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Abstract 
Now we extend one method into a sequence of binomial data, propose a stepwise confidence interval method for toxic- 
ity study, and also in our paper, two methods of constructing intervals for the risk difference are proposed. The first one 
is based on the well-known conditional confidence intervals for odds ratio, and the other one comes from Santner 
“small-sample confidence intervals for the difference of two success probabilities”, and it produces exact intervals, 
through employing our method. 
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1. Introduction 
We often face the maximum tolerated dose (MTD) eval- 
uation of a new developed drug. Recently [1,2], Hsu and 
Berger proposed a stepwise confidence interval method 
for MTD studies and for dose-response study under 
equal variances [3]. But in fact, this is often in doubt. 
Recently, Tao et al. through employing the Stein’s 
two-stage sampling method, proposes the stepwise 
confidence procedure for MTD evaluation and for 
identifying a minimum effective dose without any 
condition imposed on the variances [4]. But as we see 
in practice, the data we can collect are always discrete 
and are very limited. 

And, currently, Tao et al. proposed a new stepwise 
confidence interval procedure to deal with the variance- 
free problem as a proper evaluation method [5]. By em- 
ploying the Stern’s two-stage sampling method, they 
achieve it. Now we extend one method into a sequence of 
binomial data [6], propose a stepwise confidence interval 
method for MTD study and can identify a minimum ef-
fective dose. 

In their article they assume that a random sample 
1 2 3, , ...,i i i iniY Y Y Y  is observed from the ith dose level, and 

considering the following one-way model 
, 0,1,... 1; 1, 2,...ij i ij iY i k j nµ ε= + = + =  

here 0µ  is the mean response of control group received 
a placebo and 1 2 1, , , kµ µ µ +  are the mean responses to 
an increasing levels of exposure to a drug, ijε  （I = 0, 1, 
…, k + 1）are . .i i d  normal variables with mean 0 and 
unknown variances 2

iσ . 

However, as we can see the assumption of the popula- 
tion as normal distribution is quite unreasonable and 
often can bring us failure in making decision, for the 
data collected from the result of the experiment are 
often discrete, and even more the quantity is usually 
quite small due to lots of causes. Therefore, we could 
claim that their method is also not a mature method 
and can’t always be reliable when we use it in practice, 
so a more widely reliable and useful method is neces- 
sitated.  

Suppose that 0p  is the response probability of the 
negative control group which receives placebo during the 
experiment, while 1kp +  is the response probability of 
the positive control group. 1 2, ,..., kp p p  is a series of 
response probabilities corresponding to a increasing level 
exposed to one drug, the dose level is denoted as 

1 2, ,..., kd d d , which is typical in toxicological study and 
dose-response studies. And we think it is true: if the 
study fails to detect significant difference between the 
positive and the negative control groups, which are 
known to be different, then any lack of observed signifi- 
cant difference between a dose group and the negative 
control group may due to failed experimentation instead 
of closeness of their probabilities. 

Assume an increasing order K  levels dose of the 
new developed drug denote as 1 2 3, , ,..., kd d d d  are allo- 
cated to K  groups of people, and the 1 2 3, , ,..., kp p p p  
are the response probabilities corresponding to the dose 
levels. Suppose 0p  is the response probability corres- 
ponding to the group which receives a placebo (negative 
control) during the comparisons, and similarly 1kp +  are 
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the positive response probability. 
So when 0L i Up pδ δ≤ − ≤  hold, we should think it is 

denote effective when 0L ip pδ ≤ −  and denote its max- 
imum tolerated dose when 0i Up p δ− ≤ as exporters 
assigned before trial. 

2. Our Method 
And each group satisfies 

( ) ( )1 ni mm m
i ni i iP Y m C p p −= = − , 

where 1,2,..., , 1, 2,..., 1im n i k= = + , and the ip  is pa- 
rameter unknown. 

To generalize Hsu and Berger’s stepwise confidence 
interval procedure to the case of binomial population and 
to motivate our new stepwise, supposed ( ) ( )( ),l uX X∆ ∆  
is the confidence interval with nominal level (1 α− )% 
for risk difference, and then let us rewrite the definition 
in Hsu and Berger. 

Definition 1.1 A confidence set, C(Y), for Θ  is di-
rect toward ∗Θ  if, for every sample point y, either

( )C Y∗Θ ⊆ , or ( )C Y ∗⊆ Θ . 
Then we have 
Lemma 1.1 ( )( )1 ,1k X+∆  is a 100( 1 α− )% confi- 

dence interval for 1 0kp p+ −  direct toward { 1 0kp p+ > } 
Proof: We have 

( ) ( )1
1 0( ) 100 1k

kP p p X α+
+ − ≥ ∆ ≥ − % 

{ } { }1 0 1 0 0k kp p p p+ +> ≡ − >  

Then if we compare set (0, 1) with ( )( )1 ,1k X+∆ , the 
result holds obviously. 

Lemma 1.2 For i = 1, 2,… k, let 

( ) ( )min( ,0)i
i lD Y X− = ∆  

( ) ( )max( ,0)i
i uD Y X+ = ∆  

Then 

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( , ) 0
[0, ) 0
( ,0] 0

i i i i

i i i

i i

D Y D Y D Y D Y
D Y D Y D Y

D Y D Y

− + − +

+ −

− +

 < <


= ≡
 ≡

 

is a 100(1-α )% confidence interval for risk difference 
0ip p− . 

Proof: we have the relationship 

( ) ( ) ( )( ),i i
i l uD Y X X⊇ ∆ ∆  

And, so, 

( )( )0 1i iP p p D Y α− ∈ ≥ −  

So ( )iD Y  is a 100(1-α )% confidence interval for 
0ip p− . 

Lemma 1.3 For i = 1, 2… k, let 

( ) ( ) ( ) ( )
( ) ( )

,
,

i i l u
i

i l u

D Y D Y
C Y

D Y otherwise
δ δ

δ δ
 ⊆= 
 

 

And, then ( )iC Y  is a 100(1-α )% confidence inter- 
val for 0ip p−  which direct toward ( ),l uδ δ . 

Proof: we have 
If ( ) ( ),i l uD Y δ δ⊂ , this implies that 

( )( )0 1i iP p p D Y α− ∈ ≥ −  

If ( ) ( ),i l uD Y δ δ⊄ , Since ( ) ( ) ( ),i i l uC Y D Y δ δ=   
We have 

( )( )0 1i iP p p C Y α− ∈ ≥ −  

of course the set ( ) ( ),i l uC Y δ δ⊆ , thus we finish the 
proof of this lemma. 

3. Stepwise Procedure 
If we arrange our experiment to an increasing dose of the 
new developed drug, and it can be answered the question 

0L i Up pδ δ≤ − ≤  in a stepwise fashion, continuing only 
when the answer is in an affirmative, until we find the 
first dose level whose toxicity response probability is not 
practical equivalent to the negative control group. In this 
paper we can also propose the stepwise confidence in- 
terval procedure for the binomial population as the fol- 
lowing fashion, 

Step 0: 
If ( )1 0k X+∆ > , 
Then we can assert the toxicity response probability 

between the positive control group and the negative is 
clinically difference, that is 1 0 0kp p+ − > , go to step 1. 

Else assert ( )1
1 0

k
kp p X+
+ − > ∆ , and then stop. 

Step 1: 
If ( ) ( )1 ,l uD Y δ δ⊆ , 
We can assert that the toxicity response probability of 

the first dose level is practical equivalent to the negative 
control group, that is ( )1 0 ,l up p δ δ− ∈ , go to step 2. 

Else declare ( )1 0 1p p C Y− ∈ , and then stop. 
…… 
Step k: 
If ( ) ( ),k l uD Y δ δ⊆ , 
We can assert that the toxicity response probability of 

the first dose level is practical equivalent to the negative 
control group, that is ( )0 ,k l up p δ δ− ∈ , go to step k + 1. 

Else declare ( )0k kp p C Y− ∈ , and then stop 
Step k + 1: 
Then we declare all the dose levels are safe, that is to 

say all the toxicity response probabilities are equivalent 
to the negative control groups and are tolerable. 

To better understand the performance of our stepwise 
procedure, suppose step M  ( 0 1M k≤ ≤ + ) is the step 
at which our stepwise procedure stops, which means the 
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subsequent comparison of more higher dose level is un- 
necessary, and find the maximum dose level whose tox- 
icity response probability can be considered practical to 
the negative control group. 

If M = 0, then we can declare that the sensitive of the 
experiment is not adequate, and a lower confidence is 
given to 0kp p− ; if 1 1M k< < +  then a confidence 
interval for 0Mp p−  which contains ( ),l uδ δ  is given, 
also the confidence interval for ( )0 ,i l up p δ δ− ∈ , i = 
1,…, k + 1, is given if 2M > ; finally, when M = k + 
1,which means all the dose levels are safe, then the con- 
fidence interval for 0ip p− , i = 2,…, k + 1,which con- 
tained in ( ),l uδ δ  is also given. 

We have the following theorem based on the procedure 
above: 

Theorem 1 Suppose our stepwise procedure stop at 
step M  ( 0 1M k≤ ≤ + ), that is to say the toxicity re- 
sponse probability is practical equivalent to negative 
control group until the M  dose level, and let ( )iC Y  (i 
= 1 ,…, k + 1) be the confidence interval define by 
Lemma 3.3, pP  {the incorrect decision we made until 
up to step M } α≤ . 

Note: when we perform our experiment in practice, a 
method should generate meaningful guarantee against 
incorrect decision, we can declare that the decision we 
have made is correct with probability higher than 1 α−  
which is pre-specified, thus we can control the family-I 
error rate so as to control the consumer’s risk, we can 
express it in the form 

{ }0
1

1
M

p l j u
j

P p pδ δ α
=

 < − < ≥ − 
 
  

Our method generates a confidence interval for 
0 , ( 1,..., 1)ip p i k− = +  with coverage of pre-specified 

probability in a stepwise fashion, continuing our step 
until the first one confidence interval which does not 
contain the ( ),l uδ δ  is achieved and then we stop our 
procedure, whatever may the joint distribution be, we can 
infer that the incorrect decision we made is less than the 
nominal level which is pre-specified, that is to say the 
family I type error rate is well controlled according to the 
theorem. 

4. Application Example 
Bovine growth hormone (bGH) is one of hormones 
which can promote cattle growth and milk secretion, and 
commonly it’s low in cattle body. But add bGH to cattle 
feed which makes people worrying that these hormones 
are harmful. So it long became the focus of debate. To 
clarify these questions, Juskevich and Guyer (1990) have 
made many experiments, last report to FDA (Food and 
Drug Administration) pointed that experimental data did 
not show it’s harmful when people drank the milk of 

these cow feeding with bGH. Here we will analyze a set 
of data which is a group of these cow be feeding with 
bGH. This experiment includes four level dose (labeled 
as level 1 - 4) and a placeb (labeled as level 0) oral take 
and another group of positive control group (labeled as 
level 5). After 90 days of continuing experiment, mice’s 
liver weight data as following Table 1: 

When two doses’ average response is equivalent, here 
significance 0.05α < . And so, we have 

1( ) ( 1.62,1.38)D Y = − , 2 ( ) ( 0.91,2.10)D Y = − , 

3 ( ) ( 1.44,1.56)D Y = − , 4 ( ) ( 1.86,1.14)D Y = − . 

Clearly, all ( )( 1, 2,3, 4 )iD Y i =  located in the interval 
of ( , )L Uδ δ , so actual equivalent be confirmed. This 
result is consistent with the expert’s opinion. That is, 
such milk wouldn’t do harm to people who drank it. 

5. Simulation Results 
A computer simulation study was conducted to compare 
the behavior of our method with Dunnett method and DR 
method. We fixed that 10.05, 5, 6, 0,ik nα µ= = = =  

1
n
σ

= , and consider monotone dose response assump- 

tion. 
We suppose that every three people as a group enter 

the test, every dose level use 2 groups of 6 people, ob- 
serving their reaction to medication. We assume their 
toxicity probability have known distribution and every 
dose level is effective, when more than one people of the 
three are toxic, we will stop the experiment, and we will 
make another group take the same dose level. When the 
lower dose level completed, we will make a group of 
three people take the next upper dose level, and continue 
this process. When this process stops, we make the pre- 
vious dose level as MED. Compare to the previous 
known MED dose level, we can know the error rate and 
the effectiveness of our method. We make the computer 
simulation 100 times for every case. Here following the 
computer simulation results (our method denoted by OM) 
as Table 2. 
 
Table 1. Effect of bGH on liver weight of mice (x ± s, n = 30). 

Groups Dose  
level 

Delivery  
method 

Dose 
(mg.kg−1) 

Liver  
weight 

Placebo  
group 0 po 0 16.55 ± 3.00 

bGH 

1 po 0.1 15.61 ± 1.47 

2 Po 0.5 15.74 ± 1.39 

3 Po 5.0 15.99 ± 1.94 

4 Po 50.0 15.10 ± 2.21 
Positive  
group 5 inj 1.0 20.36 ± 2.22 
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Table 2. Error rate of simulation of identify true MED. 

Mean response Interval MED OM Dunnett DR 

(0,1,2,3,4,5,6) [2.5 3.5] 4 0.23 0.31 0.25 

 [1.5 2.5] 3 0.22 0.30 0.32 

 [0.5 1.5] 2 0,28 0.28 0.27 

(0,0,0,2,2,4,6) [1.5 2.5] 5 0.18 0.20 0.21 

 [0.5 1.5] 4 0.20 0.18 0.22 

 [0 1.5] 3 0.24 0.23 0.31 

 [0 1.0] 2 0.25 0.24 0.27 

(0,0,3,4,4,6,6) [5.5 6.5] 6 0.16 0.14 0.18 

 [4.5 5.5] 5 0.20 0.22 0.30 

 [3.5 4.5] 4 0.26 0.25 0.26 

 [2.5 3.5] 3 0.12 0.15 0.14 

(0,0,0,5,5,6,6) [4.5 5.5] 5 0.38 0.40 0.31 

 [3.5 4.5] 4 0.40 0.36 0.30 

 [2.5 3.5] 3 0.33 0.34 0.35 

 [1.5 2.5] 2 0.32 0.41 0.37 

(0,0,0,0,5,6,6) [5.5 6.5] 6 0.33 0.25 0.24 

 [4.5 5.5] 5 0.29 0.22 0.23 

 [3.5 4.5] 4 0.26 0.23 0.25 

 [2.5 3.5] 3 0.44 0.42 046 

 
We can see the simulation results from Table 2. First 

case, we assume the mean dose response of 5 drug expe- 
riment dose levels (including negative control group re- 
sponse which we set as 0 and positive control group 
which we set as 6, so there are 7 dose levels in total) are 
1, 2, 3, 4, 5, when we set the interval is [2.5 3.5], if we 
assume the fourth dose level is the true MED and let 
computer randomly run 100 times according to certain 
rules, so the computer can automatically identify MED 
according to our method, then compare this MED with 
the pre-set true MED, we can get the error rate of our 
method, it is 0.23; while Dunnett method’s error rate is 
0.31;DR method’s error rate is 0.25. 

When we set the interval is [1.5 2.5], if we assume the 
third dose level is the true MED and let computer ran- 
domly run 100 times according to certain rules, we can 
see our method’s error rate , it is 0.22; while Dunnett 
method’s error rate is 0.30; DR method’s error rate is 
0.32. when we set the interval is [0.5 1.5], if we assume 
the second dose level is the true MED and let computer 
randomly run 100 times, we know that our method’s er- 

ror rate is 0.28; while Dunnett method’s error rate is 0.28; 
DR method’s error rate is 0.27.we also can see other cas- 
es simulation data from Table 2. we yet see case fourth 
and case fifth, when the situation is somehow extreme, 
for example, some dose levels’ responses are close to 
pre-set MED, or the deference of them is too big, 

6. Conclusion and Further Discuss 
From the examples, we can find that our method per- 
forms well. So our new method has much more confi- 
dence in practice. We hope that in the future, we will 
have further discuss about it, for example, with all sorts 
of dose response shape and then how to carry our method 
with previously designated confidents. 
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