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ABSTRACT 

In this paper, we propose new fuzzy c-means method for improving the magnetic resonance imaging (MRI) segmenta- 
tion. The proposed method called “possiblistic fuzzy c-means (PFCM)” which hybrids the fuzzy c-means (FCM) and 
possiblistic c-means (PCM) functions. It is realized by modifying the objective function of the conventional PCM algo- 
rithm with Gaussian exponent weights to produce memberships and possibilities simultaneously, along with the usual 
point prototypes or cluster centers for each cluster. The membership values can be interpreted as degrees of possibility 
of the points belonging to the classes, i.e., the compatibilities of the points with the class prototypes. For that, the pro- 
posed algorithm is capable to avoid various problems of existing fuzzy clustering methods that solve the defect of noise 
sensitivity and overcomes the coincident clusters problem of PCM. The efficiency of the proposed algorithm is demon- 
strated by extensive segmentation experiments by applying them to the challenging applications: gray matter/white 
matter segmentation in magnetic resonance image (MRI) datasets and by comparison with other state of the art algo- 
rithms. The experimental results show that the proposed method produces accurate and stable results. 
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1. Introduction 

Clustering is one of the most popular classification me- 
thods and has found many applications in pattern classi- 
fication and image segmentation [1-6]. With increasing 
use of magnetic resonance imaging (MRI) for diagnosis, 
treatment planning and clinical studies, it has become 
almost necessary for radiological experts to make clinical 
diagnosis and treatment planning by using computers. Me- 
dical images tend to suffer much more noise than realis- 
tic images due to the nature of the acquisition devices. 
This of course poses great challenges to any image seg- 
mentation technique. In order to reduce noise, many de- 
vises increase the partial voluming, that is, they average 
acquisition on a thick slice. This leads to blurring the 
edges between the objects, which make decisions very 
hard for automatic tools [1]. The different acquisition mo- 
dalities, the different image manipulations and variability 
of organs all contribute to a large verity of medical im- 
ages. It can be safely said that there is no single image 
segmentation method that suits all possible images. This 
can pose great problems for any segmentation method. 
Therefore, several types of image segmentation techni-  

ques [3-8] were found to achieve accurate segmentations. 
Among them, the fuzzy clustering methods are of con- 
siderable benefits for MRI brain image segmentation 
[9,10] because the uncertainty of MRI image is widely 
presented in data. Also the MRIs contain weak bounda- 
ries i.e. pixels inside the region and on the boundaries 
have similar intensity; this causes difficulty working with 
methods based on edge detection techniques [7,8]. The 
fuzzy c-means clustering algorithms fall into two catego- 
ries: fuzzy c-means (FCM) [9] and possibilistic c-means 
(PCM) [10]. Many extensions of the FCM algorithm  
have been proposed to overcome above fuzzy clustering 
problem and reduce errors in the segmentation process 
[9-13]. There are also other methods for enhancing the 
FCM performance. For example, to improve the seg- 
mentation performance, one can combine the pixel-wise 
classification with pre-processing (noise cleaning in the 
original image) [11,13] and post-processing (noise clean- 
ing on the classified data). Xue et al. [13] proposed an 
algorithm where they firstly denoise images and then 
classify the pixels using the standard FCM method. 
These methods can reduce the noise to a certain extent, 
but still have some drawbacks such as increasing com- 
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putational time, complexity and introducing unwanted 
smoothing [14,15]. Liew et al. [16] proposed a spatial 
FCM clustering algorithm for clustering and segmenting 
the images by using both the feature space and spatial 
information. Another variant of FCM algorithm called 
the robust fuzzy c-means (RFCM) algorithm was pro- 
posed in [17]. 

Pham and Prince [18] modified the FCM objective 
function by introducing a spatial penalty for enabling the 
iterative algorithm to estimate spatially smooth member- 
ship functions. Ahmed et al. [8] introduced a neighbor- 
hood averaging additive term into the objective function 
of FCM. They named the algorithm bias corrected FCM 
(BCFCM). Liew and Yan [19] introduced a spatial con- 
straint to a fuzzy cluster method where the inhomogene- 
ity field was modeled by a B-spline surface. The spatial 
voxel connectivity was implemented by a dissimilarity 
index, which enforced the connectivity constraint only in 
the homogeneous areas. This way preserves significantly 
the tissue boundaries. Zanaty and Aljahdali [11] intro- 
duced a new local similarity measure by combining spa- 
tial and gray level distances. They used their method as 
an alternative pre-filtering to an enhanced fuzzy c-means 
algorithm (EnFCM) [20]. Kang et al. [21] proposed a 
spatial homogeneity-based FCM (SHFCM). Wang et al. 
[22] incorporated both the local spatial context and the 
non-local information into the standard FCM cluster al- 
gorithm. They used a novel dissimilarity measure in 
place of the usual distance metric. In those methods, ef- 
fect of noise can be overcome by incorporating possibil- 
ity (typicality) function in addition to membership func- 
tion. For that, the possibilistic c-means algorithm (PCM) 
was developed in [23]. This technique combines FCM 
and logic with some modification in its membership 
function for removal of noise from the MRI brain images. 
It has been shown to be more robust to outliers than FCM. 
However, the robustness of PFCM comes at the expense 
of the stability of the algorithm [24]. The PCM-based 
algorithms suffer from the coincident cluster problem 
that makes them too sensitive to initialization [24]. Many 
efforts have been presented to improve the stability of 
possibilistic clustering [25-27].  

Although the previous MRIs segmentation algorithms 
had suppressed the impact of noise and intensity inho- 
mogeneity to some extents, these algorithms still produce 
misclassified small regions. The problems of over-seg- 
mentation and sensitivity to noise are still the challenge. 
FCM and PCM are also very sensitive to initialization 
and sometimes coincident clusters will occur. Moreover, 
coincident clusters may occur during fuzziness processes 
which can affect the final segmentation. 

In this paper, we propose a new method called PFCM 
which combines the characteristics of both FCM and 
PCM algorithms by new weights for accurate MRIs  

segmentation. The proposed method avoids various prob- 
lems of existing fuzzy clustering methods, solves the 
noise sensitivity defect of FCM and overcomes the coin- 
cident clusters problem of PCM. In order to reduce the 
noise effect during segmentation, the proposed algorithm 
combines the objective functions of conventional FCM 
algorithm and PCM algorithm. To overcome the problem 
of coincident clusters of PCM and also for combination 
of the objective FCM and PCM, a new weight function is 
proposed that is based on Gaussian membership. In this 
method the effect of noise is overcome by incorporating 
possibility (typicality) function in addition to member- 
ship function. Consideration of these constraints can 
greatly control the noise in the image as shown in our 
experiments. The efficiency of the proposed algorithm is 
demonstrated by extensive segmentation experiments 
using real MRIs and comprising with other state of the 
art algorithms.  

The rest of this paper is organized as follows: The 
theoretical foundation of fuzzy c-means and possibilistic 
c-means is described in Section 2. In Section 3, the pro-
posed PFCM algorithm is presented. Experimental and 
comparisons results are given in Section 4. Finally, Sec-
tion 5 gives our conclusions. 

2. FCM and PCM Algorithms 

The FCM algorithm [10] is an iterative clustering method 
that produces optimal C partitions by minimizing the 
weighted within the group sum of squared error objective 
function FCMJ : 
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The parameter m is a weighting exponent for each 
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ness of the resulting classification; it is a fixed number 
greater than one. The objective function FCMJ  can be 
minimized under the constraint of .U  

The objective function FCMJ  is minimized with re-
spect to iju  and iv , respectively: 
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Although FCM and the modified FCM [18,20,22] are 
us
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where 

eful clustering methods, their memberships do not al-
ways correspond well to the degree of belonging of the 
data, and may be inaccurate in a noisy environment, be-
cause the real data unavoidably involves noise. To alle-
viate weakness of FCM, and to produce memberships 
that have a good explanation for the degree of belonging 
of the data. Wang et al. [22] relaxed the constrained con-
dition (3) of the fuzzy C-partition to obtain a possibilistic 
type of membership function and propose PCM for un-
supervised clustering. The component generated by the 
PCM corresponds to a dense region in the data set; each 
cluster is independent of the other clusters in the PCM 
strategy. The objective function of the PCM can be for-
mulated as follows: 
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is the scale parameter at the ith cluster, and 
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is the possibilistic typicality value of training sample jx  
belonging to the cluster  , 1,i m 

 
is a weighting fac-

tor called the possibilistic
Zanaty and Sultan [11] proposed a

 parameter. 
 method for auto-

matic fuzzy algorithms by considering some spatial con-
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Our validity function is proposed to use the intra- 
cluster distance measure, which is simply the distance 
between a centre of cluster A  and cluster centre B  
multiplied by the objective function of fuzzy. We can 
define the validity function as: 
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where  max B  and  min B
lusters 

 are the maximum and 
minimu  of cm values A  and B  respectively. 
While A Bd   is the distances of e data i th  x  (of number 
n) of A  union B  i.e. A B . This al rithm works 
iteratively the num  increases automatically 
according to the decision of validity function in Equations 
(9) and (10), more discussion can be shown in [11]. 

Typical of other cluster approaches, the PCM also

go
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 de-
pends on initialization. In PCM technique [25], the clus-
ters do not have a lot of mobility, since each data point is 
classified as only one cluster at a time rather than all the 
clusters simultaneously. Therefore, a suitable initializa-
tion is required for the algorithms to converge to nearly 
global minimum. 
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Pal et al. [26] improved this method by adding a new 
penalty to the objective function in order 
noise affects. The objective unction can be written as: 
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Rajendran and Dhanasekaran [24] define a clustering 
algorithm that combines the characteristics of both fuzzy 
and possibilistic c-means. Memberships and typicalities 
are important for the correct feature of data substructure 
in clustering problems. Thus, an objective function in 
this method that depends on both memberships and typi-
calities can be shown as: 

 

   

with the following constraints: 

 
1 1

1
c n

i ij
i j

t



 

  

2

1 1

, ,

,

FPCM

c n
m
ij ij j i

i j

J U T V

au bt d x v

 

       (18) 

 
1

1, 1, ,  and , 0
C

ij
i

u j n a b


      

 
1

1, 1, ,
n

ij
j

t i


     C

A solution of the objective function can be obtained 
e degrees of membership, 

typicality and the cluster centers are updated as follows: 
via an iterative process where th

 
 

  12 1
2

2
1

,
,1 ,1

,

m
C

j i

ij
k j k

d x v
u i

d x v





  
   C j n      

   
   (19) 

   1 12

1

1
ij

ij i

t
bd








                        (20) 

 

 
1

1

,1

n
m
ik ik k

k
i n

m
ik ik

k

au bt x
v i

au bt










C  






    

The above equation
influenced by all C cluster centers, ij

influenced just by the ith cluster center ci. The possibilis-
tic term distributes the tij with respect to every n data 
points, but not by means of every C clusters. T
membership can be described as relative 
determines the degree to which a data fit in to cluster in 
accordance with other clusters and is helpful in correctly 
la

the data 
ized and the 
mized [26]. 
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s indicate that membership uij is 
 while possibility t  is 

hus, 
typicality, it 

beling a data point. Possibility can be observed as ab-
solute typicality, it determines the degree to which a data 
point belongs to a cluster correctly, it can decrease the 
consequence of noise. Joining both membership and pos-
sibility can yield to good clustering result [28]. 

3. The Proposed PFCM Algorithm 

The choice of an appropriate objective function is a key 
to the success of cluster analysis and to obtain better 
quality clustering results; hence, clustering optimization 
is based on the objective function [28]. To identify a suit- 
able objective function, one may start from the following 
set of requissrements: the distance between 
points assigned to a cluster should be minim
distance between clusters should to be maxi
To obtain an appropriate objective function, we take into 
consideration the following: 
● The distance between clusters and the data points 

allocated to them must be reduced. 
● Coincident clusters may occur and must to be con-

trolled. 
● Selecting the initialization sensitive parameters for 

decreasing noises affect. 
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The desirability between data and clusters is modeled 
by the objective function. Hung et al. [29] provides a 

 prototype-driven 

n exponential separation strength between 

used for this parameter by 
ev

modified PCM technique which considerably improves 
the function of FCM because of a
learning of parameter. The learning procedure of is de- 
pendent on a
clusters and is updated at every iteration.  

As for the common value 
ery data for iterations, we propose a new weight func-

tion ijw  which is based on Gaussian membership of a 
point p. achieving every point of the data set has a weight 
in relation to every cluster. The usage of weights pro-
duces good classification particularly in the case of noisy 
data. The weight is calculated as follows: 
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Proof: The minimization of constraint problem mJ  
in Equation (23) under the given constraints ca
solved of using the Lagrange multiplier method. We de-
fine a new objective function with the constraint condi-
tion of (Equation (23)) as follows: 

n be 
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The process of finding the best clusters is continued to 

update the centres and the membership  using 
Equations (30) and respectively. 

The algorithm for carrying out PFCM for segmenta-
tion of MRI brain images can now be stated from the 
following steps: 

1) Select the number of clusters “C” and fuzziness 
factor “m” 

2) Select initial class center prototypes  iv v ; 

ic  
(31), 

 iju 1,2, ,i C  , randomly and ε ,a very small num
3) Find the value of wij using Equation (22) 
4) Update membershisp function uij using Equation 

(30) 
5) Update membership function tij using Equation (31) 
6) Update cluster center vi using Equation (32) 
7) Repeat steps 3 to 6 until termination , where “t” 

ber 

B
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is the iteration steps, .  is the Euclidean distance norm. 
8) Stop 

 

 and 9%) and radio fre ncy (RF) lev-
el

 6% salt and pepper noise and the image size 
is  the nex
Th con-
si

ed
ra

pa

4. Experimental Results 

The experiments were performed on three different sets
T1-weigthed and T2-weighted MRIs: in the first test, we 
used T1-weigthed and T2-weighted at various noise lev-
els (0%, 3%, 7% que

s (0% and 20%) as shown in Figure 1. T1-weigthed 
corrupted by

 129 × 129 pixels [30] (see Figure 2) is used in t. 
t includes simulated volumetric MRI e third se

sting of ten classes as shown in Figure 3. The advan-
tages of using digital phantoms rather than real image 
data for soft segmentation methods include prior knowl-

ge of the true tissue types and control over image pa-
meters such as modality, slice thickness, noise, and 

intensity in homogeneities. Through our implementation, 
we set the following rameters: m = 2, ε = 0.0001 and 

2  . The quality of the segmentation algorithm is of 
tation process. The com-
m as proposed in [31] is 

vital importance to the segmen
parison score S for each algorith
defined as follows: 

ref

ref

A A
S

A A





              (33) 

where A represents the set of pixels belonging to a class 
as found by a particular method and refA  represents the 
 

   
    (a)                         (b) 

Figure 1. MRI image
nal T2-weigthed. 

: (a) Original T1-weigthed, (b) Origi-

 

 
Figure 2. Original T1-weigthed (slice 91). 

reference cluster pixels. 

4.1. Noisy T1-Weigthed and T2-Weighted MRI 

The proposed technique is applied to T1-weigthed and 
T2-weighted MRI [32] (as shown in Figures 1(a) and (b)) 
at various noise levels (0%, 3%, 5% and 9%) and RF 
levels (0% and 20%). To prove the efficiency of proposed 
algorithm, several noise levels are added to these data sets, 
while S (Equation (33)) is evaluated for each segment in 
T1-weigthed and T2-weighted. Figure 4 shows the seg-
mentation output of T1-w and T2-weighted M I 
at noise lev evels (0% 

pose we have an image cont ining v segments, the accu-  

racy scores can be computed from:

eigthed R
els (0%, 3%, 5% and 9%) and RF l

and 20%). The average of segmentation accuracy scores 
(average) for each image is indicated in Table 1. Sup-

a

 1 .

v

i
i

S
average

v



  

Table 1 describes the average of the proposed method 
when applied to the test images. For example in Figure 4 
when noise = 0% and RF = 0%, average is equal to 
0.98% and 0.95% for T1-weigthed and T2-weighted MRI 
respectively. The obtained results show that the proposed 
algorithms are very robust to noise and i ensity homo-
geneities jdenbos 

lent 
gorithm has desired perform-

h
 

nt
 and inhomogeneities. According to Zi

rage > 0.7 indicates excel[32] statement that ave
agreement; the proposed al
ance in cortical segmentation.  

The best average is achieved for low noise and RF le-
vels, for which values of average are higher than 0.94. 
According to Table 1, the proposed technique is stable at 
88% at noise level 9% and RF 20%, this result is satis-
factory for segmenting the weak boundary tissues. 

4.2. T1-Weighted MRI Phantom 

We used a high-resolution T1-weighted MRI (with slice 
thickness of 1mm, 6% noise and RF 20%) obtained from 
the simulated brain database of McGill University [32] 
(see Figure 2). In this test, beside evaluating the pro- 
posed method and the most recent fuzzy c-means such as: 
Pal et al. [26], Wang et al. [22], Rajendran and D ana- 

 
Figure 3. 3D simulated data. 

Open Access                                                                                        OJMI 



E. A. ZANATY 132 

 

Figure 4. The segmentation results of T1-weigthed and 
T2-weighted MRI. 

Table 1. The segmentation average of slices (T1-weigthed 
and T2-weighted MRI) with different situations of noise 
level and intensity non-uniformity (RF). 

RF 0 20% 

Slices Slices 
Noise 

#51 #10 #51 #10 

0% 0.98 0.95 0.97 0.94 

3% 0.97 0.92 0.96 0.91 

5% 0.95 0.90 0.93 0.89 

9% 0.92 0.90 0.90 0.88 

 
sekaran [24] and Zanaty and Aljahdali [11] are imple- 
mented and applied on the test image to prove the effi- 
ciency of the proposed method. Five segments as shown 
in Figures 5-9 are obtained after applying these methods 
to this image. Evaluating the accuracy of the existing 
methods and the proposed method is shown in Table 2. 
Obviously, the proposed method acquires the best seg- 
mentation performance. The proposed method appears to 
be stable and achieve better performance than Pal et al. 
[26], Wang et al. [22], Rajendran and Dhanasekaran [24] 
and Zanaty and Aljahdali [11] by factor 12%, 8%, 7%, 
and 3% respectively.  

4.3. Simulated MR Data 

In this section, we experiment the proposed method and 
some existing methods such as: Pal et al. [26], Wang et 
al. [22], Rajendran and Dhanasekaran [24] and Zanaty 
and Aljahdali [11] when applied to the nine classes (slic- 
es# 51-59) from 3D simulated data (see Figure 3). Ta- 
ble 3 shows the corresponding accuracy scores (%) of the 
proposed and the existing methods for the nine classes. 
Obviously, the FCM gives the worst segmentation accu- 
racy for all classes, while other methods give satisfactory 
results. On the other hand, the method of Pal et al. [26], 
Wang et al. [22], Rajendran and Dhanasekaran [24] and 
Zanaty and Aljahdali [11] acquire the good segmentation 
performance in case of classes 9, 3, 4, and 8 respectively. 
Overall, the proposed method is more stable and achieves 
much better performance than the others in all different 
classes even with misleading of true tissue of validity 
indexes. 

5. Conclusion 

This paper has presented a new approach called possib- 
lsistic fuzzy c-means (PFCM) which combines FCM and 
PCM to overcome the weakness of both methods. The pro- 
posed algorithm is formulated by modifying the object e 

ed by other pixels and to suppress the  

iv
function of PCM algorithm to allow the labeling of a 
pixel to be influenc
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                (d)                  (e) 

tion using Pal et al. [26]. 

(a)                 (b)                     (c)  

re 5 ults menta
 

Figu . Res  of seg

 
                (d)                  (e) 

ion using Wang et al. [22]. 

(a)                 (b)                     (

Figure 6. Results of segmen

c)  

tat
 

 
                (d)                  (e) 

ndran and Dhanasskaran method [24]. 

(a)                 (b)                     (

Fig

c)  

ure 7. Results of segmentation using Raje
 

 
(a)                 (b)                     (c)                  (d)                  (e) 

Figure 8. Results of segmentation Zanaty and Ajahdali [11]. 
 

 
(a)                          (e) 

Figure 9. Results of segmentati n using the proposed method. 
 

noise effect during segmentation. To prove the efficiency 
of the proposed algorithm in segmenting the MRI images, 
the proposed algorithm has been applied to different data 
sets. The first set includes T1-weigthed and T2-weighted 
MRI at noise le
levels (0% and 20%
algorithm succeeded to se

noise levels from 0% to 9% and RF levels from 0% to 
20%). The accuracy average of output segmentation of 
T1-weigthed and T2-weighted MRI shows excellent per- 
formances exceeding 88% for complex image structures. 

oposed algorithm 
se while the score 

 superiority of   

  (b)                     (c)                  (d)       

o

vels (0%, 3%, 5%, 7%, and 9%) and RF Next test, we have experimented the pr
). We have noted that the proposed 

gment noisy MRI images (at 
using T1-weigthed MRI with 6% noi
accuracy of each segment is evaluated. The
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Table 2. Accuracy of th  segmentation results. 

Segments 

e

Methods 
a b c d e 

Average 

Pal et al. [26] 99.2% 50.12% 73.87% 71.73% 80.39% 75.08% 

Wang et al. [22] 99.0% 40.55% 87.23% 85.0% 79.65% 80% 

Rajendran and Dhanasekar 79.43% 

Zanaty Aljahdali [11] 81.23% 84% 

The proposed method 99.88% 77.47% 84.86% 88.43% 87.64% 87.66% 

an [24] 99.1% 73.98% 79.54% 66.54% 77.98% 

99% 80.07% 83.89% 74% 

 
Table 3. Segmentation accuracy (%) of the proposed and the existing methods on brain classes. 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Overall

Pal et al. [26] 68.55 63.14 82.83 78.88 73.96 67.87 96.21 23.27 97.97 72.52 

Wang et al. 93.54 76.98 

Rajendran and  
Dhanasekaran [24] 

78.6 66.87 94.11 78.42 

6

[22] 80.54 70.55 83.34 86..01 83.65 87.98 88.70 27.54 

5 68.87 69.54 95.99 85.87 71.98 73.87 

Zanaty Aljahdali [11] 76.87 68.77 65.087 84. 80.32 85.96 81.99 70.12 85.11 77.65 

The proposed method 84.76 80.45 83.09 94.34 88.56 70.12 96.64 67.34 97.98 84.81 

 

 

al. [22] by factor 7%, Rajendran and
by factor 8% and Zanaty and Aljahdali [11] by factor 3%. 
In addition, fo ulated 3D data (brain volume con- 
sists of ten slices), the average accuracy o he propos  
algorithm ha uated and comp  Pal 
[26], Wang et al. [22], Rajendran and Dhanasekaran [24] 
and Zanaty  [11]. We hav d tha
aver et ve an
provemen , 6%, and 7%  Pal et al.
[26], Wan dran and Dh karan
and Zana ] respectiv

Future research in MRI segmentation should strive 
oward improv

tation algorithms. This is particularly important as MRI 
imaging ming a r di  
clinica t is als orta t a ctic
segmen rithm sh eal lum
segm d of 2D slice b  se ati
since  in na
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the proposed algorithm is demonstrated by comparing its 
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