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ABSTRACT 

Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set 
of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss about multi-document 
summarization that differs from the single one in which the issues of compression, speed, redundancy and passage se-
lection are critical in the formation of useful summaries. Since the number and variety of online medical news make 
them difficult for experts in the medical field to read all of the medical news, an automatic multi-document summariza-
tion can be useful for easy study of information on the web. Hence we propose a new approach based on machine 
learning meta-learner algorithm called AdaBoost that is used for summarization. We treat a document as a set of sen-
tences, and the learning algorithm must learn to classify as positive or negative examples of sentences based on the 
score of the sentences. For this learning task, we apply AdaBoost meta-learning algorithm where a C4.5 decision tree 
has been chosen as the base learner. In our experiment, we use 450 pieces of news that are downloaded from different 
medical websites. Then we compare our results with some existing approaches. 
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1. Introduction 

Nowadays there are lots of online medical news on the 
web and study of these huge amount of information is 
not possible for experts in medical field [1]. Medical 
information on the web such as news, articles, clinical 
trial reports is an important source to help clinicians in 
patient treatment. Usually, clinicians go through author- 
written abstracts or summaries available in the medical 
domain and then decide whether articles are relevant to 
them for in-depth study. Since all types of medical arti- 
cles do not come with authors written abstracts or sum- 
maries. An automatic muti-document summarization can 
be useful for help clinicians or medical students to find 
their relevant information on the web. 

Text summarization is the process to produce a con- 
densed representation of the content of its input for hu- 
man consumption. In existing categorization for summa- 
rization with respect to the number of input documents, 
the summarization is divided into two types, namely sin- 
gle and multi documents. Automatic multi document 
summarization refers to the production process of a 

compressed summary of documents while the content, 
readability, and cohesion are maintained [2]. Considering 
further complexities of multi document summarization 
than single document summarization, we face with some 
challenges among them. The most significant ones are as 
following [3]: 
 The rate of information redundancy is higher in a 

group of subject-related texts; 
 The need for devoting great attention to the extraction 

of unknown perspectives in the documents and cov- 
ering all of them; 

 Difficulty of producing a highly readable summary 
from documents that address the same subject from 
different perspectives; 

 Difficulty of ordering extractive phrases for produc- 
tion of the final summary. 

In another categorization based on the type of sum- 
mary, if the summarized text was obtained through ex- 
tracting some phrases from the original text, the summa- 
rization would be “extractive” or “selective”, and if the 
text summary is generated after understanding the avail- 
able content in the original text, the summarization 
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would be “abstractive” [4]. Both types of summariza- 
tions face different challenges. In extracting method, 
main challenges are identifying important sentences in 
the text, distinguishing and extracting key words, and 
analyzing the main text with the purpose of preparing a 
readable and coherent summary. In abstract method, first, 
the main text must be understood; then based on the 
meaning of the text, a meaningful summary is produced. 
In this method, the main challenges are natural language 
processing and the analysis of the meaning of the text 
with the purpose of comprehension. 

In this paper, we present a machine learning based 
model for a sentence extraction based, Multi document, 
and informative text summarization in the medical do- 
main (This work is an improvement of the study pro- 
posed in [5]). In our work, we approach automatic text 
summarization as a supervised learning task. We treat a 
document as a set of sentences, which must be classified 
as positive or negative examples of sentences based on 
the summary worthiness of sentences where a sentence is 
represented by a feature set, which includes a number of 
features used in the summarization literature and some 
other features specific to the medical domain.  

Thus, this summarization task can be formulated as the 
classical machine-learning problem of learning from 
examples. There are several unusual aspects to this clas- 
sification problem. For example, the size of positive ex- 
amples in the training set is relatively small compared to 
the size of the entire training set because a summary size 
is roughly less than one-fourth of the size of the source 
document. It has been generally thought that a summary 
should be no shorter than 15% and no longer than 35% of 
the source text [6]. 

C4.5 is typically applied to more balanced class dis- 
tributions. In our experiment, we found that AdaBoost 
improves and performs significantly and uniformly well, 
when combined with C4.5. In general, AdaBoost works 
by repeatedly running a given weak learning algorithm 
on various distributions over the training data, and then 
combining the classifiers produced by the weak learner 
into a single composite classifier. There seem to be two 
separate reasons for the improvement in performance that 
is achieved by boosting. The first and better understood 
effect of boosting is that it generates a hypothesis whose 
error on the training set is small by combining many hy- 
potheses whose error may be large (but still better than 
random guessing). It seems that boosting may be helpful 
to learning problems having either of the following two 
properties. The first property, which holds for many 
real-world problems, is that the observed examples tend 
to have varying degrees of hardness. For such problems, 
the boosting algorithm tends to generate distributions that 
concentrate on the harder examples, thus challenging the 
weak learning algorithm to perform well on these harder 

parts of the sample space. The second property is that the 
learning algorithm is sensitive to changes in the training 
examples so that significantly different hypotheses are 
generated for different training sets. 

For text summarization applications, we need to rank 
sentences based on its summary scores. So, for the sen-
tence ranking, we have to follow a new methodology to 
combine decisions (discuss in Section 4). 

We adopted and designed ten features to characterize 
sentences (taken as basic linguistic units) in the docu- 
ments. 

The paper is organized as follows. Section 2 provides 
related work. In Section 3, we discuss how to extract and 
use features. In Section 4, the summarization method has 
been discussed. We present the evaluation and the ex- 
perimental results in Section 5. 

2. Related Work 

In this section, we discuss about some previous works 
that are used in text summarization. Radev et al. [7] sug- 
gested a multi-document extracting summary maker that 
extracts the sentences of the summary from several texts. 
The extraction is based on center clusters. To increase 
coherence, Harry Hilda [8] and Mitra [9] extracted para-
graphs instead of sentences from documents. Knight and 
Marcu [10] presented two algorithms for sentence com-
pression which are based on “Noisy Channel” and “De-
cision Tree”. The input of the algorithm of “Decision 
Tree” is a long sentence, and the output is supposed to be 
a shorter sentence but with more meaningful content. 
Barzilay et al. [11] presented an algorithm for the fusion 
of information. This algorithm tries to combine similar 
sentences of the documents to create a new sentence 
based on “Language Generation Technology”. Although 
this method simulates human behavior in summarization 
process to some extent, it is heavily dependent on exter- 
nal sources such as “Dependency Parser”, “Production 
Rules”, and etc. Therefore, the portability of this method 
is limited. In sentence extracting strategy, clustering is 
introduced with the purpose of eliminating redundant 
information which is due to using multi documents [12]. 
But this technique cannot solve the problem of redun- 
dancy entirely because some sentences can be in more 
than one cluster. To solve this problem some researchers 
predefine the number of clusters, or determine a thresh- 
old level for similarities. Even if the number of sentences 
is predefined, it is probable that the sentences with high- 
est score in clusters are not the best sentences. To solve 
this problem GA algorithm [13] is used; in this algorithm 
the favorable summary is chosen from a group of sum- 
maries that are created by combined sentences obtained 
from the main documents. Four properties which are 
length of sentence, cover criterion, information criterion, 
and similarity are used as fitness function of GA algo- 
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rithm for summarization. 
MEAD [6] a popular summarization system ranks 

sentences based on its similarity to the centroid, position 
in the text, similarity to the first sentence of the article 
and length. It uses linear combination of features whose 
values are normalized between 0 and 1 for sentence 
ranking. Redundancy is removed by a variation of MMR 
(Maximal Marginal Relevance) algorithm [14]. 

Some machine learning approaches to extractive sum- 
marization have already been investigated. In [15] sen- 
tence extraction is viewed as a Bayesian classification 
task. To our knowledge, there are few attempts to use 
machine learning algorithm for medical document sum- 
marization task. Most of the researchers extend to the 
medical domain the summarization techniques already 
used in other domains. One of the projects in medical 
domain is [16]. MiTAP (MITRE Text and Audio Proc- 
essing) monitors infectious disease outbreaks or other 
biological threats by monitoring multiple information 
sources. The work presented in [17] exploits extractive 
techniques, which ranks the extracted sentences accord- 
ing to the so-called cluster signature of the document. 
The abstracts and full texts from the Journal of the 
American Medical Association were used for their ex- 
periments. TRESTLE (Text Retrieval Extraction and 
Summarization Technologies for Large Enterprises) is a 
system, which produces single sentence summaries of 
pharmaceutical newsletters [18]. TRESTLE generates 
summaries by filling the templates by the Information 
Extraction process. The system Helpful Med [19] helps 
professional and advanced users to access medical in- 
formation on the Internet and in medical related data- 
bases. An ontology based summarization approach has 
been proposed in [20]. A query based medical informa- 
tion summarization system that exploits ontology knowl- 
edge has been proposed in [21]. 

The work presented in [21] uses ontology to expand 
query words and assigns scores to sentences based on 
number of original keywords (query words) and expand- 
ed keywords. Most recently a variation of lexical chain- 
ing method [22] called bio-chain [23] is used in bio- 
medical text summarization. 

Compared to the above-mentioned approaches, we de- 
velop a machine learning based model for medical do- 
cument summarization that also exploits domain knowl- 
edge. 

3. Summarization Method 

In extractive text summarization approach, the main task 
is to identify sentences in a source text, which are rele- 
vant to the users while simultaneously reducing informa- 
tion redundancy. Sentences are scored based on a set of 
features. The top-n highest scoring sentences in a text are 
then extracted where n is an upper bound, which is de- 

termined by the compression rate. Finally the selected 
sentences are presented to the user in their order of ap- 
pearance in the original source text [24]. 

The proposed summarization method consists of three 
primary parts that shows in Figure 1. 

The preprocessing task includes formatting the docu- 
ment, removal of punctuation marks (except dots at the 
sentence boundaries). 

3.1. Using AdaBoost for Sentence Extraction 

We apply a meta-learner called AdaBoost for sentence 
extraction, where a C4.5 decision tree [25] has been cho- 
sen as the base learner. 

The boosting algorithm takes as input a training set of 
m examples     1 1S ,  ,  m mx y x y   where xi is an 
instance drawn from some space X and represented in 
some manner (typically, a vector of attribute values), and 
yi Є Y is the class label associated with xi. In this paper, 
we always assume that the set of possible labels Y is of 
finite cardinality k. 

In addition, the boosting algorithm has access to an- 
other unspecified learning algorithm, called the weak 
learning algorithm, which is denoted generically as 
Weak Learn. The boosting algorithm calls Weak Learn 
repeatedly in a series of rounds. On round t, the booster 
provides Weak Learn with a distribution Dt over the 
training set S. In response, Weak Learn computes a 
classifier or hypothesis ht: X → Y which should correctly 
classify a fraction of the training set that has large prob- 
ability with respect to Dt. That is, the weak learner’s goal 
is to find a hypothesis ht which minimizes the (training) 
error  ~Pr

tt i D t i ih x y     . Note that this error is 
measured with respect to the distribution Dt that was 
provided to the weak learner. This process continues for 
T rounds, and, at last, the booster combines the weak 
hypotheses h1… hT into a single final hypothesis hfin. Still 
unspecified are: 1) the manner in which Dt is computed 
on each round, and 2) how hfin is computed. Different 
boosting schemes answer these two questions in different 
ways. AdaBoost uses the simple rule shown in Figure 2. 
The initial distribution D1 is uniform over S so D1 (i) = 
1/m for all i. To compute distribution Dt+1 from Dt and 
the last weak hypothesis ht, we multiply the weight of 
example i by some number  0,1t   if ht classifies xi 
correctly, and otherwise the weight is left unchanged. 
The weights are then renormalized by dividing by the 
normalization constant weights are then renormalized by 
dividing by the normalization constant Zt. Effectively, 
“easy” examples that are correctly classified by many of 
the previous weak hypotheses get lower weight, and 
“hard” examples which tend often to be misclassified get 
higher weight. Thus, AdaBoost focuses the most weight 
on the examples which seem to be hardest for Weak 
Learn. 
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Figure 1. Summarization method. 
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Figure 2. The algorithm AdaBoost. 
 

The number t  is computed as shown in the figure as 
a function of t . The final hypothesis hfin is a weighted 
vote (i.e., a weighted linear threshold) of the weak hy- 
potheses. That is, for a given instance x, hfin outputs the 
label y that maximizes the sum of the weights of the 
weak hypotheses predicting that label. The weight of 
hypothesis ht is defined to be  log 1 t  so that the 
greater weight is given to hypotheses with lower error. 
The important theoretical property about AdaBoost is 
stated in the following theorem. This theorem shows that 
if the weak hypotheses consistently have error only 
slightly better than 1/2, then the training error of the final 
hypothesis hfin drops to zero exponentially fast. For bi- 
nary classification problems, this means that the weak 
hypotheses need be only slightly better than random. 

Theorem 1: suppose the weak learning algorithm 
Weak Learn, when called by AdaBoost, generates hy- 

potheses with errors 1, , T  , where t  is as defined 
in Figure 1. Assume each 1 2t   and let  

1 2t t   . 

Then the following upper bound holds on the error of 
the final hypothesis hfin: 

 
2 2

11

:
1 4 exp 2

T T
fin i i

t t
tt

i h x y

m
 



     
 
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Theorem 1 implies that the training error of the final 
hypothesis generated by AdaBoost is small. This does 
not necessarily imply that the test error is small. How- 
ever, if the weak hypotheses are “simple” and T “not too 
large”, then the difference between the training and test 
errors can also be theoretically bounded. 

Traditionally, the component learners are of the same 
general form. In our case, all component learners are 
decision trees. In general, decision tree induction algo- 
rithms have low bias but high variance. 

Boosting multiple trees improves performance by re- 
ducing variance and this procedure appears to have rela- 
tively little impact on bias. 

To train a learning algorithm, we need to establish a 
set of features and a training corpus of document/extract 
pairs. In our work, the main goal is to train a booster of 
decision trees with the set of features and the multiple 
versions of training set D and combine the decisions of 
those trained decision trees to classify a sentence as 
summary worthy (positive) or not (negative example). 
After completion of training, the trained learning algo- 
rithm is tested on unseen instances, which is not part of 
training corpus. 

3.1.1. Building Corpus 
The training and test corpus are built by downloading 
medical news form different websites. Then the summa- 
ries are manually created for that news. A total of 450 
news documents that downloaded from different web- 
sites. 

For each news, two manual summaries (model sum- 
maries) are created by human abstractors. Since summa- 
ries are very subjective and user sensitive, for each news 
we decide to have three different model summaries cre- 
ated by three different human abstractors. Human ab- 
stractors are faculty members and postgraduate students 
of our institute. Though human abstractors have been 
instructed to create abstracts for each article by copying 
material from the original text, they freely used their own 
sentence construction while summarizing news. 

But, to apply machine learning algorithm, we need to 
have extracts instead of abstracts because for extracting 
features for summary sentences we need to match the 
manual summary sentences to the sentences in the origin- 
al document. So, for each manually created abstract, we 
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create an extract by selecting the sentences from the 
original document that best match the sentences in the 
abstract. The average size of an extract is 25% of the 
source document. We choose relatively long medical 
news documents in our study because the summarization 
becomes more useful for long news documents. The rea- 
son behind choosing medical news articles for our ex- 
periment is that the medical news does not come with 
any abstract or summaries. Though some features of the 
medical news articles and general newspaper articles 
may overlap, we found that the medical news have some 
features such as medical terms, medical cue phrases 
which may be absent in the general newspaper articles. It 
is a common practice to evaluate a machine learning al- 
gorithm using k-fold cross validation, where the entire 
dataset is divided into k subsets, and each time, one of 
the k subsets is used as the test set and the other k − 1 
subsets are put together to form a training set. Thus, 
every data point gets to be in a test set exactly once, and 
gets to be in a training set k − 1 times. For the evaluation 
of the proposed learning based system, the entire dataset 
are divided into 2 folds where each fold consists of one 
training set of 300 documents and a test set of 150 
documents. 

3.1.2. Features 
To characterize the sentences in the medical documents 
we have designed and adopted a number of features such 
as: centroid overlap, similarity to subject, similarity of 
sentences to each other, positive and negative cue phra- 
ses, acronyms, sentence position, sentence length, nume- 
ral data. 

For normalization of each feature value, we divide the 
value by the maximum of the scores obtained by the sen- 
tences due to the feature. The following we discuss the 
features in detail. 
 Centroid: this criterion is used to calculate the simi- 

larity of the sentences to the central sentence of the 
text. The following procedure is used to find the cen- 
tral sentence of the text.  
 With the use of sentence similarity matrix, total 

similarity of a sentence to the rest of the sentences 
is calculated with the following method: 

 1
SimSen SimMat ,

n

i j
i j


   

SimMat [i,j] shows the similarity of ith sentence to jth 
sentence. After calculation, maximum value for SimSeni 
is found and the position of the sentence-sentence index 
is placed in index-centroid variable. 

 With the use of cosine similarity formula, similar- 
ity of each sentence to the center is calculated as 
follows: 

 index_centroidCentroid_Sen Sim ,i iS S  

Then the above relation is normalized between 0 and 
1. 
 Similarity to title: A good summary consists of sen- 

tences that are similar to the title [26,27]. This means 
that if sentence Si is the most similar sentence to the 
title, in comparison to other sentences in the docu- 
ment, sentence Si can be considered more important 
than other sentences or the most important sentence. 
Calculating this criterion is as follows: 

 titleTitle_Sen Sim ,i iS S  

Then the above relation is normalized between 0 and 1. 
The more the value (closer to 1), the greater the similar- 
ity is. 

 Sentence position: A summery which contains the 
first and the last sentence of a document is a good 
summary [28]. For this reason, the position of the 
sentences in a text is very important. The following 
formula is used to calculate the position of the sen- 
tence in a document: 

   ,Pos_Score 1 0.5 Sin 1

DocRank ,

i j

j

i N

j D

    

 
 

N is the total number of documents. DocRankj is the 
parameter that is used for giving higher score to the first 
and the last sentences which have more importance. 
Therefore, documents need to be ranked. For ranking, the 
number of keywords in each document is divided to the 
total number of words in the document. The score of the 
document with more keywords is closer to one while 
score closer to zero represent fewer keywords. 

 
Num of Keyword

DockRank
max Num of Keyword ,

j
j

i i D



 

 Positive and negative cue phrases in medical do- 
main: A sentence gets score of n if it contains n posi- 
tive cue phrases and gets score of −n if it contains n 
negative cue phrases from our knowledge base.  

 Acronyms: A sentence gets a score based on the 
number of acronyms it contains. In medical articles, 
authors frequently use acronyms for important com- 
plex medical terms, perhaps it help them memorize 
the things better. So, we consider acronym as an im- 
portant feature for medical document summarization 
task. If some letters (at least two letters) of a term are 
capital, we treat the term as an acronym (gene names, 
medical instruments etc.). 

 Sentence length long or short sentences are not suit- 
able for the summary. Therefore, to calculate this cri- 
terion, first the lengths of all sentences in the text are 
calculated. Afterward the average length called Lenavg 
is calculated. Now, the following formula is used to 
score each sentence of the text for the sentence length 
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criteria: 

avg

avg

avg avg

1 Len Len

LenSen_Len
else

Len Len Len

i

i

i




 
  

 

 Numerical data: Numerical data like date and time is 
important in news. Hence a sentence gets score (+1) if 
it contains numerical data. 

3.1.3. Sentence Extraction 
Training a learning algorithm for summary sentence ex- 
traction requires document sentences to be represented as 
feature vectors. For this purpose, we write a computer 
program for automatically extracting values for the fea- 
tures characterizing the sentences in the documents. For 
each sentence in the given document we extract the fea- 
ture values from the source document using the measures 
discussed in Sub-Section 3.1.2. If the sentence under 
consideration is found in both the extracts, extract1 and 
extract 2, which are created from the human abstracts 
(discussed in 3.1.1), we label the sentence as “Summary 
Worthy” sentence. If it is found in one of these extracts, 
we label the sentence as “Moderately Summary Worthy” 
and if it is not found in any one of these extracts we label 
the sentence as “Summary Unworthy”. Thus each sen- 
tence vector looks like {<a1 a2 a3 ··· an>, <label>} which 
becomes an instance (example) for a base learner C4.5 
decision tree, where a1, a2, ···, an, indicate feature values 
for a sentence. All the documents in our corpus are con- 
verted to a set of instances of the above form. We divide 
the entire data set into 3 folds where each fold consists of 
one training set corresponding to a set of training docu- 
ments and a test set corresponding to a set of test docu- 
ments. After preparation of a training set, the multiple 
decision trees are trained with the different versions of 
the training set and the decisions of those trained deci- 
sion trees are combined to classify a sentence as one of 
three categories: “Summary Worthy”, “Moderately Sum- 
mary Worthy” and “Summary Unworthy”. For each fold, 
a model is built from a training set using the boosting 
technique and then the learned model is applied to the 
test set. For our experiments, we have used Weka (www. 
cs.waikato.ac.nz/ml/weka) machine learning tools. Ini- 
tially, for each fold, we submit the training data set and 
the test data set to Weka. Then we select the option 
“boosting” under meta-classifier folder in Weka. We 
chose J48 (Weka’s implementation of Quinlan’s C4.5 
decision tree) as a base learner and set the number- 
of-base learners to the default value which is 10. 

Though all the attribute values of the instances in the 
training and test sets are continuous, we did not apply 
any separate discretization algorithm because C4.5 is 
capable of handling continuous attribute values. We con- 

figure WEKA in such a way that for each test instance, 
we can get the predicted class and the probability esti- 
mate for the class. The trained learning algorithm will 
assign one of three labels: “Summary Worthy” (SW), 
“Moderately Summary Worthy” (MSW), “Summary Un- 
worthy” (SU) to a test instance corresponding to a sen- 
tence in a test document. It is possible to save the output 
in a separate file. We save the output produced by 
WEKA in a file and then collect the classification output 
for the sentences belonging to each test document. Then 
we design a sentence-ranking algorithm based on the 
classification output and the probability estimates for the 
classes. The algorithm for sentence ranking is given be- 
low. 

Sentence Ranking Algorithm 
Input: 
An output file produced by WEKA, which contains the 

sentences of a test document with their classifications 
and the probability estimates of the classes to which the 
sentences belong. 

Output: A file containing the ranked sentences 
Begin 
Read the input file. 

 Select those sentences, which have been classified as 
“Summary Worthy” (SW) and reorder the selected 
sentences in decreasing order of the probability esti- 
mates of their classes. Save the selected sentences in 
the output file and delete them from the input file. 

 Select those sentences, which have been classified as 
“Moderately Summary Worthy” (MSW) and reorder 
the selected sentences in decreasing order of the 
probability estimates of their classes. Save the select- 
ed sentences in the output file and delete them from 
the input file. 

 For the rest of the sentences, which are classified as 
“Summary Unworthy”, we order the sentences in in- 
creasing order of the probability estimates of the class 
labels. In effect, the sentence for which the probabil- 
ity estimate is minimum (that is, the sentence is mi- 
nimum “Summary Unworthy”) comes at the top. Ap- 
pend the ordered sentences to the output file. 

 Close the output file. 
End of the Algorithm 
The sentence-ranking algorithm has three major steps. 

At the first step, the sentences, which are classified as 
“Summary Worthy”, we undoubtedly select those sen- 
tences in the summary. 

If the number of sentences selected at Step 1 is less 
than the desired number of sentences, we consider those 
sentences which are not selected in the summary at the 
first step. At the second step, the sentences, which are 
classified as “Moderately Summary Worthy”, are con- 
sidered. If the number of sentences selected at Step 1 and 
Step 2 are less than desired number of sentences, we con- 
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sider the sentences, which have been classified as “Sum- 
mary Unworthy” and order those sentences in increasing 
order of the probability estimates of the class labels, that 
is, the sentences are ordered from minimum summary 
unworthiness (maximum summary worthiness) to maxi- 
mum summary unworthiness (minimum summary wor- 
thiness). They are selected in this order one by one in the 
summary until the desired summary length is reached. 

4. Summary Generation 

After ranking the sentences, n top ranked sentences are 
selected to generate the final summary. Value of n de- 
pends on the compression rate. But, the summary pro- 
duced in this way may contain some redundant informa- 
tion, that is, some sentences in the summary may entail 
partially or fully the concept embodied in other sentences. 
This restricts the summary to be more informative when 
the summary length is a restriction. Moreover, a user 
who is used to just looking at first few sentences repre- 
senting the same concept will prefer to see something 
different information, though marginally less relevant. 
To keep the sentences in the summary sufficiently dis- 
similar from each other, the diversity based re-ranking 
method called Maximal Marginal Relevance (MMR) is a 
well-known measure. This approach uses a ranking pa- 
rameter that allows the user to slide between relevance to 
the query and diversity from the sentences seen so far. 
The MMR algorithm is most suitable to apply in query- 
focused summarization where the summary will be fo- 
cused toward the user’s query. But in our generic sum- 
marization environment where only one generic sum- 
mary will be produced for a text document, we have used 
a variant of the MMR algorithm to remove redundancy in 
the summary. This algorithm works as follows: 
 Rank the sentences using the ranking algorithm dis- 

cussed in Sub-Section 3.1.3. 
 Select the top ranked sentence first. 
 Select the next sentence from the ordered list and in- 

clude into the summary if this sentence is sufficiently 
dissimilar to all of the previously selected sentences. 

 Continue selecting sentences one by one until the pre- 
defined summary length is reached. 

The similarity between two sentences is measured us- 
ing cosine similarity metric. If the cosine similarity be- 
tween two sentences is greater (less) than a threshold, we 
say that the sentences are similar (dissimilar). The cosine 
similarity between two sentences is measured by the fol- 
lowing formula as stated in [29]. 
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where ,Sf  is the number of occurrences of the word 
  in the sentence S , idf  inverse document fre- 
quency of the word   and ix  is the i-th word in the 
sentence x and iy  is the i-th word in the sentence y. idf 
value of a word is computed on a corpus of documents  
using the formula: log(N/df) where N is the number of 
documents in the corpus and df is the number of docu- 
ments in the corpus that contain the word. Finally, the 
sentences selected in the above-mentioned manner are 
reordered using text order (sorted in the order in which 
they appear in the input texts) to increase the readability 
of the summary. 

5. Experimental Results 

To evaluate our summarization system, 450 medical news 
articles have been downloaded from a number of online 
medical news sources. From the downloaded articles, the 
images and other links are manually removed and only 
the news content is considered. 

Traditionally, for each system generated summary, 
more than one model summaries are used for evaluation 
because the human abstractors may disagree with each 
other in producing the summary of the document. But, 
manual summary creation is a tedious task. In our ex- 
periments, we have used two reference summaries for 
evaluating a system generated summary. 

For system evaluation, we have used precision and re- 
call. 

Precision and recall: Precision and recall are the 
well-known evaluation measures in the information re- 
trieval settings. Since our system extracts sentences from 
the source document to form a summary, we define pre- 
cision and recall as follows: 

Precision
N

K
  

where, N = number of extracted sentences matched with 
a reference summary and K = number of sentences ex- 
tracted by the system. 

Recall
N

M
  

where, N = number of extracted sentences matched with 
a reference summary and M = number of sentences in the 
reference summary. Since we have used two reference 
summaries for evaluating a system generated summary, 
we have compared the system summary to each of the 
reference summaries and computed the precision and re- 
call. Thus for each system generated summary, we get 
one pair of precision and recall values for the first refer- 
ence summary and another pair of precision and recall 
values for the second reference summary. We define the 
average 1 2precisionR R  and the average 1 2recallR R  as fol- 
lows:  
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where 
1RP = average precision of a system, where the 

precision is computed by comparing the system gener- 
ated summary and the first reference summary for a 
document, 

2RP = average precision of a system, where 
the precision is computed by comparing the system gen- 
erated summary and the second reference summary for a 
document, 

1RP = average recall of a system, where the 
recall is computed by comparing the system generated 
summary and the first reference summary for a document, 

2RP = average recall of a system, where the recall is 
computed by comparing the system generated summary 
and the second reference summary for a document. 

For evaluating the system using precision and recall, 
we set the compression ratio to 15% and 20%. Compres- 
sion ratio r% means r percent of the total sentences in the 
source documents are extracted as a summary. To meas- 
ure the overall performance of the proposed learning 
based summarization system, our experimental dataset 
consisting of 450 documents are divided into 3 folds for 
3-fold cross validation where each fold contains two in- 
dependent sets: a training set of 300 documents and a test 
set of 150 documents. For each fold, a separate model is 
built from 300 documents and the learned model is ap- 
plied to the test set of 150 documents. Thus, for each task, 
if we consider all three folds, we can get a summary for 
each of 450 documents in our corpus. For other systems 
such as MEAD and the lead baseline system (which sim- 
ply takes the first n words or n sentences of the document) 
and Bagging Method to which the proposed system is 
compared, we run the systems on the entire 450 docu- 
ments in our corpus to collect 450 summaries for each 
task. 

Table 1 shows the results in terms of precision and re- 
call for the compression ratio set to 15% and Table 2 
shows the results for the compression ratio set to 20%. 

By analyzing Table 1, we find that for 15% summary 
generation task, the learning based system performs bet- 
ter than the Bagging Method, lead baseline and MEAD, 
but MEAD performs worse than the lead baseline and 
Bagging method. 

Table 2 shows that for 20% summary generation task, 
MEAD performs better than the lead baseline whereas 
the learning based system performs better than MEAD 
and Bagging method. 

6. Conclusion 

This paper discusses a machine learning based model for 
text summarization in medical domain. Most of previous 
works on text summarization in the medical domain extends 

Table 1. Precision and recall for 15% summary generation 
task on the test data set. 

 Average PrecisionR1R2 Average RecallR1R2

Proposed Method 0.69 0.26 

Mead 0.54 0.24 

Baseline-Lead 0.58 0.25 

Bagging Method 0.63 0.29 

 
Table 2. Precision and recall for 20% summary generation 
task on the test data set 

 Average PrecisionR1R2 Average RecallR1R2

Proposed Method 0.61 0.34 

Mead 0.54 0.31 

Baseline-Lead 0.47 0.27 

Bagging Method 0.59 0.35 

 
the various features used in other domains to the medical 
domain. In our work, we have combined several medical 
domain specific features with some other features used in 
the state-of-art summarization approaches. A machine- 
learning tool has been used for effective feature combi- 
nation. The proposed approach performs better than the 
systems it is compared to. 
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