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The constitutive relations for the piezoelectric active 
layer are taken in the stress-charge form as follows: 

*E

S

   
   

σ c ε e E

D e ε ε E
,              (2) 

where ε  is the strain tensor, σ  is the stress tensor, E  
is the electric field vector, D  is the electric displace-
ment vector; Ec  is the tensor of elastic stiffness moduli 
at constant electric field; e  is the tensor of piezoelectric 
moduli (stress coefficients); Sε  is the tensor of electric 
permittivity moduli at constant mechanical stress. 

Coupling between solid end acoustic media is pro-
vided by the boundary conditions: the top and the sides 
of a transducer undergo both an acoustic pressure and the 
inward accelerations. The bottom of a transducer is fixed; 
on the left boundary we consider an axial symmetry con-
dition; on the top of piezoelectric layer the constant elec-
tric potential with amplitude 100 V in whole studied fre-
quency band is applied, when the bottom is grounded. 

Since the dimensions of the investigated transducer are 
quite small, this type of projector cannot be used to gen-
erate directional sound and therefore we will consider the 
sound pressure level only in a direct ray. When the 
transducer is placed into acoustic medium the thickness 
vibration mode is excited at frequencies from approx-
imately 100 to 400 kHz. This frequency range was used 
during the following optimization of transducer’s para-
meters. 

4. Multiobjective Optimization of the  
Piezoelectric Transducer 

There is a wide range of materials that can be used as the 
constituent layers of a transducer; this proves the possi-
bility to vary their mechanical properties within the wide 
scope. It should be noted that we chose tungsten as a 
backing plate material to generate the thickness vibration 
mode of a PZT layer because of its large mechanical 
stiffness and high acoustic impedance. In order to for-
mulate the optimization problem let us introduce six de-
sign variables: porosity of an active layer (por), Young’s 
modules of an acoustic window layer ( awE ), matching 
layer ( mE ), and protective foam layer ( fE ); mass 
damping parameter ( 1R ) and stiffness damping parame- 
ter ( 2R ) of layers. In our investigation we considered 
three objectives: sound pressure level (SPL) in direct ray 
measured at the 1m distance from the sound source and 
transmitting current response (TCR) to be maximized; 
the deviation of SPL is to be minimized. SPL is repre- 
sented in decibels as follows 

 120lg refp p p ,             (3) 

where 1p  is the sound pressure at the measurement 
point; and 52 10refp    Pa is the threshold of sound 

pressure. TCR is the ratio of an absolute value of sound 
pressure 1p , to the amplitude of electric current I 
through the active element: 

1IS p I .               (4) 

There is a wide range of approaches to structural opti-
mization. In the framework of multi-criteria optimization 
problem (MOO) when several objective functions exist, 
there is no unique solution, but a number of optimum 
solutions exist. In this situation the most suitable way to 
optimization is a calculation of a so-called Pareto opti-
mum or Pareto-frontier. Using the Pareto approach we 
suppose the assignment of a set of choices for all objec-
tive components that are Pareto efficient. By confining 
the set of choices to only the Pareto-efficients instead of 
considering the full range for each parameter, it is possi-
ble to make trade-offs within this set. During the solving 
of considered optimization problem the three integrals 
were assumed to be optimized: 

   
2

1

2 1

f

f

p p f df f f  ,             (5) 

 
2

1

2

2 1

f

f

p p f df

p
f f



 



,             (6) 

 
   

2

1

2 1

f

f

p f
TCR df f f

I f
  ,           (7) 

where p , p  and TCR  represent an averaged 
SPL, deviation of SPL and TCR, respectively; 1f  and 

2f  are the boundaries of the frequency range.  
Obviously the construction of a Pareto-frontier was 

complicated for the three-dimensional space of objective 
functions. In order to overcome this difficulty the illu-
stration of a Pareto-frontier has been represented using 
the level lines. At the numerical problem solving MAT-
LAB varies design parameters for the transducer, calls 
the FE model simulated by Comsol Multiphysics, and is 
carry out the multiple computations of the objectives. 
Then obtained data are being analyzed and illustrated 
using the set of complimentary procedures, written in 
MATLAB (see Figures 4(a), (b)). 

5. Numerical Results and Discussion 

At the analysis of the simulation results it was founded 
that the influence of both damping designs variables on 
the objectives are negligible. So only two obtained pro-
jections of the criteria points set on the spaces of other 
design variables are presented in Figure 4. Figure 4(a) 
corresponds to the projection on subspace of two design 
variables: porosity of active layer and Young’s modulus  
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Figure 5. The frequency responses of SPL (a) and TCR (b). 
 
successfully obtained for the porous piezocomposite ma-
terials of different connectivity in order to optimize the 
hydroacoustic performance of multilayered projector 
based on the active PZT layer with varied porosity. 
These effective modules were calculated using the FE 
method at the assumption of homogeneous and inhomo-
geneous polarization field. The last dependencies were 
used at the statement and solving the optimization prob-
lem due to the best agreement with the experimental data. 
Obtained dependencies allowed to reduce the number of 
design variables to six (porosity of an active layer; 
Young’s modules of an acoustic window layer, protec-
tive and matching layers; mass and stiffness damping 
parameters of layers). On the base of the Pareto optimal-
ity the set of feasible designs in a six dimensional design 
space was reconstructed using three objectives: averaged 
sound pressure level, transmitting current response and 
the standard deviation of the SPL in a frequency range 
from 100 to 400 kHz. A comparative analysis of three 
examples of the simulated designs has been performed. It 
showed the best performance of a projector with porosity 
near 40% and elastic modules of intermediate layers 
tuned to achieve the best acoustic impedances matching 
between the structure and acoustic medium. 
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