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ABSTRACT 

When every element of a random vector  1 2, , , nX X X X   assumes the cumulative distribution function 0F  and 

1F  with probability  and p p1 , respectively, we have shown that the probability  that the first order statistic of 0

X  is originally under 0F  can be expressed as . We have also shown 

that 

     0 1 01 1 dnp p F x pF x F x



      1n 0

 0lim
1n

p

p p 


 
 , where 

 
 

1

0

lim
x x

F x

F x



  and  0 1max ,x x x  with  ,ix   the support of i F x . Appli- 

cations and implications of the results are discussed in the performance of wideband spectrum sensing schemes. 
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1. Introduction 

In wideband spectrum sensing (WSS) of wireless com- 
munications with a multiple of receive antennas, the pri- 
mary goal is to find vacant subbands in a wideband 
channel composed of a multitude of frequency bands 
[1-4]. It is beneficial in the WSS to have an accurate es- 
timate of the noise variance. For example, in the detec- 
tion scheme proposed in [5], estimation of the noise 
variance in a subband is performed based on the observa- 
tions in all the subbands. The accuracy of the estimate of 
the noise variance can be shown to depend on the distri- 
butions of the observations under the null and alternative 
hypotheses. The key parameter in the estimation is the 
probability that the subband with the lowest energy is 
under the null hypothesis. 

In this paper, we focus on the asymptotic value of the 
probability and discuss its implications in the perform- 
ance of WSS schemes. 

2. The Probability 

Let iF  be an absolutely continuous cumulative dis- 

tribution function (cdf) for  and  be a number 
in the open interval 

0,1i  p
 0,1 . Consider a vector 

 1 2, , , nX X X X   of independent random variables, 
each of which assumes the cdf 0F  and 1  with 
probability  and 1

F
p p , respectively: On the average, 

 random variables of the sample np X  has population 
cdf 0F  and the rest has  as the population cdf. 
Denote by 

1F

  1i Pr iX F  the probability that the 
first order statistic  1X  of X  is one of the random 
variables [6,7] having the cdf iF  by for  and 1. 0

 x

1n

i 

1

1 f

  F x

Lemma 1. The probability  can be expressed as i

 1 1 p F 

  F x 

 x

1 0p

 x


  n

p

0 0pF

1 1




0 x

1 f

d

1 d ,

np 

n p 

 





   (1) 

and 

  1 x x  

(2) 

where  i

d

dif x  F x
x

 denotes the probability density 

function (pdf) corresponding to the cdf iF  for 0,1i  . 

Proof 1. By  let us denote the event that the cdf of kE*Corresponding author. 
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k  random variables among the  random variables of n
X  is 0F  and that of the rest  random variables 

is 1

n  k
F . Then, since  1 2, , , nX X X

1p p

X   is an 
independent random vector, we easily get [8] 

  Pr .
n kk

k n kE C
 

0

          (3) 

We can assume that jX F  for  and 

1j

1,2, ,j k 
X F  for  under  without 

loss of generality. Then we easily get 
1,j k  2,k  , n kE

     
  

0 01 1
1

1 1 01

Pr Pr ,

Pr , .

k

k j j
j

k

kX F E X X X F E

k X X X F E



   

  


   (4) 

Denoting the pdf of iX  and the joint pdf of X  
under  by kE  kiX i  and X k f x E , respectively,  f x E

we have      0 1
1 1

k n

X k i
i i k

if x E f x f x
  

  , where  

 1 2, , , nx x x x  . Therefore, 
 

    

         
2 1 3 1 1

1 1 1 2 1 3 11

1

0 1 1 1 0 1 0
1 1

, , , ,

d d d 1 1 d .
n

k n k

k n k n k

i i n nx x x x x x
i i k

X X X F E X X X X X X E

 

0 rPr P

f x f x x x x F x F x f x x
      

   
  

    

       


     



 




 

      (5) 

Thus, from (4) and (5), we have 

         1

0 0 1 0Pr 1 1 d .
k n k

kF E k F x F x f x x
  


    1X                    (6) 

Finally, recollecting that   11

0

1
n

n

k

n xkxn kk C




   [7,9] and combining (3) and (6), we get (1) as 

              

   

k k

    

1

0 0 0 1 01
0 0

1

0 1 0

Pr 1 1 1 d

1 1 d .

n n k n k

n k
k k

n

PrX F E p k C p F x p F x f x x

np pF x x f x x

 


 

 



              

  

 




1

E

F


  x

p




0

0 1

1 1x

f


       (7) 

 
Following similar steps, we can show (2).  
It is straightforward to see that 

    
  

1

0 1 1

1 d

n
n pF p F x

pf x p x

 


  

  

 



n

x

 

 x

dt p

    (8) 

irrespective of the values of  and , by letting 

, and therefore,  

. 

p

   0 11 1 p F x t  

      0 11f x p f 

pF

 



dx

Next, we have 

      1x    00 11pF x p F pF x 0 1 

p
 

      (9) 

since , , and  1 0


  0iF x 
       0 1, F x 0 11 mF x  ax x 1pF x p  F . Thus,  

noting that 

     

     
, 1

1 1

b

a

n n



0 0

n 1

0 0 d

,

nI a b np pF x x x

pF a b


 

  

 f

p



 F
      (10) 

we get  00 ,nI     or 

 



00 1   1
n

p

0

             (11) 

from (1) and (9) since  and .  0F   0 1F  

3. Asymptotic Value and Its Implications 

3.1. Asymptotic Value of  0

Let us now obtain the value  more specifically. 0lim
n


Lemma 2. Define 

          1

0 1 0, 1 1
b n

n a
d ,I a b np pF x p F x f x x


    

(12) 

where a b . Then, we have 

       0 0 0lim , 0 if or 0.n
n

I a b F a F b F a


     (13) 

Proof 2. Recollecting that the pdf  0f x  is non- 
negative and (9) holds at any point x , it is clear that 

   0 , , .In na b I a b              (14) 

Now, since 

 
     
   

0 0 0

0 0

0, if or 0,
lim ,

1, if 0
n

n

F a F b F a
I a b

F a F b

  
 

  (15) 

from (10), we immediately have (13) from (14). 
Theorem 1. For 0,1i  , let the support of the cdf 
 iF x  be  ,ix  . Then, we have 

 0lim ,
1n

p

p p 


 
             (16) 
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where 

 
 

1

0

lim
x x

F x

F x



                (17) 

assumes a non-negative value with  0 1max ,x x x . 
Remark 1. It is clear from (16) that  if 0lim

n
p




0 1  ,  if 0lim
n

p


 1  , and 0lim
n

p


  if 
1  . 

Remark 2. When 0 1x x  and 0 1x x , we have 
0   and    , respectively. On the other hand, 

when 0 1x x , the value of the non-negative parameter 
  depends on 0F  and 1F . Based on this observation, 
(16) can be expressed as 

 

0 1

0

0 1

1, if ,

lim , if ,
1

0, if .

n
0 1

x x

p
x x

p p

x x



 

   
 

        (18) 

Proof 3. (Proof of Theorem ) Assume 10x x , in 
which case we have 0  . Since  for all  1F x 0

1x x , we have 

    

      

   

1

0 0 0

1

0 1 0

1 d

1 ( ) 1

, , ,

Tx n

n

xT

n T n T

np pF x f x x

np pF x p F x f x x

I x I x





 

 

   

   







d  (19) 

where Tx  is a number in the interval  0 1,x x . Now, we 
have  lim

n 0

, 1n TI x 


 from (15) since  

0 0 TF F x  , and we have 
n

 , 0n Tlim I x  
m 1

 
from (13) since , resulting in 0

n
  0T 0F x li 

0 1

: 
This result and (8) will after some steps provide us with 

0
n

, and consequently, 0
n

, when lim  1 lim  0 x x . 
Here, recollect that 0 1x x  implies    . 

Next, when 0 1x x  and 
 
 0

1

0

lim
x x

F x

F x



  are both  

finite, we can approximate  1F x  as    1 0F x F x  
for a sufficiently small interval  0 0,x x  of x , where 

0 0x x . Then, we can rewrite  as 0

      
   

      

    

0

0

0

0

1

0 0 1

0 0

1

0 0 0

0 0 0

1 1

d ,

1 d

1 1 ,

x n

x

n

x n

nx

n

n

np pF x p F x

f x x I x

np F x f x x I x

p
F x I x










   

  

  

       







,
   (20) 

using (10) since , where  0 0 0F x 

 1p p                 (21) 

is a number larger than . Now, choosing the number  p

0x  in the open interval 1
0 0

1
,x F


  

  
  

 , we will have  

 0 00 1 1F x   . Then, we get 

 0lim
1n

p

p p 


 
             (22) 

from (20) by noting that  0lim , 0n
n

I x


   from (13) 
since  0 0 0F x  . 

When 0 1x x    and   is finite, we can 
similarly show that (22) holds by employing the 
approximation    1 0F x F x  over an interval 
 0, x , where 0x  is now a sufficiently small negative,  

yet finite, number satisfying 1
0 0

1
x F


      
 

. 

Finally, following steps similar to those leading to (22) 
obtained when 0 1x x  and   is finite, we can show 
that 

1

1
lim 1

1
1

n

p

p p





 

 
            (23) 

quite immediately by symmetry when 0 1x x  and   
is infinite: Combining this result with the relation 

0 1 1    shown in (8), we have 0m 0


li
n

  when 

0 1x x  and   is infinite. 
Example 1. Assume that  
       0 1F x xu x x u x 1      and  

        1

1
2 2

2
F x xu x x u x    , where   1u x    

for  and 0 for 0x  0x   is the unit step function. 
Then 

 
1

1

0 0
1 1

2

2 1
1

1 2

n

n

x
np px p x

p p

p


     
 
          

 d

       (24) 

Thus we have 0

2
lim

1n

p

p



 , which can also be 

obtained directly from (16) as 
 

2
1 11
2

p p

pp p


 
 

using 
 
 

1

0
0

1
lim

2x

F x

F x



  , is larger than or equal to .  p

Example 2. Assume that  0

1
e

2
xf x  ,  

     0

1 1
e 1 e

2 2
x xF x u x u     

 
x , and  

   1 0F x F x   . When 0  , we will obviously 
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have . Denoting 0 p 0 min 0, 

  

, we next have 4. Summary 

 

 
  

 

0

0n

np

p

I







 



0

1

0 0

e e
1 1 e d ,

2 2

1
1 1 1 e e

21 e

, .

nx x

n

n

p p x I

p p
p p














 
      

 
            

 


We have derived the probability that the first order statis- 
tic of a number of independent random variables is ori- 
ginally under the null hypothesis. We have also obtained 
the asymptotic value of the probability as the sample size 
tends to infinity, and then we discuss an application and 
implications of the results in the performance of wide- 
band spectrum sensing schemes. 
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