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ABSTRACT 

Scintigraphic images are generally affected by a Poisson type random noise which diminishes qualitatively and quanti- 
tatively the images. Restoration techniques aim to “find” an object from one (or several) degraded observation(s). The 
objective of the restoration is then to produce an image closer to the physical reality. So that the restoration is successful, 
it is very useful to know the nature of degradation. In this work, we present a planar scintigraphic acquisition chain 
modeling. This model takes into account the Poisson noise and its stationarity aspect. Then, we present a comparative 
study of the multi-resolution methods used to reduce the noise in scintigraphic images. Scintigraphy is a tool for ex- 
ploring functionally several pathologies: the ventricular ejection fraction, the renal clearance and the thyroid activity. 
Given the fact that scintigraphic images are strongly affected by noise, the objective in this work is to enhance scinti- 
graphic images for a reliable diagnosis and better orientation and understanding of the pathological phenomenon. This 
paper focuses on two main parts: the first deals with the degradation of model while the second takes into consideration 
the comparison of the multi-resolution methods for assessing the quality of scintigraphic images to reduce noise using 
wavelet, contourlet, curvelet, ridgelet and bandelet transformations. 
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1. Introduction 

The restoration aims to correct the distortions introduced 
during the acquisition or transmission of images. It tries 
to improve and to ameliorate the quality of the obtained 
image by reducing and eliminating the distortion. In or- 
der to well restore an image, it is necessary to explore the 
source of degradation in order to understand the main 
causes of image distortion. In this paper, we focus on 
restoring scintigraphic images. 

Scintigraphic images are extensively used in nuclear 
medicine and are considered as an important indicator of 
the functionality of some organs despite their bad resolu- 
tion [1]. Poisson noise is the overriding factor of degra- 
dations in scintigraphic images.  

In the literature, there are different methods to denoise 
images corrupted with Poisson noise. In fact, we mention 
that several methods are chosen so the transformed ran- 
dom variables are Gaussian with unit variance. 

These methods attain very high quality reconstruction 
results by using state-of-the-art denoising methods for 

the Gaussian noise model [2]. 
The degradations that an image undergoes are often 

stochastic [3]. Such degradations must be well studied. 
Thus, the modeling of the images acquisition process 
includes a precise simulation of physical phenomena and 
the instrumentation implied in this process. Modeling has 
an increasingly important role in medical imaging re- 
search and becomes an essential complement to theoreti- 
cal, experimental and clinical studies. Therefore, this task 
is too expensive and too difficult [4]. 

In this work, we present the different steps of scinti- 
graphic images acquisition in order to obtain a statistical 
model for planar scintigraphic images distortion. After 
this, a comparative study of many denoising multi-reso- 
lution methods is presented. In fact, many studies are 
concentrated in image denoising using wavelets trans- 
forms [1,6]. In short, all these studies perform at first the 
wavelet transform to the original image, and then apply 
some filters to the wavelet coefficients, and finally apply 
the inverse wavelet transform to obtain the denoised im- 
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age [7]. 
Wavelet thresholding is a signal estimation technique 

that exploits the capabilities of the wavelet transform for 
signal denoising. It has been studied extensively owing to 
its effectiveness and simplicity. A great deal of the lit- 
erature has been focused on developing the best uniform 
threshold or best basis selection. 

Few years ago, a member of the representation family 
of multi-scale geometric transform emerged. It was 
called contourlet transform and was developed to over- 
come the limitations of the traditional multi-resolution 
common representation such as curvelets and wavelets 
transforms. Therefore, the contourlet transforms have 
been efficiently used in medical image denoising pro- 
ducing higher quality recovery of edges [9].  

Another system of representation named rideglets 
pioneered in order to deal effectively with line singulari- 
ties in 2D [9].   

Recently, another bases are created, named “bandelet”, 
which is an orthogonal multi-scale transform. It can be 
interpreted as a warped wavelet basis [6].  

2. Planar Scintigraphic Aquisition Chain  
Modeling 

Scintigraphic image acquisition is assured using gamma 
camera, composed of: 

2.1. The Collimator 

It focuses on the different gamma sources onto the NaI 
crystal. This later detects the incoming gamma rays, and 
the Photomultiplier (PM) tubes and preamplifiers, with 
converting the light produced by the interaction of the 
gamma ray and the crystal into an electronic signal [10]. 

The basic principles of the Gamma Camera are closely 
related to the purpose of a radionuclide imaging which is 
to obtain an image of the distribution of a radioactively 
labeled substance within the body after it has been ad- 
ministered to the patient [11]. 

The collimator, which can be of different types, is 
closer to the imaged object and sets the acceptance angle 
for detection of the emitted gamma photons. The paral- 
lel-hole collimator is the most popular one and it consists 
of a lead plate with closely packed parallel holes, usually 
with hexagonal form. The lead “walls” between the holes 
are called septa. The hole diameter, collimator thickness 
and septal thickness depend on the resolution/sensitivity 
and the photon energy range for which the collimator is 
optimised. In most cases the hole diameter is a few mil- 
limetres, while the collimator thickness is a few centi- 
meters [12]. 

To obtain an image with a gamma camera, it is neces- 
sary to project -rays from the source distribution onto 
the camera detector. Gamma rays cannot be focused; thus, 

a “lens” principle similar to that used in photography 
cannot be applied. Therefore, most practical -rays im- 
aging systems employ the principle of absorptive colli- 
mation for image formation. 

Four basic collimator types are used with the gamma 
camera: pinhole, parallel hole, diverging, and converging. 
Parallel-hole collimators are drilled or cast in lead or are 
shaped from lead foils. The lead walls between the holes 
are called collimator septa. Septal thickness is chosen to 
prevent  rays from crossing from one hole to the next. 

The parallel-hole collimator projects a -ray image of 
the same size as the source distribution onto the detector 
[10]. 

2.2. The Crystal 

The detector material in the gamma camera is generally a 
NaI(Tl)-crystal. It is coated with a thin Al-layer at the 
front side and the edges to protect from outside light and 
moisture. The crystal is typically about 1 cm thick, which 
gives a high detection probability for photons with ener- 
gies up to a few hundred keV. When a gamma photon 
interacts in the crystal, light photons are created, and the 
number of light photons is proportional to the energy 
deposited in the crystal. The rear side of the crystal is 
optically coupled to a light guide of glass, which protects 
the crystal and leads the light photons to an array of 
photomultiplier tubes, which are optically coupled to the 
light guide [12]. 

2.3. The C-PMs 

The PM tube is an electronic instrument for generating 
an electrical pulse when interacting with a faint light. It is 
a vacuum tube containing a photocathode and a sequence 
of dynodes (10 to 12). The entrance of the tube is cov- 
ered on the whole of its surface with a substance light 
emitting such as the CsSb which ejects electrons inter- 
acting with optical photons [13,14]. Each dynode is suc- 
cessively maintained at a high voltage. For each 3 - 10 
optical photons reaching the photocathode, 1 to 3 photo- 
electrons are released. These electrons are accelerated 
towards the first dynode by a focusing grid, which re- 
lease few secondary electrons. This electron multiplica- 
tion is repeated until the electrons are captured by the 
anode with a multiplying factor of 106 to 107. The final 
amplitude of the pulses is proportional to the intensity of 
optical photons and then to the energy of the radiation 
deposited in the crystal. 

An array of photomultiplier tubes; coupled optically to 
the back face of the crystal and arranged in a hexagonal 
pattern to maximize the area of the scintillation crystal. 

Typical PM tube sizes are 5 cm diameter. A typical 
gamma camera has between 30 and 100 PM tubes which 
are encased in a thin magnetic shield to prevent changes 
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in the gain due to changes in the orientation of the 
gamma camera relatively to the Earth’s magnetic field. 
The amount of light detected by a particular PM tube is 
inversely related to the lateral distance between the in- 
teraction site and the center of that PM tube [11]. 

2.4. Acquisition Chain Modeling 

For noise modeling in planar scintigraphy, the scinti- 
graphic image acquisition chain must be first described. 
Firstly, the patient receives the radiotracer dose and be- 
comes then a gamma ray transmitter. These rays are 
transmitted through the body of their way back to the 
detector head gamma camera. They are then introduced 
into a collimator which absorbs an important part of the 
diffused rays (according to the size of the collimator 
holes and septas) and sometimes useful rays (Figure 1).  

The interaction of a transmitted radiation with the 
scintillator crystal gives rise to optical photons. Then 
these photons will be applied to an array of photomulti- 
pliers (PMs). The signals at the output of different PMs 
will be digitized using an Analog-Digital Converter 
(DAC) and a calculation by weighting allows the loca- 
tion of the emission point of each gamma photon and 
consequently the image reconstruction (Figure 1).  

To summarize, the noise will depend essentially on the 
output phase of the organism, collimation phase, scintil- 
lation phase and photo-multiplication phase. 

In this modeling approach, the considered image is 
associated with a vector having N components where N 
is the number of pixels of the original image.  

In nuclear imaging, we generally work with low emis- 
sion levels. Thus, a -ray source is modeled by a punctual 
and uniform process of Poisson. 

This simplified model is inspired from the quantum 
nature of the gamma radiation. Subsequently, we adopt a 
constant exposure time (time required to complete an 
image acquisition) and this time is normalized to the unit 
value. So, if  represents the average number of emitted 
 

 

Figure 1. Diagram of the chain of acquisition in scinti- 
graphic planar. 

photons, the probability of observing k photons at the 
unit time interval is given by: 
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A planar scintigraphy with parallel hole collimator is 
considered. Knowing the quasi-isotropic nature of the 
gamma ray emission, we only consider the gamma pho- 
tons that can transmit through the collimator and are 
likely to contribute to the reconstruction of the final im- 
age. In this case, we consider s an elementary surface 
parallel to the collimator and located at the emitting 
structure and  the number of photons crossing s during 
the exposure time. s is considered as the surface of the 
pixel and  represents the measured at the pixel position. 

Enumeration of  is uncertain because of the existence 
of a Poisson type noise (distinguished in the acquired 
image granular aspect). This noise is a random variable 
depending on the value  of each pixel. Knowing that  
is a Poisson random variable with parameter , then,  is 
characterized by an average equals to zero and a variance 
value . 

The original image formed before entering the colli- 
mator is described by the vector a  (Figure 1). The 
value of the ith pixel i  is proportional to the number of 
photons  passing through the region i

a
s corresponding 

to the pixel. The i  photons passing across the tissues 
are attenuated depending on the thickness and the at- 
tenuation coefficient of the traversed structures. 

Assuming i  the probability that i  photons are 
transmitted across the body, among i  photons (trans- 
mitted by the emitting structure) is given by the binomial 
distribution with the parameter : 
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Therefore, the probability of observing i  photons 
passing across the tissus is a random Poisson-type proc- 
ess of parameter 

a
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In this study, we assume the deserved image a  has 
the Poisson-type as the only some of the degradation, and, 
the components i  (forming the image  ) are statisti- 
cally independent. 

The image a  is then transmitted through the colli- 
mator. Denote c  the image obtained at the output of the 
collimator (Figure 1) and  is the average transmis-
sion coefficient given by: 



1
s

s
 
                  (4) 

with S is the section of the collimator holes and s  the 
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surface of the septa. For a collimator low energy-high 
resolution, we have . 90% 

i

Using the same modeling formalism, the probability of 
having i  photons at ith pixel follows a Poisson distri- 
bution with a parameter: 

c

 i                  (5) 

The image c  is then presented at the input of the 
scintillator crystal where the interaction of the gamma 
photons with NaI(Tl) gives rise to optical photon packets. 

The interaction with the crystal depends on its thick- 
ness and its attenuation coefficient. The image describing 
the distribution of gamma photons interacting in the 
crystal “Figure 1” is denoted e . If   denotes the ab- 
sorption coefficient of the scintillator crystal (around 
90% for gamma rays of Tc99m traversing a crystal of NaI 
(Tl) of thickness 1.2” [15,16]), then, the probability of 
having i  photons at the ith pixel also a random process 
following a Poisson type with a parameter:  

e

i i i pi                (6)  

The flux of  photons being converted into an optical  
photon flux, we denote    1, ,i i N

b b



 the vector asso-  

ciated with the image describing the distribution of visi-
ble photons at the output of scintillator crystal, where  
is the number of optical photons at ith pixel.  

ib

Notice that: 

  
1

1, 2, ,
N
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j
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
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where  j
ib denotes the number of photons issued from 

the jth pixel of the image e  emitted under a certain an-
gle making them landing on ith pixel of the image b . 
Using the same previous formalism,  j

ib
h

follows also a 
Poisson distribution with parameter ij j  where ijh  is 
called the coross-pixel parameter ( ij is a random vari- 
able following a binomial distribution). 

h

Therefore,  is also a Poisson process of parameter ib

i  such that: 

 
1 1

1,2, ,
N N

i ij j ij j
j j

h h i    
 
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This relation can be written in a matrix form as: 

H       

with  

ijH h                     (9) 

The matrix H constitutes a characteristic representa-
tion of the scintillator crystal ij  represents the emis-
sion probability of scintillation photons in a given direc-
tion. Finally, the process of photomultilication allowing 
the electronic reading of the image 

h

b  although PMs 

attain the spatial resolution (size of the pixel of b  is 
lower in keeping with windows of entry of PMs) thing 
then us will not currently evoke. At the output of the 
planar scintigraphic acquisition chain, the considered 
image is in fact the image b  formed at the exit of the 
crystal scintillator. 

Based on the hypothesis of independence of the i  
coefficients, we can consider that each pixel of the de- 
graded image b  is modeled by the statistical Poisson 
process where the parameter is a linear combination of 
the original parameters i .  

The pulse output of the PM remains weak and needs a 
boost. The amplification in this case is also linear to pre- 
serve the relationship between the output pulse and the 
energy deposited in the crystal detector. The preamplifier 
circuit-amplifies the pulses of a few millivolts to a few 
volts [13]. 

The analyzer pulse is an electronic device which al- 
lows the counting of pulses within a certain amplitude 
domain. This selective counting saves only the radiation 
in a given energy range to eliminate background noise 
and the radiation released. This energy range is called 
window. It is centered on the electric photo peak. 

The light received by each photomultiplier depends on 
the position relative to the emission point (for interaction 
Shelf  in the crystal). This amount of light is propor- 
tional to the solid angle of each PM “sees” the scintilla- 
tion [5]. 

The current flowing out of each PM is proportional to 
the intensity of the light source and the solid angle under 
which the photocathode is viewed.  

An analog computer combines the electrical pulses 
from different PM and thus determines the coordinates of 
the point of impact of a  photon [17]. 

For each photon, we calculate the seven nearest 
neighbors. 

Thus, within the PM, the photons will activate m elec- 
trons (with m  n), after multiplying, they give 106 m 
electrons. To obtain 7 pieces of information for the im- 
ages  I1, I2, , I7.

Finally, all the algorithms of noise assessment in the 
images are based on the knowledge of the type of noise 
analysis. Thus we consider the problem of identifying the 
nature of the noise from the image observed to imple- 
ment the algorithm processing or the analysis of the most 
appropriate image. Thus our study of the image acquisi- 
tion chain allows us to infer that the model we have ob- 
tained is Poisson. But in the literature, they associate a 
Gaussian Model to Poisson noise. Thus the problem is to 
estimate the noise variance. 

Now that we have explored various causes of degrada- 
tion of a scintigraphic image, we propose to conduct a 
comparative study to select the best method to improve 
the quality of these images. To do this, we place our- 
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selves in the context of a restoration where degradation is 
supposed to be only due to noise. It is then a filtering 
problem. Multiresolution methods have clearly marked 
the superiority over conventional methods. At this stage, 
we propose a comparative study to select the best me- 
thod. 

3. Denoising Using Multiscale Approach 

During the previous decade, there was an abundant in-
terest in the wavelet methods for noise removal in signals 
and images. In recent years, there is a new multiscale 
transform based on wavelet transform. A wavelet is a 
localization function of the mean equal zero. Its trans- 
forms always incorporate a result in a pyramidal repre- 
sentation and are computationally efficient. 

In addition, wavelets transforms also allow an exact 
reconstitution of the original data thanks to sufficient 
condition in the progressive case when the wavelet 
transform is the wavelet coefficients which allow the 
reconstitution of the zero mean. 

The reason behind being named as wavelet is that its 
functions are often wavelike but clipped to a finite do- 
main [18]. 

Actually using the wavelet technique to treat and to 
overcome denoising problems proves its ability to satisfy 
the compromise between smoothing and conserving im- 
portant features. The observed data are modeled as a 
signal embedded in noise. In cases where the noise is 
additive and Gaussian, the denoising problem becomes in 
the way to determine the optimal wavelet basis which 
concentrates the signal energy in a few number of coeffi- 
cients and thresholds the noisy ones. But in other various 
experimental fields, especially those based on techniques 
where the detection includes a counting process, the data 
is modeled as a Poisson process. This is the case of scin- 
tigraphic images. Thus, many techniques were consid- 
ered for the purpose of recovering the underlying inten- 
sity structure. Unlike the Gaussian noise, the Poisson 
noise depends on the image intensities. Consequently, the 
wavelet shrinkage is not as suitable for this context as the 
curvelet transform [9]. 

In fact adding to the wavelet, there are other frequency 
transforms which are widely used for denoising such as 
the curvelet. Just like the wavelet, the curvelet transform 
is a multiscale transform with frame elements indexed by 
scale and location parameters. But it has directional pa- 
rameters and its pyramid includes elements with a very 
degree of directional specificity.  

Morever, the curvelet transform is based on certain 
anisotropic scaling principle which is quite different from 
the isotropic scaling of wavelets. All of these features are 
extremely stimulating and helpful for the development of 
improved denoising algorithms [19].   

In addition, the contourlet transforms constitute a rela- 

tively new family of frames that are designed to represent 
edges and other singularities. 

The main idea behind curvelet is to represent a curve 
as a superposition of functions of various lengths and 
widths obeying the scaling law width  length2 [8]. 

It can sparsely characterize the high dimensional sig- 
nals which have line, curve and hyperline singularities 
and the approximation efficiency is one magnitude order 
higher than wavelet transform [20]. In addition to the 
wavelet and the curvelet, we have the contourlet trans- 
form which appeared to overcome the limitations of the 
wavelets 

In addition to the wavelet and the curvelet, we have 
the contourlet transform which appeared to overcome the 
limitations of the wavelets. It proposed an efficient direc- 
tional multiresolution image representation [18]. It has 
been developed by Do and Vetterli. The contourlet is 
based on an efficient 2D multiscale and directional filter 
that can deal effectively with images having smooth 
contours [21]. Therefore, it is able to capture contour and 
fine details in an image. Its approach starts with the dis- 
crete domain construction and then sparse expansion in 
the continuous domain [22]. In fact, contourlet transform 
can offer a sparse representation for piecewise smooth 
images [23]. 

It consists of two steps which are the subband decom- 
position and the directional transform. A Laplacian py- 
ramid is first used to capture point discontinuity into a 
linear structure. The overall consequence is an image 
expansion using basic elements like contour segments, 
thus the term contourlet transform being coined [18]. 

Consequently, it was proved that the contourlets have 
elongated supports at various scales directions and aspect 
ratios. Therefore, contourlets are good at capturing direc- 
tional features in images [21]. They have better perfor- 
mance in representing the image such as lines, edges, 
contours and curves than wavelets because of their direc- 
tionality and anisotropy [18]. 

Another transform which has the same purpose as well 
as the curvelet and the contourlet is the ridgelet which 
was developed over several years to break the limitations 
of the wavelet transform [24]. 

To reach such a goal in higher dimensions, Candès and 
Donoho pioneered this new system of representation 
which deals effectively with line singularities in 2D. The 
idea is to map a line singularity into a point singularity 
using the Radon transform. Then, the ridgelet transforms 
can be used to effectively handle the point singularity in 
the Radon domain. Their initial proposal was interested 
for functions defined in the continuous R2 space. For 
practical applications, the development of discrete ver- 
sions of the ridgelet transform that lead to algorithmic 
implementations is a challenging problem. Some article 
took the redundant approach in defining discrete Radon 

Open Access                                                                                        OJMI 



F. MAKHLOUF  ET  AL. 

Open Access                                                                                        OJMI 

121

where MSE is the mean square error between the original 
and the denoised image with size I × J. The PSNR is 
calculated between the original image and the treated 
image. 

transforms that can lead to invertible discrete ridgelet 
transform with appealing properties [24]. 

Recently, the ridgelet transform has been successfully 
used to analyse digital images and applied in image de- 
noising [25]. Another criterion is the SSIM (Structural Similarity) 

which is the measure of similarity between two digital 
images. It was developed to measure the visual quality of 
a compressed image, compared to the original image. 
The SSIM measures the structural similarity between two 
images, rather than pixel by pixel. 

Finally, it is worth mentioning that it is important to 
know the geometrical structures of the images in order to 
exploit them because the geometry defines the changing 
zones and gives important tracks for human perception 
[26]. That’s why there are several transforms that tackle 
this matter such as the previously mentioned contourlet 
and this new one known as the bandelet transform. This 
latter is an orthogonal, multiscale transform able to pre- 
serve the geometric content of images and surfaces. 

Table 1 illustrates the denoising results of Hoffman 
image. The first step is to add noise to the Hoffman im- 
age. Then we compute and measure the PSNR of this 
same image using the wavelet, curvelet contourlet, ridi- 
gelet and bandelet domains. In fact, the orthogonal bandelets use an adaptative 

segmentation and a local geometric flow, which is well- 
swited to capture the anisotropic regularity of edge struc- 
tures. They are constructed with a “bandeletization” which 
is a local orthogonal transformation applied to wavelet 
coefficients [22]. 

In Figure 2, we show the recovered images after de- 
noising with sigma = 10. 

We compute the SSIM to the Hoffman image in Table 
2. 

Finally, we present in Figure 3, the results obtained in 
a real scintigraphic image. We note that the applications of which also have the 

potential in the bandelet transform in the image process- 
ing thanks to the photon-counting characters. 

After applying wavelet, curvelet, contourlet, ridgelet 
and bandelet transform to the Hoffman image, we com- 
pared the different obtained results. Moreover, the visual 
quality of various directional texture region of Hoffman 
image is also important and show that bandelet transform 
gives better visual quality result image.  

However, with all the obtained results of the previous 
mentioned techniques, the image denoising problem re- 
mains a great challenge demanding other techniques. 

So, I will test the performance of all these methods, 
and the new section will present results. 

I have seen almost the same results for the scinti- 
graphic image. In fact I’ve worked on several images but 
I’ve presented a single sample: scintigraphy in small 
animals. 

To compare the performance of each of these trans- 
formations on images, we collect two types of image. 
The first is the phantom image of Hoffman is certainly 
the most commonly used in nuclear medicine and widely 
used for evaluating denoising methods. The second is a 
real scintigraphic image. These images were denoised us- 
ing Wavelet (WT), Curvelet (CUT), Contourlet (CONT), 
Ridegelet (RT) and Bandelet transforms (BT). 

So we can conclude that the bandelet approach boosts 
the PSNR value and helps obtaining high visual quality 
result images. 

4. Conclusion To evaluate the obtained results, we used a set of ob-
jective and subjective criteria. We have presented the acquisition chain in planar scinti-

graphy, which takes into account the Poisson noise and 
its non-stationary. This prompted to address the problem 
of restoration of the scintigraphic image under a theo-
retical aspect, for which we have adopted the Poisson  

As an objective criterion, we use the PSNR, defined 
by: 

2255
PSNR 10log10 dB

MSE
          (10) 

 
Table 1. PSNR values of denoising for Hoffman image. 

PSNR value in dB 
Level noise 

WT CUT CONT RT BT 

10 28.76 28.89 27.07 28.74 32.36 

15 26.98 26.95 25.14 25.70 29.94 

20 25.59 25.72 23.77 23.47 28.45 

25 24.33 24.85 22.97 21.79 27.39 

30 23.19 24.13 22.20 20.35 26.38 
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The original image                  Noisy image (Gaussian Noise)                Denoised image (Wavelet) 

PSNR = 28.76, SSIM = 0.79 

 
Denoised image (Curvelet)                Denoised image (Contourlet)                Denoised image (Ridgelet) 

PSNR = 28.89, SSIM = 0.88                PSNR = 27.07, SSIM = 0.78                PSNR = 28.74, SSIM = 0.65 

 
Denoised image (Bandelet) 

PSNR = 32.36, SSIM = 0.94 

Figure 2. Denoising of Hoffman Image with gaussain noise. 
 
model at various stages of construction of the image in 
planar scintigraphy. 

For the comparative study of multi-resolution methods 
to reduce noise in scintigraphic images, we can assure 
that the bandelet transform outperforms the wavelet, the 
curvelet, the contourlet and the ridgelet transform. It can 
provide high PSNR values and remove the Gaussian 
noise from images with the best degree of efficiency. The 
performance of the denoising algorithm using the bande 

let transform also performs well even in the cases where 
we have images with very high frequencies.  

For the results obtained on the real images, such as the 
scintigraphic image of small animals, we can confirm 
that the images with best qualification were always those 
processed with the bandelet transform. 

For the choice of threshold, we applied the Donoho 
threshold. But it would be interesting to test adaptive 
thresholds. Indeed, the interest of a suitable base is that 
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Table 2. SSIM values of denoising for Hoffman Image. 

Index simalirity (SSIM) 
Level noise 

WT CUT CONT RT BT 

10 0.79 0.88 0.78 0.65 0.94 

15 0.68 0.84 0.74 0.52 0.92 

20 0.59 0.82 0.72 0.44 0.90 

25 0.52 0.79 0.70 0.38 0.89 

30 0.47 0.78 0.68 0.34 0.87 

 

 
The original image                 Denoised image (Wavelet)               Denoised image (Curvelet) 

 
Denoised image (Contourlet)             Denoised image (Ridgelet)               Denoised image (Bandelet) 

Figure 3. Denoising of scintigraphic image real. 
 
the vectors are chosen according to the considered signal. 
For a noisy signal, the adapted basis vectors are more 
suitable to correlate the noise. 
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