in probabilistic metric 
space is to associate a distribution function with a point 
pair, say  , denoted by  ,p q  , ,F p q t

t

 where  
and interpret this function as the probability that distance 
between  and  is less than , whereas in the met- 
ric space, the distance function is a single positive num- 
ber. Sehgal [2] initiated the study of fixed points in 
probabilistic metric spaces. The study of these spaces 
was expanded rapidly with the pioneering works of Sch- 
weizer-Sklar [3]. 

0t 

p q

In 1991, Mishra [4] introduced the notion of compati- 
ble mappings in the setting of probabilistic metric space. 
In 1996, Jungck [5] introduced the notion of weakly 
compatible mappings as follows: 

Two self-mappings  and T  are said to be weakly 
compatible if they commute at their coincidence points, 
i.e.,  for some , then  

S

uTu Su X .TSu STu
Further, Singh and Jain [6] proved some results for 

weakly compatible in Menger spaces.  
Fang [7] defined  -contractive conditions and proved 

some fixed point theorems under  -contractions for 
compatible and weakly compatible maps in Menger PM- 
spaces using -norm of t H -type, introduced by Hadžíc 

[8].  
Recently, Bhaskar and Lakshmikantham [9], Lakshmi- 

kantham and Ćirić [10] gave some coupled fixed point 
theorems in partially ordered metric spaces. 

Now, we prove a coupled fixed point theorem for a 
pair of weakly compatible maps satisfying  -contrac- 
tive conditions in Menger PM-space with a continuous 

-norm of t H -type. At the end, we derive a result for w- 
compatible maps, introduced by Abbas, Khan and Re- 
denovi ć [11]. 

2. Preliminaries 

First, recall that a real valued function f defined on the 
set of real numbers is known as a distribution function if 
it is non-decreasing, left continuous and  inf 0f x  , 

 sup 1f x  . In what follows,  H x  denotes the dis- 
tribution function defined as follows: 

 
0,   if  0,

1,    if  0.

x
H x

x


  

 

Definition 2.1. A probabilistic metric space (PM- 
space) is a pair  ,X  where  is a set and  is a 
function defined on 

X F
X X  into the set of distribution 

functions such that if ,x y  and  are points of , 
then 

z X

(F-1)  , ;0 0F x y  , 
(F-2)    , ;F x y t H t

 
iff x y , *Corresponding author. 
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(F-3)    , ; , ;x y t F y x t


, 
(F-4) if , ; 1F x y s   and  , ; 1F y z t  , then 
 , ;F x z s t 1  for all , ,x y z X  and . , 0s t 
For each x  and  in  and for each real number 

, 
y X

0  , ;F x y t  is to be thought of as the probability 
that the distance between x  and  is less than . y t

It is interesting to note that, if  ,X d


 is a metric 
space, then the distribution function , ;F x y

 ,
t


 defined 

by the relation  , ; F x y t H t  d x y  induces a 
PM-space. 

Definition 2.2. A t-norm  is a 2-place function, t
     : 0,1 0,1 0,1t  


 satisfying the following: 

1) 0,0 0t  , 
2)  ,1 ,t a a  
3)    , ,b a

a c b d
,t a b t  

4) if , , then    , ,t a b t c d
 ,b c

, 
5)  for all a, b, c in [0,1].  t a b c t , , ,t a t
Definition 2.3. A Menger PM-space is a triplet  ,X t  

where  ,X F  is a PM-space and  is a t -norm with 
the following condition: 

t

(F-5) (      , ; , ; , , ; F x z s t t F x y s F y z t  , for all 
, ,x y z X , 0s t  and . 
This inequality is known as Menger’s triangle inequal- 

ity. 
We consider  , ,X F t  to be a Menger PM-space 

along with condition (F-6)  lim , , 1
n

F x y t


 , for all 
,x y  in . X
Definition 2.4 [4]. Let  

0 1
s ,up

t
t t

 
  1 . A t-norm    

is said to be of H -type if the family of functions 
 is equicontinuous at , where   

1

m

m
t







1t 

1 t t , ,   1   t tm m  
 1,2, ,m t 

t
0,1 . 

The -norm M  = min. is an example of -norm of t
H  type. 

Remark 2.1.  is a  H -type -norm iff for any t
 0,1  , there exists    0,1    such that 
   1m t     for all , when m N  1t   . 

Definition 2.5. A sequence  nx  in a Menger PM 
space  , ,X F t  is said  

1) to converge to a point x  in  if for every  
and 

X 0
0 

 , ,x
, there is an integer  such that 0n
1nF x   , for all . 0n


n 

2) to be Cauchy if for each  and 0 0  , there is 
an integer  such that 0n  , , 1n mF x x   , for all 

. 0

3) to be complete if every Cauchy sequence in it con- 
verges to a point of it. 

,n m n

Definition 2.6 [3]. Define , where 
 and each 

 : R R    

 0,R      satisfies the following 
conditions: 

 1 


 is non-decreasing; 
2   is upper semicontinuous from the right; 

 3   0

n

n
t 


    for all , where 0t 

    1 , .n nt t n    N  
Clearly, if   , then  t t   for all . 0t 
Definition 2.7 [3]. An element x X  is called a 

common fixed point of the mappings 
f : X X X   and g : X X  if 

  , x f x x g x   

Definition 2.8 [6]. An element  ,x y X X   is 
called a  

1) coupledfixed point of the mapping :f X X X   
if  ,f x y x ,  ,f y x y . 

2) coupled coincidence point of the mappings 
:f X X X  : and g X X  if    ,f x y g x  
   ,f y x g y

:

. 
3) common coupled fixed point of the mappings 

f X X X  : and g X X  if  
   ,x f x y g x  y f,   ,y x  g y

Definition 2.9 [3]. The mappings :f X X X   
and :g X X  are called commutative if 

    , ,g f x y f gx gy , for all ,x y X  . 
Abbas, Khan and Redenović [1] introduced the notion 

of w-compatible maps for coupled mappings as follows. 
The mappings :F X X X   and :g X X  are 

called w-compatible if  
    , ,g F x y F gx gy  whenever    ,F x y g x ,      

   ,F y x g y . 
In a similar mode, we state weakly compatible maps 

for coupled maps as follows:  
Definition 2.10. The maps :f X X X   and  
:g X X  are called weakly compatible if  
   ,f x y g x ,    ,f y x  g y  implies  

    , ,g f x y f gx gy ,    , ,g f y x f gy gx , for 
all ,x y X . 

We note that w-compatible are obviously weakly 
compatible maps. 

3. Main Results 

For convenience, we denote 
(3.1)  

   , , , ,
n   , , , ,

n

F x y t F x y t    F x y t F x y t  

n N

 , for 

all  . 
Now we prove our main result. 
Theorem 3.1. Let  , ,X F  be Menger PM-Space, 

  being continuous t – norm of H -type. Let 
:f X X X  : and g X  X  be two mappings and 

there exists Φ   such that followings hold: 
(3.2)  

      , , , ,   , , , , ,F f x y f u v t
, , ,

F gx gu t F gy gv t   
for all x y u v X in  and  and 0t 

1) Suppose that    f X X g X  , 
2) pair  ,f g  is weakly compatible, 
3) range space of one of the maps f or g is complete. 
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1 2 0 0 0 1 1 0

0 1 0 0 1 0

, , , , , ,

, , , , .

F gy gy t F f y x f y x t

F gy gy t F gx gx t

 

 
 

Then f and g have a coupled coincidence point. More- 
over, there exists a unique point x  in  such that X

  , f x y g x 
,
. 

Proof. Let 0 0x y  be two arbitrary points in . 
Since

X
   f X X Xg  , we can choose 1 1,x y  in  

such that 
X

   1 0 ,x

Similarly, we can also get 

0xg f y ,    01 0,yy xg f .          
     

2 2
2 3 0 1 1 2 2 0

1 2 0 1 2 0

, , , , , ,

, , , ,

F gx gx t F f x y f x y t

F gx gx t F gy gy t

 

 



 
 Continuing in this way we can construct two se- 

quences  nx  and  ny  in  such that X
      1 ,n n n1 ,n n ng x f x y g  and y f y x   for all 
. 0n          

   

2 2
2 3 0 1 1 2 2 0

2 2

0 1 0 0 1 0

, , , , , ,

, , , , .

F gy gy t F f y x f y x t

F gy gy t F gx gx t

 

       
 Step 1. We first show that  ngx  and  ngy  are 

Cauchy sequences. 
Since  is a -norm of  t H -type, for any 0  , 

there exists 0   such that Continuing in this way, we can get 

(3.3)        1 1 1 1

p

           , for all 

. p N

  
   

1 1

1 0

2 2

0 1 0 0 1 0

, ,

, , , ,
n n

n
n nF gx gx t

F gx gx t F gy gy t


 



       

 

Since , for all  ,lim , 1t F x y t  ,  in x y X , there 
exists  such that 0t 0

   , , 1x gx t
  

   
1 1

1 0

2 2

0 1 0 0 1 0

, ,

, , , ,
n n

n
n nF gy gy t

F gy gy t F gx gx t


 



      .

 
0 1 0F g    and  

 0 1 0, , 1F gy gy t  
Φ

 . 
 Since  and using condition (  -3), we have 

1
. Then for any , there exists 0t  n

n


 0 0n N  
such that 

So, from (3.3) and (3.4), for , we have 0m n n 

(3.4) .  k
k n

t t


 

0 0

From (3.2), we have 

         
   

1 2 0 0 0 1 1 0

0 1 0 0 1 0

, , , , , ,

, , , ,

F gx gx t F f x y f x y t

F gx gx t F gy gy t

 

 
 

    
 

     

0 0

1

0

1
1 0 1 2 0

, , , ,

, ,

, , * , ,

k
n m n m k n

m
k

n m
k n

n n
n n n n

F gx gx t F gx gx t

F gx gx t

F gx gx t F gx gx t





 










  






 


 
 







 

 

       
         
       

 

1 1

2 2

1 1

2 21
1 0 0 1 0 0 1 0

2 2 2

0 1 0 0 1 0 0 1 0 0 1 0

2 2 1 2 2 1

0 1 0 0 1 0

* , , , , , ,

, , , , , , , ,

, , , ,

1

n n

n n m

n m n n m n

m
m mF gx gx t F gx gx t F gy gy t

F gx gx t F gy gy t F gx gx t F gy gy t

F gx gx t F gy gy t





 

 

   




 

       

                  

       
 


 

   
 

 
2 2 1

1 1 1
n m n

 
 

       

2m



 

 
which implies that 

  , , 1n mF gx gx t  
0m n n  0t 



,for all  with 
 and . 

,m n N

So, ngx  is a Cauchy sequence. Similarly, we can 
get that  ngy  is a Cauchy sequence. 

Step 2. To show that f and g have a coupled coinci- 
dence point. 

Without loss of generality, we assume that  g X  is 
complete, then there exists points ,x y  in  g X so that 

 1glimn nx x   ,  1y yglimn n 

Again 
. 

 ,x y g X  implies the existence of  in 
 so that 

,p q
X  g p x ,  g q y  and hence  

 1 limn n  ,n n   nlim g x f x y g   p x  , 

     1lim lim ,n n n n ng y f y x g   q y   . 
From (3.2), 

      
     

, , , ,

, , , ,

n n

n n

F f x y f p q t

F gx g p t F gy g q t



 

n 

 

Taking limit as , we get 
      , , , 1F g p f p q t   that is,  

   ,f p q g p x  . 
   ,f q p g q y Similarly, . 

 and g are weakly compatible, so that fBut 
   ,f p q g p x     ,f q p g q y  and  implies 
      , ,gf p q f g p g q  and  
      , ,gf q p f g q g p    ,g x f x y   , that is 
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and    ,g y f y x . 
Hence f and g have a coupled coincidence point. 
Step 3. To show that  g x y  and  g y x . 
Since * is a -norm of t H -type, any , there 

exists 
0

0   such that 

       1 1

p

     1 1      for all p N . 

Since , for all  , 1y t ,limt F x ,x y  in , there 
exists  such that 

X

0 0t 
  0, , 1F gx y t    and  , ,x t  0 1F gy   . 

Since Φ   and using condition (  -3), we have 
. Then for any t , there exists 

 such that 
 01

n t


 
N

n


0n 

0

 
0 0

k
k n

t t


   

Using condition (3.2), we have 

         
   

1 0 0

0 0

, , , , , ,

, ,  , , ,

n n

n n

nF gx gy t F f x y f y x t

F gx gy t F gy gx t

  

 
 

letting , we get n 

      0 0, , , , , , ,0F gx y t F gx y t F gy x t    

By this way, we can get for all , n N

        
   

1 1

1 1
0 0

2 2

0 0

, , , , , ,

, , , ,
n n

n n
0

nF gx y t F gx y t F gy x t

F gx y t F gy x t

  
 

  

       

 

thus, we have 
 

          

       

1 10 0
0

0

0

2 2

0 0 0

2

, , , , , , , ,

1 1 1 1 .

n n

n

nk

k n

y t F gx y t F gx y t F gx y t F gy x t 

  

, ,F gx 0

 



 
          

 
        



 


 

 
So, for any , we have 0    , , 1 ,F gx y t   for 

all . 0t 
 gThis implies x y

*

. Similarly, .  g y x
yStep 4. Next we shall show that . 

Since  is a t-norm of H -type, for any , there 
exists 

0
0 

   1 1

p

    

 such that 

   1 1     , p N

 

for all  . 

Since , for all  , 1y t ,limt F x ,   in  x y X
 1

, there 
exists  such that 0 00t   , ,y tF x  

.
Also, since 

 
Φ  , using condition ( -3), we have 

. Then for any t , there exists 
 such that 
 01

n t


 
N

 

n


0n 

0

 
0

0
k

k n
t t


  . 

Using condition (3.2), we have 

        
 

1 1, ,

, ,

n n

n n  
0 0

0 0

, , , ,

, ,

n n n n

n n

F gx gy t

F gx gy t

 

 

n 
  , ,

F f x y f y x t

F gy gx t

 
 

Letting , we get 
  0 0, , , , 0F x y t F

 

 
   

02

, ,

, ,

1 1
n

x y t F y x t  . Thus we have 

    

 
   

0

0

1 10 0

0 0

2 2

0 0

, , , ,

, ,

1 1

n n

nk

k n

F x y t F

F x y t

 

  
   

x y t F x y t

F y x t

 



 





 
   

 

    
    



 

 

which implies that .x y  Thus, we have proved that f 

and g have a common fixed point x  in . X
Step 5. We now prove the uniqueness of x . 
Let  be any point in  such that z X z x  with 
   ,g z z  f z z . 
Since   is a -norm of t H -type, for any , 

there exists 
0

0   such that  

      1       1 1 1 , p
p

  for all N . 

Since  ,lim , 1t F x y t  , for all ,x y  in , there 
exists  such that 

X

0 0t  0, ,z t 1F x   . 
Also, since Φ  , using condition ( -3), we have 

 01

n

n
t


 

0n N

. Then for any t , there exists 0

  such that . 
0

k
k n

t t

 0

Using condition (3.2), we have 

        

      

   

0 0

0 0

0 0 0

, , ,

, ,

, , , , , , .

 

,

 

  2

, ,

, ,

F x z t F f x x z t

F g x g z t F g g t

F x z t F x z t z



 

 

f

x

F x

, ,

z

z

t

 

  

 


0 02 2

, ,

1

n n

 

Thus, we have 

      

   

      

0

0

1

0

0 0

2

0 0

2

, , , ,

, ,

1 1 1 ,
n

nk

k n

F x z t F x z t F t

F x z t z t

 







 
  
 

      
       



 

x z 

F x
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which implies that x y . 
Hence, f and g have a unique common fixed pointin 
. X
Next, we give an example in support of the Theorem 

3.1. 
Example 3.1. Let  2,2 ,X a b ab     for all 

 , 0,1a b  and  
1

t
t

t
 


. Then  , ,X F   is a 

Menger space, where 
   , ,

x y
F x y t t


    , for all ,x y  in  and  

0t  . 

Let  
2

t
t  ,  g x x  and the mapping 

:f X X X   be defined by  
2 2

, 2
16 16

x y
f x y    . 

It is easy to check that  

       2, 1 2,2 g .f X X X        Further,  

 f X X  is complete and the pair ,f g  is weakly 

compatible. We now check the condition (3.2), X
 

          
   

  

2 2 2 2 2 2 2 2

, ,

16 8

, , , , , , , ,
2 2

2 2

, , , , ,
1 1 1

f x y f u v

x y u v x y u v

x u y v x u y v

t t
F f x y f u v t F f x y f u v

t t

t t

t t t F x u t F y v t
t t t




     

    

              

           

                   


X

 

 
for every .  0t 

Hence, all the conditions of theorem 3.1, are satisfied. 
Thus f and g have a unique common coupled fixed point 
in . Indeed,  4 1 2x    is a unique common cou- 
pled fixed point of f and g. 

Theorem 3.2. Let  be Menger PM - Space, 
 being continuous – norm of H-type. Let 

 , ,X F 
t




:f X X X   and :g X  X  be two mappings and 
there exists Φ   satisfying (3.2). 

Then there exists a unique point x  in  such that X
   , .x f x x g x   

Proof. It follows immediately from Theorem 3.1. 
Next we give an application of Theorem 3.1. 

4. An Application 

Theorem 4.1. Let  be a Menger PM-space,  , ,X F    
being continuous -norm defined by  

 for all  in . Let 
t

min. ,a b a b  ,a b X ,M N  be 
weakly compatible self maps on  satisfying the fol- 
lowing conditions: 

X

(4.1)     ,M X N X
Φ

 
(4.2) there exists    such that 

   , , , , F Mx My t x Ny t F N  for all ,x y  in  
and . 

X
0t 

If range space of any one of the maps M  or  is 
complete, then 

N
M  and  have a unique common 

fixed point in . 
N

X
Proof. By taking   , f x y M x  and  
   g x N x  for all ,x y X  in Theorem 3.1, we get 

the desired result. 
Taking , we have the following:    , 0,1t kt k  

 , ,X F Cor. 4.2. Let  be a Menger PM-space,   

being continuous -norm defined by t  min. ,a b a b   
for all  in . Let ,a b X ,M N  be weakly compatible 
self maps on X satisfying (4.1) and the following condi- 
tion: 

(4.3) there exists  0,1k   such that 
   , ,, ,F Mx My kt F Nx Ny t  for all ,x y X in  

and . 0t
If range space of any one of the maps M  or  is 

complete, then 
N

M  and  have a unique common 
fixed point in . 

N
X

Taking N I , the identity map on , we have the 
following: 

X

Cor. 4.3. Let  , ,X F   be a Menger PM-space,   
being continuous -norm defined by t  min. ,a b a b   
for all  in . Let ,a b X ,M N  be weakly compatible 
self maps on  satisfying (4.1) and the following con- 
dition: 

X

(4.4) there exists  0,1k   such that 
   , ,, ,F Mx My kt F x y t  for all ,x y X in  and 
 0.t

If range space of the map M is complete, then M  
and  have a unique common fixed point in . N X
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