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ABSTRACT 

This paper mainly concerns oblique derivative problems for nonlinear nondivergent elliptic equations of second order 
with measurable coefficients in a multiply connected domain. Under certain condition, we derive a priori estimates of 
solutions. By using these estimates and the fixed-point theorem, we prove the existence of solutions. 
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1. Formulation of Oblique Derivative  
Problems for Nonlinear Elliptic Equations  
of Second Order 

Let  be a bounded domain in Q N  with the boundary 

  We consider the nonlinear elliptic 
equation of second order 

2 0 1  .Q C 

 2, , , 0 in ,x xF x u D u D u Q  
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In this paper, the notations are the same as in References 
[1-8]. The main equation to be studied in this paper is 
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Suppose that (1.2) satisfies the following conditions. 
Condition C. For arbitrary functions  1 1 ,u u x   
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1u u u2  . Then  
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satisfies the following: 
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in which  are positive constants. 
Moreover, for almost every point 

0 1 0 1, , , , 2q q k k p N  
x Q
 ,c x u

 and  

ij x    are  
continuous in  

2 ,xD u
 2, ,xu D u  , ,i xb x u D u

,u .
, ,a x u D , 

N
xD u  

Moreover if the Equation (1.2) satisfies Condition C 
and the function 
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0 , 0,1, ,iB k i N   ,


          (1.5) 

where  are positive constants, then 
we say that the Equation (1.2) satisfies Condition 

0 , 0,1, ,ik i N  
C . 

The motivation for the second formula in (1.3) may be 
given as follows. It is enough to consider the linear 
elliptic Equation of (1.1), namely 
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Let (1.6) be divided by 
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is an undetermined positive constant, and denote 
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Then the Equation (1.6) is reduced to the form 
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We require that the above coefficients satisfy 
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which can be derived from the condition in (1.3) with the 
constant    22 1 2 2 1N N N     . In fact, we 
consider 

 

2

, 1 1

2 2

, 1 , 1

2
22

, 11

1
ˆ ˆsup 2inf , . .

2 1

sup sup
2 1

, or ,
2 1 [ ]infinf

N N

ij ii
QQ i j i

N N

ij ij
Q Qi j i j

NN

iiii QQ i ji

N
a a N i e

N

a a
N

N f
N aa






 

 




  




   

 
  

 

 



 

for      2 22 1 2 2 2 1f N N      N . It is seen 

that the maximum of  f   on   occurs at the  0,
point    22 22 1N N N 1    , and the maximum 

of  f   equals  

        2 22 2 = 2 1 2 2 1 .N N N N2 1f N 1N     

The above inequality with    22 1 2 2 1N N N      

is just the second inequality in (1.3), from which (1.7) 

with    2 22 1 2 1N N N     holds. 

Problem O. The so-called Problem O of an oblique 
derivative boundary value problem is to find a con- 
tinuously differentiable solution  
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Here         , Nd x d x d x 1 2, ,d x  represents the 
direction of  , and  x   and g x  satisfy the con- 
ditions 

   
  

1
0 0

1
2 0

, , , ,

, , , 0, 0,

C x Q k x Q k

C g x Q k q x Q





        

cos

jC d 

  ,       

(1.9) 

where   is the unit outward normal on  
  0 21 , ,Q k  

,

, 0  ,k 0

0

 0  are  
non-negative constants. Noting that Problem O with the 
condition 

 0q q 1

     on  is the initial-Neumenn 
problem. 

Q

(1.2)Theorem 1.1. If  satisfies Condition C and 
0, 0, 0A G g   , then Problem O for (1.2) has the 

trivial solution. 
Proof. Let  u x  be one solution of Problem O. It is 

easy to see that  u x  satisfies the following boundary 
value problem 

, 1

0, ,
i j

N N

ij x x
i j i

a u u x Q
 

  
1

ii xb u c        (1.10) 

  0, ,
u

x u x Q



  


         (1.11) 

where  are as stated in (1.2). Multiplying both 
sides of (1.1) by  we obtain the following equation on 
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Noting that Condition C, if the maximum of  
attains at an inner point  and  

2u
= Q
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  2

0 0 0,M u P   there exists a small positive number 

0  and we can choose a sufficiently small neighborhood 

 of  such that 0G 0P 2
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On the basis of the maximum principle of the solution 
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2. Estimates of Solutions of Oblique  
Derivative Problems for Nonlinear Elliptic  
Equations of Second Order 

We begin with the estimates of the solutions of (1.2) 
when . 0G 

Theorem 2.1. Suppose that (1.2) with  
 satisfies Condition C. Then any solu- 

tion  of Problem O satisfies the estimates 
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Proof. After substituting the solution  into (1.2), 
we see that we only need to discuss the linear elliptic 
equation in the form 
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According to Theorem 1.1, we can get 
   0 0, .U x x Q  However, from  1 , 1QlC U    , 

there exists a point * ,x Q  such that  
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that (2.4) is true. Following the same procedure from (2.4) 
to (2.9), we can derive the estimates (2.1) and (2.2). 

In general we can prove the following theorem. 
Theorem 2.2. Suppose that Equation (1.2) satisfies 
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From the above estimates, it immediately follows that 
(2.12) holds. 

3. Solvability of Oblique Derivative  
Problems for Nonlinear Elliptic Equations  
of Second Order 
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Proof. It is easy to see that the solution  u x  of 

Problem  for Equation (3.1) can be expressed by the 
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On the basis of Theorem 2.1, we can see that  U x  
satisfies the first estimate in (3.4), and then  V  sa- 
tisfies the second estimate in (3.4). 

x

Theorem 3.2. If Equation (1.2) satisfies the same 
conditions as in Theorem 2.1, then Problem O for (3.1) 
has a solution  u x .  

Proof. We prove the existence of solutions of Problem 
O for the nonlinear Equation (3.1) by using the Leray- 
Schauder theorem. Introduce the equation with the para- 
meter  0,1h : 
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with the non-negative constant 11M  as stated in (3.4). 

We choose any function   MV x B  and substitute it 
into the appropriate positions on the right hand side of 
(3.5), and form an integral  v x H   as follows: 

  ,v x H x V  .                (3.7) 

Let  0v x  be a solution of the boundary value prob- 
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boundary condition (3.16), and obtain the following 
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In accordance with the method in the proof of 
Theorem 3.2, we can prove that the boundary value 
problem (3.20), (3.21) has a unique solution  u x . 
Denote by  the mapping from    u x T u x     u x    
to  Noting that  u x
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from Theorem 2.2, we have 
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 (3.23) 

This shows that  maps  onto a compact subset 
in  Next, we verify that  in  is a continuous 
operator. In fact, we arbitrarily select a sequence 

 in  such that 

T *B
T*.B

  nu z

*B

 *,B
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1
0 0, 0  n n W Q

C u u Q u u n        as .   (3.24) 

By Theorem 2.1, we can derive that 
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in which      1 2
0 2

Moreover, from 
.u x C D W Q   

   0 0n n  it is clear 
that  is a solution of Problem O for the following 

equation 

,u T u u T u 
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In accordance with the method in the proof of Theo- 
rem 2.2, we can obtain the estimate 
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  (3.28) 

in which  16 16 0 0 0, , , , .M M q p k Q  From (2.12) and 
the above estimate, we obtain  

 2
2

1
0 0, 0n n W Q

C u u Q u u       as  On the 

basis of the Schauder fixed-point theorem, there exists a 

function 

.n 

     1 2
2u x C Q W Q   such that  

    .u x T u x     It is clear that  is a solution of 
Problem O for the Equation (3.15) and the boundary 
condition (3.16) with 

 u x

, N00 , 1.    
2) Secondly, we discuss the case:  
 0min , , 1.N  

t M
 In this case, (3.18) has the solution 

16  provided that 14M  in (3.17) is small enough. 
Consider a closed and convex subset  in the Banach 
space 

*B
   1 2

2C Q W Q ,  i.e. 

        2
2

1 2 1
* 2 , .

W Q
B u x C Q W Q C u Q u M      16  

Applying a method similar to the one in (1), we can 
verify that there exists a solution  
     1 2

2u x C Q W Q   of Problem O for (3.15) when 
 0 1min , , , 1.N     

Note: The opinions expressed herein are those of the 
authors and do not necessarily represent those of the 
Uniformed Services University of the Health Sciences 
and the Department of Defense. 
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