
World Journal of Mechanics, 2013, 3, 339-349 
Published Online December 2013 (http://www.scirp.org/journal/wjm) 
http://dx.doi.org/10.4236/wjm.2013.39037  

Open Access                                                                                            WJM 

Dynamic Transverse Deflection of a Free Mild-Steel Plate 

Robert L. Bish 
Metallurgy Division, Aeronautical and Maritime Research Laboratory, Cordite Avenue, Maribyrnong, Australia 

Email: rpbish@gmail.com 
 

Received September 15, 2013; revised October 17, 2013; accepted November 12, 2013 
 

Copyright © 2013 Robert L. Bish. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of 
the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of the intellectual property 
Robert L. Bish. All Copyright © 2013 are guarded by low and by SCIRP as a guardian. 

ABSTRACT 

The problem analytically investigated is that a thin free plate of mild-steel struck at normal incidence by a flat ended 
rigid rod moving at high velocity. As in quasi-static deformation by extended slip, the strain-rate tensor is solenoidal 
and under dynamic loading conditions the Tresca yield criterion is modified so that the solenoidal property replaces the 
hypothesis of a viscoplastic overstress. Overstress then arises from inertial body forces and the high magnitudes found, 
in the following, for these forces are due to the influence of the propagating boundary. Two new theorems are proven. 
These theorems show that the deflection in the plate is entirely transverse, even in the case of indefinitely large punch 
deflections, and that the lines of equal transverse deflection in the plate are also principal lines of stress and strain-rate, 
as are the lines of steepest descent. A formula is obtained giving the inertial force opposing the punch as a function of 
the time and the theoretical deflection profile on a plate deformed by a flat-ended punch of circular section is presented. 
The stresses in the plate are then analyzed and it is shown that the stress inside the boundary in the direction of propaga- 

tion, equals 2 ,c  where   is the mass density of the plate material and the boundary wave propagates at speed c which, 

it is shown, is equal to one-half of the velocity of elastic waves of rotation in the solid concerned. 
 
Keywords: Plasticity; Dynamic Punching; Huygens Principle; Shear Elastic Waves; Elastic Rotational Wave Velocity; 

Lüders Bands 

1. Introduction 

Investigations [1-4] of the propagation of plastic defor- 
mation under dynamic loading conditions assume that 
plastic waves can be supported in metals. In most of the 
investigations of the dynamic loading of metals into the 
plastic range, the claim is also made of rate-dependence 
of the overstress [5,6], with the rate-dependence express- 
ed by an Equation of State [7]. Yet the very concept of an 
equation of state for metals has been criticized by a num- 
ber of prominent writers. The purpose of the present pa- 
per is to set forth the principles necessary to properly 
analyze the dynamic response of a thin freely supported 
plate of mild-steel struck at high constant speed by a flat 
ended rigid punch, assuming the plate to deform by means 
of the mechanism of extended slip [8-12].  

It has been experimentally shown [13] that, in the im-
pact of flat ended rods on steel plates, the target defor-
mation becomes progressively localized as the impact 
velocity increases and, in the following analysis, the 
outer boundary to the plastic domain propagates as a 

wave at constant velocity under constant stress according 
to Huygens principle. It will be shown that this bound- 
ary-wave travels at one-half of the velocity of elastic 
waves of rotation in the solid concerned. As in quasi- 
static deformation by extended slip [8-12], the strain-rate 
tensor within the plastic domain remains solenoidal.  

On the one hand, extended slip occurs following the 
elastic range in mild-steel, cold-worked pure iron and 
ARMCO iron [12]. It also occurs in cold-rolled copper 
and aluminium and in alloys such as 70/30 brass which 
have been sufficiently cold-worked so that their stress- 
strain curves exhibit definite points of yield in loading.  

On the other hand, during prior cold work, in metals 
such as fully annealed 70/30 brass, crystal grains within 
mutually isolated yielded domains rotate by means of 
internal double slip so as to present weak slip systems 
which parallel to the maximum shear surfaces associated 
with the externally applied constraints. Flow by means of 
extended slip commences, when sufficient cold work has 
been expended so that these domains have grown suffi-
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ciently to join, at which stage the yield “curve” of the 
material exhibits a definite point of yield in loading. The 
yield curve is generally bi-linear in the case of such sol-
ids [8-12] and yield is regulated by the Tresca yield cri-
terion [14] because the surfaces of extended slip are 
aligned with the surfaces of maximum shear associated 
with the external constraints and the Tresca criterion re-
quires the maximum shear stress to equal the static shear 
yield stress of the solid; but we shall amend this criterion 
so as to encompass the dynamic case directly.  

In the plastic deformation of a solid, dislocations can- 
not move at velocities beyond 2  the speed of elastic 
rotational waves in the solid, and this theoretical (relati- 
vistic) result [15] has been confirmed experimentally [16, 
17]. Similar results are obtained for mild-steel [18], where 
the asymptotically increasing stress associated with strain- 
rates, increasing above about  has been attrib- 
uted to phonon drag [19]. But dislocation velocity and 
shear strain rate remain proportional [17] if the disloca- 
tion density remains constant and the above effects in li- 
thium fluoride and mild-steel obviously owe their exis-
tence to a common cause.  

,c

5 10 3 1s ,

A consequence of a limiting value for dislocation ve-
locity is that when a flat ended rigid rod impacts a freely 
supported thin mild-steel plate, at normal incidence, the 
boundary to the expanding plastic domain of deformation 
will propagate outwards at a speed which is related in a 
simple fashion to 2 the velocity of elastic waves of 
rotation in the solid, while the boundary acquires a geo- 
metric form determined by Huygens’ principle. We begin 
with a determination of the speed of propagation of the 
boundary to the plastic domain.  

,c

2. Boundary Wave Velocity 

Shown in Figure 1 is a portion of a hypothetical propa-
gating boundary in a thin plate of mild-steel. The bound-
ary travels to the right at speed c. The domain to the right 
of this front is in a state of plane elastic stress, whereas to 
its left plastic flow occurs under biaxial strain by ex-
tended slip with the direction of zero strain-rate along the 
b-axis of Figure 2. Lüders bands advance into the elastic 
portion of the plate. 

Two Lüders sheets, ABCD and EFGH, are shown in 
Figure 1. The line of intersection of these sheets meets 
the upper and lower plate surfaces at M and N at 135˚and 
45˚ and the sheets intersect the upper plate surface form- 
ing traces AB and EH. Similar traces, or Lüders bands, 
can be seen on polished plates of mild-steel that have 
been deformed under plane stress in tension, where they 
are revealed by the Piobert effect, or they may also be 
revealed by etching [20]. The traces intersect on the 
plate surfaces at angles equaling  

 12sin 1 3 70 31  43   

 

Figure 1. Travelling elastic/plastic boundary in a plate. The 
lines AE and HB lie on the upper plate surface. 
 

 

Figure 2. An axial plane through a transversely deflected 
free plate deflected by a rigid flat ended punch. 
 

 1180 2sin 1 3 109 29 16 ,      while the Lüders 
sheets themselves intersect within the plate at right-an- 
gles. In Figure 1 classical Volterra dislocations travel in 
ABCD and EFGH, by extended slip, normal to the line 
MN at velocities limited by 2  The aim here is to de-
termine the speed with which MN advances along the bi- 
sector of 

.c

EMB  in a direction parallel to the plate sur-
face, i.e. along AE and HB. In the case of circular sym-
metry this velocity equals the rate of increase of the ra-
dial coordinate of N from the punch axis. 

To obtain the limiting velocity of dislocations resolved 
normal to MN in the plane which is normal to the plate 
and which bisects EMB , we must resolve the disloca-
tion velocity, 2  through 45˚. To find the velocity, in 
turn, of ABCDEFG along the plate we must, once again, 
resolve through 45˚. Therefore the velocity of the bound-
ary to the plastic domain in the plate equals 

,c

   2 2 2 2c c c  or  2 .           (2.1) 

Open Access                                                                                            WJM 



R. L. BISH 

Open Access                                                                                            WJM 

341



3. Principal Axes criterion must be modified to the dynamic biaxial strain 
form  

Strains 
  2 ,  0,t n bk               (3.1) 

Shown in Figure 2 is a section through a thin mild-steel 
plate struck at normal incidence by a rigid flat ended rod 
of arbitrary section. We define a unit vector; n normal to 
the distorted plate surface, a unit vector b along the 
closed contours of equal transverse deflection circulating 
about the punch and a unit vector t along the lines of 
steepest descent in the domain of plastic deformation. 
Letting  denote coordinates along the respective 

-lines, we can show that these are principal lines 
as follows. 

 , ,t n b
 , ,t n b

where k is the static shear yield stress of the plate mate-
rial, which equals one-half of the lower tensile yield stress 
as measured, at very low loading rates, in an ordinary 
testing machine. We obtain from the second of these 
equations, by Equation (A.1), of appendix A, and incom-
pressibility, 

  0,  0,t n b                 (3.2) 

where ij  denote the strain rate values, a single sub-
script again denoting a principal value. The state of strain 
to the left of the propagating front is bi-axial.  Letting the stress deviator tensor have values ,ij  sin-

gle subscripts signifying principal values, we propose 
that, in the case of dynamic deformation, the Tresca yield  

In general, letting V denote the velocity vector, the 
strain-rates are given by [8] 

 

, , ,

1 1 1
, ,
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                 (3.3) 

 
  ,VV B                (3.7) and from the second of Equations (3.2) and the third of 

Equations (3.3) since B is a constant unit vector, we have from the fourth 
of Equations (3.3) 

   0.
b





V

b                (3.4) 
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  
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     (3.8) 
But, because it follows that 0,b V

   0
b b

 
 

 
b V

V b             (3.5) 

and from the two equations above we get where θ is the angle of inclination of the plate normal to 
the punch axis. But V cannot vary in the B-direction, 
while the maximum rate of change of V is in the N-di- 
rection. From Figure 2 therefore, if Nh N  denotes an 
incremental distance in the N-direction with both t and n 
varying as N varies, 

  0.
b





b

V                  (3.6) 

The vector b b  is directed along the normal (in 
the sense of this term as it is used in Differential Geome-
try) direction to the b-lines, the N-direction. These lines 
are perpendicular to the punch axis. Thus the plate veloc-
ity at each point within the expanding plastic domain is 
directed precisely along the bi-normal direction to the 
b-lines, i.e. parallel to the unit vector B, which is parallel 
to the punch axis. This remains true no matter how large 
the plate deflections become and leads to the following 
theorem of plate plasticity; 

 cos ,  sint N n Nh t h N h n h N            (3.9) 

and on substituting into Equation (3.8) we obtain 

   0.tn                    (3.10) 

This same result may also be obtained from the fact 
that, in the case of a thin plate, the stress value tn  must, 
by Newton’s third law, equal zero over the free region of 
the plate and therefore, by Equation (A.2), if the plate is 
thin, 

Theorem 3.1 In the transverse deflection of a thin free 
plate deforming by extended slip, the velocity vector field 
within the plastic domain in the plate is directed along 
the bi-normals to the closed lines of equal transverse de- 
flection, no matter how great the deflection.  

    0.tn                    (3.11) 

By the flow rule (Equation (A.1)) Equation (3.10) then 
follows. We can now show that 0tn   as follows. Writing 

(Figure 2)  Additionally, by Equations (3.3) and (3.7) 
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         (3.12) 

and because V b   equals zero, by definition, and B is 
perpendicular to b it follows that  

0, 0.nb bt                  (3.13) 

Again, on the two plate surfaces over the free portion 
of the plate, the shear stresses vanish by Newton’s third 
law and therefore, by Equation (A.2),  

0.nb                    (3.14) 

By Equation (A.1), again, we then obtain the first of 
equations (3.13). The second of Equations (3.13) with 
Equations (A.1) and (A.2) shows that the t- and b-lines 
are lines of principal stress and strain-rate. We have 
therefore also proved a second theorem of plate plastic-
ity; 

Theorem 3.2 In the transverse deflection of a thin free 
metal plate obeying the Tresca yield criterion, the level 
lines of deflection and the lines of steepest descent in the 
plate are principal lines of stress and strain-rate. 

This theorem follows immediately from Equations 
(3.10) and (3.13) because the Tresca yield criterion (Equ- 
ation (3.1)) applies to a solid deforming by means of ex- 
tended slip. Equations (3.11) and (3.14) show us that the 
plate must be thin, although how thick it may be before 
departures from the theory creep in is a matter that must 
be decided experimentally. 

4. Deflected Configurations and Strains in 
Thin Free Plates 

4.1. The Deflection of a Free Circular Plate 

We consider a thin freely supported mild-steel plate 
struck by a flat ended rigid circular rod of radius a. The 
outer boundary (Figure 2) to the plastic domain propa-
gates outward at speed c and if t  d notes the time since 
impact 

e

                 (4.1) ,ct R a  

where R is the current radius of a cylinder, with its gen-
erators parallel to the punch axis, cutting the inner edge 
of the boundary  

It has been shown [8] that the velocity in the plate in 
the plastic domain may be obtained from Equation (A.10). 
By Equation (3.7), since B is a unit vector of constant 
direction, this equation, in the case of the circular plate 
and concentric circular punch of radius a, leads to the so- 
lution  

 

 
 0

ln
   if    ,

ln

0 if    

r R
U R

V a R

R r


 

  ,

r
       (4.2) 

where V is now the (transverse) plate velocity in the plas-
tic domain at radial distance r from the punch axis and 

0  is the punch velocity, which is assumed, here, to re- 
main constant.  
U

To obtain the plate profile at any time,  after im-
pact we must integrate the right-hand members of Equa-
tion (4.2) over time, taking care to distinguish points 
within the plastic domain from those outside of it. Thus 
we get for the transverse deflection  in the plate  

,t

 W r

    
  

 

0

ln
d

ln

R a c

r a c

r R
W r U t

a R





         (4.3) 

where the lower limit of integration is  t r a   c  be- 
cause no deformation can occur at a point in the plate 
until the outer boundary passes that point. Writing  

  d dt R c                 (4.4) 

we obtain 

     
 

0 ln
d

ln

R

r

r RU
W r R

c a R
             (4.5) 

and finally we make the substitution  

    ln ,u R a           (4.6) 

which leads to 

    
 

 ln
0

ln

ln
1  

R a
u

r a

r aU a
W r u

c u

    
  

 e d     (4.7) 

or 

 
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e
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u
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c u

    
  
    (4.8) 

Utilizing the Exponential Integral,  

     e
d ,

t u

Ei t u
u

              (4.9) 

we obtain  

  0 ln ln ln .
U r R r

W r R r a Ei Ei
c a a a

                 
       

 

  (4.10) 

Differentiating this equation with respect to r leads to 

  0 ln ln
W r U a R

Ei Ei
r c r a a

 r                     
   (4.11) 

and therefore 
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  0    for    .
W

r R
r





          (4.12) 

Differentiating once again we find that 

 
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1
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(4.13) 

so that, at the travelling boundary,  
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2
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2

1
.
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UW

c R R ar





       (4.14) 

4.2. Principal Strains and Strain-Rates for the 
Free Circular Plate 

A radial element of length, in the circular flat plate, 
after deformation, assumes the new length  

d ,r

   2
d dr W 2

 as the plate deforms, becoming thinner 
and the principal strain along the t-lines therefore equals 

     21
ln 1 .

2t W r          (4.15) 

To obtain the principal strain-rates we differentiate this 
equation with respect to the time, using Equations (4.4) 
and (4.11). We then have 

  1 2
2 ,tI n            (4.16) 
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where, from Equation (4.11), 
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From Figure 2 

   tan
W

r
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leading to 
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5. Inertial Forces and Principal Stresses 

5.1. The Inertial Force 

At contact an impulse 0  is delivered to the travel-
ling punch by the static plate, where m is the mass of a 
disc in the plate equal in diameter to the punch. Subse-
quently the force acting on the punch may be found as 
follows. 

mU

From Equations (4.2) and (4.4) 
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Due to the total absence of radial deflections a ring- 
shaped element of the plate of radii  and r r r  has 
thickness parallel to the punch axis exactly equal to T, 
the initial plate thickness. The mass of this elementary 
ring is equal to 2π ,Tr r   where   is the mass den-
sity of the plate material and the inertial reaction force 
due to this elementary ring equals 

  
 0
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TU c
F r r a r

R R a


        (5.3) 

Writing r a   and integrating, we obtain for the 
total inertial force opposing the punch  
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On carrying out the integration, the reaction force is 
found to equal 
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

(5.5) 

The value, 0 ,F of this expression, subsequent to the 
initial impulse, 0 can be obtained by means of 
L’Hopital’s rule for finding limits of expressions of the 
form 0/0. Thus we get 

,mU
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0

1 1

4π
lim lim

2 2 lnR a R a

R aTU ca
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R a


 

 
  

  


0

     (5.6) 

leading to 

   0 π .F TU ca             (5.7) 

5.2. Stresses 

The stresses in the plate at the propagating boundary are 
related to the first invariant of the stress tensor as fol-
lows. 

 

(the second of Equations (3.1) with Equation (A.2)),
b 

 

(5.8) 

0   (free  plate),n               (5.9) 
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        
2

Equations 3.1 , 3.2 , A.1 , A.2 and incompressibility .

t 
                 (5.10) 
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 Due to circular symmetry, Equation (B.6), of Appen-
dix B, is automatically satisfied in the case of the thin 
circular plate. But from Equation (B.5), inserting the n- 
component of the inertial body force per unit volume 
obtainable from Equation (5.2), we get 

R  
 

(5.19) 

and substituting for  from Equation (5.17) we finally 
obtain  

tnR

  
  0 2

ln cos
0.

ln

n b n t n

n bn tn

r a
U c

h n R R R R a

    


  
  



2 2,  at  . c r  R      (5.20)   
From Equations (5.8) - (5.10) we then get for the prin-

cipal stresses acting in the plate, at the boundary, (5.11) 

   2 2, c 2  at  .   t bR c r R         (5.21) and for points at the propagating boundary, clearly, 
0 and 0n nh n      so that, using Equations (4.12), 

(4.19) and (5.8) - (5.10) we get, from Equation (5.11), 6. Discussion and Conclusions 

 
  
  0 2

ln1 2
0.

lnbn tn

r a
U c

R R R R a
 
 

   
 

   (5.12) 6.1. Discussion 

In the above analysis, plasticity enters in the form of the 
solenoidal property of the strain-rate tensor [8-12], which 
is the mathematical expression of the new physical law 
regulating plastic deformation in solids that deform by 
means of the mechanism of extended slip. Combining 
this with the flow-rule associated with the Tresca yield 
criterion and introducing a hypothetical propagating 
boundary, an exact description, disregarding the very 
much smaller elastic deformation, can be made of the ge- 
ometric form of the plate at any instant during its defor-
mation. This analysis teaches us that, as with clamped 
and statically punched plates of mild-steel and ARMCO 
iron [9,12], as well as many cold-rolled sheet metals, the 
plate thickness measured parallel to the punch axis re-
mains equal to the original thickness of the un-deformed 
plate.  

From Equation (B.8) we also have, writing r for  ,bh

  
1 1

.
bn n

r

R r h n


 


             (5.13) 

From Figure 2 we see that the increment in r corre-
sponding to an increment in n with t fixed is given by 

sin ,      for constant,nh n r t         (5.14) 

and substituting into Equation (5.13) we then get 

  
sin

.
bn

a

R r a


                 (5.15) 

For tn we use the familiar formula found in works on 
the differential calculus,  

R

From the analytic treatment an exact description can 
then be made of the transfer of momentum from the 
punch to the plate and it has been assumed that the plate 
is heavily over matched. Thus we obtain the force acting. 
Then the stress equilibrium equations, which contain the 
above inertial force, are introduced. These equations 
show us that at the propagating boundary, on its plastic 
side, the normal stress equals the product of the mass per 
unit volume of the plate and  where c is the bound-
ary wave speed, which has been shown to equal one-half 
of the velocity of elastic waves of rotation in the solid. 

2 ,c

  
  

2 2

3 22

1
,

1tn

W r

R W r

 


  
          (5.16) 

the sign being positive because the centre of curvature 
lies in the first quadrant of the  From 
Equations (4.11), (4.14), (4.19) and (5.16) we therefore 
finally obtain 

-tangent plane.tn

 
30tan cos ,  

lntn

U ca a

R r r a
 

    
  

      (5.17) 

0tan ln ln .
U a R r

Ei Ei
c r a a

          
   





R

    (5.18) 

The very high magnitudes of the stresses inside the 
propagating boundary are due to the fact that plastic flow 
remains impossible at any point of the plate until the 
boundary wave has passed that point. The dissipation- 
rate in the plate is given by the first term in the right- 
hand member of Equation (C.6), of Appendix C, and in 
the case of the circular plate this term is initially zero. A 
simple calculation reveals the overriding dominance 

The radii of curvature  have been calcu-
lated for 

and bn tnR
3R a  , using Equations (5.15), (5.17) and 

(5.18), and are shown in Figure 3. Equations (5.12), 
(5.15) and (5.18) now lead to 
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Figure 3. Radii of curvature in the two principal tangent 
planes that are normal to the plate surface. The calculated 
results are for .3.0R a   

 
of the Kinetic energy term when punch velocities are 
measured in hundreds of meters per second. 

The theoretical deflection profile on a mild steel plate 
may be calculated using Equations (4.10)-(4.12). Figure 
4 shows the profile produced in a free plate of mild steel 
by a rigid circular rod, 0.5 in (12.7 mm) in diameter, 
moving at  with 1400 ms ,     1

2 2 1,625 ms ,c c    
15 μs after contact (Young’s modulus equals  

 the density of  
iron is 7.87 and Poisson’s ratio 
for iron has the value 0.280) [21]. The calculations were 
performed using tables [22] of the exponential integral. 

11 221.3 10 d 3 MNm ,  
 310 Kg/m


3

2ynes/cm 21.
3g/cm 7.87

In connection with experimental testing it needs to be 
noted that the gradient in the plate deflection while van-
ishing at the propagating boundary remains small for 
some considerable distance inside this boundary. More-
over, the thickness, T, of the plate measured parallel to 
the punch axis equals the initial plate thickness and the 
true plate thickness, T', is given by cos .T T   The 
testing of this formula constitutes a Metrological problem 
but provides a stringent test of the dynamic theory.  

In the punching of clamped plates at low velocities, 
Wen and Jones [23] assume Equation (4.2) for clamped 
plates impacted at low velocities (R is in this case is the 
radius of the clamping circle) on an empirical basis. In 
the present analytical treatment, however, flow in the  

 

Figure 4. Calculated profile on a mild-steel plate struck at 
normal incidence by a rigid flat-ended circular rigid rod, of 
radius 12.7 mm, moving at 400 15 μs after initial 
contact. 

,1ms

 
plate occurs by extended slip so that Equations (A.7) and 
(A.10) and the physical law on which these equations 
depend are applicable; Equation (A.7) always holds for 
mild-steel. By Theorem 3.1 or, indeed, Equation (3.1) 
and the flow-rule expressed by Equations (A.1) and (A.2), 
it follows that the state of strain in the plate is completely 
bi-axial so that there are no radial deflections, even for 
indefinitely large punch deflections. This is also true for 
the quasi-static punching of clamped plates [9]. 

The results of experimental investigations [18] suggest 
that in metals the overstress is a function of strain-rate 
and many writers have assumed that the strain-rate caus- 
es the overstress. Yet the strain-rate is an effect, it is not 
a cause. 

The physical law expressed by Equations (A.7) and 
Equations (A.10) and (4.2) derived from Equations (A.10) 
and (3.7), with the boundary wave hypothesis and the 
modified Tresca yield criterion (Equations (3.1)), lead 
directly and unequivocally to Equations (4.10) - (4.12), 
(5.5), (5.7), (5.15), (5.17), (5.18) and (5.21). It is pro-
posed here therefore, on the basis of the analysis, that the 
factor that influences the overstress and associated strain- 
rates can be no other than the limitation on dislocation 
velocity imposed by the finite speed of elastic rotational 
waves in the solid concerned. Furthermore the proposi-
tion is here set forth that it is this limit that gives rise to 
the propagating boundary, driven by the stress 2 ,c  
which in turn confines plastically deforming material 
causing the high associated inertial stresses. In the case 
of any given material flowing plastically by means of the 
mechanism of extended slip, it is further postulated that it 
is this effect, not phonon drag, that causes the curve of 
stress versus strain-rate, to turn becoming parallel to the 
stress axis as the associated dislocation velocities ap-
proach the speed of elastic waves of rotation in the solid 
concerned.  

Before we consider the conclusions that can be drawn 
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fr

 to a solid de-
fo

od on a plate, an inertial body 
fo

 dynamic loading the Tresca yield criterion 
m

6.2. Conclusions 

bove assumptions it has been shown 

dary to the domain of extended slip in the 
pl

n in 
th

al deflection (level-lines) in the 
pl

 within the domain of extend- 
ed

 propagating boundary in the plate the
di

rincipal stresses acting along the lines of
st

g the con-
ta

llowing the im-
pu

ndary 
th

om the analysis above, we should examine carefully the 
assumptions on which it rests. These are: 

(1) Equation (A.7) continues to apply
rming by extended slip not only under static but also 

under dynamic loading conditions, i.e., the strain-rate 
tensor is always solenoidal if plastic flow occurs by 
means of extended slip.  

(2) In the impact of a r
rce, arising from the action of the propagating bound- 

ary, produces an overstress. The boundary propagates 
because dislocations are unable to move at velocities 
beyond the speed of elastic waves of rotation in the solid 
concerned. 

(3) Under
ust be modified according to Equations (3.1). We note 

that at an edge on the static Tresca yield cylinder, the 
normal, which features in viscoplastic treatments, is not 
definable. 

On the basis of the a
analytically that for a rigid flat ended rod impacting a 
thin free plate of mild-steel, at normal incidence and con- 
stant velocity: 

(i) The boun
ate propagates normal to itself, consistently with Huy-

gens principle, at a velocity equal to one-half of that of 
elastic waves of rotation in mild-steel (Equation (2.1)). 
Lüders bands inside the plastic domain differ from those 
shown in Figure 1. The Lüders bands within the plastic 
domain are associated with biaxial strain. The strain along 
the b-lines circulates about the punch equaling zero. 

(ii) No matter how great the transverse deflectio
e plate is, the plate velocity vector field remains align- 

ed precisely with the punch axis (Equation (3.7) and 
Theorem (3.1)). Consequently the plate thickness meas- 
ured parallel to the punch axis remains precisely equal 
to the original true plate thickness and the velocities of 
points in the plate vary at their maximum rate along the 
N-direction (Figure 2). 

(iii) The lines of equ
ate and those of steepest descent are principal lines, 

(Equations (3.10), (3.13) and (3.11) and (3.14), (A.1) and 
(A.2) and Theorem (3.2)). 

(iv) The plate deflection
 slip in a circular plate is given by Equation (4.10) 

(Figure 4). 
(v) At the  gra-
ent in deflection vanishes (Equation (4.12)) and the 

strain at the propagating boundary equals zero (Equa-
tion (4.15)). 

(vi) The p  
eepest descent in the plate (t-lines) and along the lines 

of equal deflection, circulating about the punch axis 

(b-lines), are essentially inertial for impact velocities 
measured in hundreds of meters per second.  

(vii) The force opposing the punch followin
ct impulse, 0 ,mU due to inertia of the plastic domain 

in the plate, is by Equation (5.5).  
(viii) The initial force on the punch, fo

given 

lse 0mU  at contact, is given by Equation (5.7). 
(ix) he plastic side of the propagating bouOn t
e principal stresses equal 2  c  (normal to the boun- 

dary) and 2 2c  (circumfere  (Equations (5.21). 
The con ns drawn above may be subjected to r

ntial)
clusio ig-

or
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Appendix A 

A.1. The Flow Rule 

The flow rule for a solid deforming by extended slip may 
be expressed in the form,  

    1 2 1 2
2 2,I J T ,E           (A.1) 

where E is the Cauchy strain-rate tensor, while the 
stress-deviator tensor, T, is defined in terms of the stress 
tensor, S, by 

 , 1 3   T S δ S :δ,            (A.2) 

where 

  
1    if      ,

   0    if      

ij i j

i j

  

 
         (A.3) 

and 

2 2

1 1
,

2 2
I J E : E T : T.         (A.4) 

The vector notation is the same as in an earlier papers 
by the author [8,9]. 

From Equation (A.1) we have 

              (A.5) 2 T : T E : E

leading, by Equations (A.4), to  

  1 2 1 2
2 2 .J I           (A.6) 

A.2. Velocities 

From the equation  

                 (A.7) , E 0

which characterizes flow by extended slip [8-12], and 
(see Equations (3.3)) 

1

2
   E V V             (A.8) 

we obtain the differential equation regulating the trans-
verse velocity in a plate. In fact, from the incompressi-
bility condition  

0 V      (A.9) 

and Equations (A.7) and (A.8), we get 

                    (A.10) 2 V 0

and by Theorem 3.1, because B is a constant vector, it 
follows that the scalar transverse velocity, V, is harmonic, 
i.e. It satisfies the Laplace equation. This means that if 
boundary values of V can be specified on the two 
boundaries in the plate then the velocity field within the 
plastic domain is uniquely determined. 

Appendix B 

If C is a closed surface surrounding a domain, D, of the 
plastic zone, we have by Newton’s second law 

  d dv,
C D

A
t




 n S V        (B.1) 

where dv is an element of volume in D, n is the outward 
drawn unit vector normal to C and dA is an element of 
area on C, while and t   are, respectively, the mass 
density of the medium and the time, while S is the stress 
tensor and V denotes the velocity vector. Applying the 
Gauss divergence theorem, we obtain from Equation 
(B.1) 

dv dv
D Dt


 

 S V    (B.2) 

and because D is arbitrary we therefore have  

 .
t

 
  


V

S 0

.

    (B.3)  

Evaluating the divergence operator, as shown else-
where [8], we obtain from Equation (B.3) the differential 
equations regulating the principal stresses,  , ,t n b    
These are  

0,t n t b t t

t nt bt

V

h t R R t

    


   
   

 
    (B.4) 

0,n b n t n n

n bn tn

V

h n R R t

    


   
   

 
 (B.5)  

0,b t b n b b

b tb nb

V

h b R R t

    


   
  

 
  (B.6) 

where 

1 1 1
, ,n t

nt n n t tn t t n

h h

R h n h h t R h t h h n

1  
     

  
n t

t n 


 

  (B.7) 

1 1 1
, ,b n

bn b b n nb n n b

h h

R h b h h n R h n h h

  
     

1

b  
b n

n b 


 

  (B.8) 

1 1 1 1
, ,t b

tb t t b bt b t b

h h

R h t h h b R h b h h t

  
     

  
t b

b t 


 

  (B.9) 

are the curvatures of the principal lines in the local tan-
gent planes to the  , ,t n b -curves. For instance nt  is 
the radius of curvature of the n-line in the tangent plane 
formed by the local n and t vectors, while tn  is the 
radius of curvature of the t-line in the same plane. A sign 
convention applies to Equations (B.7)-(B.9) stating that 
the curvature of a line in any given tangent plane is posi-
tive if its centre of curvature lies in the first quadrant and 
is negative if in the second quadrant. 

R

R
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Appendix C 

Let a force, F, per unit area act over the surface C 
bounding a plastic domain D and let the element of area 
on C be dA and the element of volume in D be dv. Then  

   d d
C C C

d ,A A A   F U n S U n S V        (C.1) 

where U is the velocity vector outside of C and V de-
notes the velocity vector field in D. This equation holds 
because the normal stresses and the normal velocities are 
continuous across C. Transforming the integral on the 
right by the Gauss divergence theorem we get 
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But 
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by Equation (A.8) and the property ,ij ji   which fol-
lows from the equilibrium of moments of forces and 
Equations (A.1) and (A.2). From dynamic equilibrium 
Equation (B.3) with Equation (C.3) leads to 
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and we therefore finally obtain, from Equation (C.2), 
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It has therefore been shown that 
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The first term in the right-hand member of this equa-
tion is the energy dissipation-rate within the plastic do-
main, while the second term represents the rate of in-
crease of the kinetic energy delivered to the plastic do-
main. Calculation shows that the plastic dissipation-rate 
is negligible compared to the kinetic energy term in the 
case of a plate struck by a rod moving at velocities of 
several hundred meters per second. 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Open Access                                                                                            WJM 


