
Communications and Network, 2013, 5, 369-378
Published Online November 2013 (http://www.scirp.org/journal/cn)
http://dx.doi.org/10.4236/cn.2013.54046

Open Access CN

Lossless Compression of SKA Data
Sets

Karthik Rajeswaran, Simon Winberg
Department of Electrical Engineering, University of Cape Town, Cape Town, South Africa

Email: karthik.rajeswaran@uct.ac.za, simon.winberg@uct.ac.za

Received October 17, 2013; revised November 12, 2013; accepted November 20, 2013

Copyright © 2013 Karthik Rajeswaran, Simon Winberg. This is an open access article distributed under the Creative Commons At-
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

ABSTRACT

With the size of astronomical data archives continuing to increase at an enormous rate, the providers and end users of
astronomical data sets will benefit from effective data compression techniques. This paper explores different lossless
data compression techniques and aims to find an optimal compression algorithm to compress astronomical data ob-
tained by the Square Kilometre Array (SKA), which are new and unique in the field of radio astronomy. It was required
that the compressed data sets should be lossless and that they should be compressed while the data are being read. The
project was carried out in conjunction with the SKA South Africa office. Data compression reduces the time taken and
the bandwidth used when transferring files, and it can also reduce the costs involved with data storage. The SKA uses
the Hierarchical Data Format (HDF5) to store the data collected from the radio telescopes, with the data used in this
study ranging from 29 MB to 9 GB in size. The compression techniques investigated in this study include SZIP, GZIP,
the LZF filter, LZ4 and the Fully Adaptive Prediction Error Coder (FAPEC). The algorithms and methods used to per-
form the compression tests are discussed and the results from the three phases of testing are presented, followed by a
brief discussion on those results.

Keywords: Square; Kilometre; Array; Lossless; Compression; HDF5

1. Introduction

Astronomical data refer to data that are collected and
used in astronomy and other related scientific endeavours.
In radio astronomy, data that are collected from radio
telescopes and satellites are stored and analysed by as-
tronomers, astrophysicists and scientists. Digital astro-
nomical data sets have traditionally been stored in the
Flexible Image Transport System (FITS) file format, and
are very large in size. More recently, the Hierarchical
Data Format (HDF5) has been adopted in some quarters,
and it is designed to store and organize large amounts of
numerical data, as well as provide compression and other
features.

With the size of astronomical data archives continuing
to increase at an enormous rate [1], the providers and end
users of these data sets will benefit from effective data
compression techniques. Data compression reduces the
time taken and the bandwidth used when transferring
files, and it can also reduce the costs involved with data
storage [2].

The SKA Project

The MeerKAT project, which involves a radio telescope
array to be constructed in the Karoo in South Africa, is a
pathfinder project for the larger Square Kilometre Array
(SKA) [3]. Once the MeerKAT is complete, it will be the
world’s most powerful radio telescope and provide a
means for carrying out investigations, both in terms of
astronomical studies and engineering tests, facilitating
the way towards the efficient and successful completion
of the SKA.

The SKA will allow scientists to explore new depths
of the Universe, and it will produce images and data that
could be in the order of Petabytes (PB) of size [4].

A software environment is used to analyze and extract
useful information from these pre-processed data sets,
which are used by scientists and astrophysicists. Improv-
ing the performance and functionality of this software
environment is one of the main focus areas of research
being conducted as part of the MeerKAT project.

Previous studies have discussed the big data chal-

K. RAJESWARAN, S. WINBERG 370

lenges that would be faced by large radio arrays [5] and
have explored the signal processing [1,6] and data com-
pression techniques [7] that are used in analyzing astro-
nomical data.

2. Objectives

The requirements and objectives for this study stem from
meetings with members of the Astronomy Department at
the University of Cape Town and with the chief software
engineers working on the SKA project. The meetings
helped to gain a better understanding of how this project
would benefit the end users (astrophysicists and scien-
tists), and how it would reduce storage costs and allow
faster access to the data sets for the SKA project.

The SKA project has a custom software environment
used to process and extract information from HDF5 files.
The HDF5 file format has a well-defined and adaptable
structure that is becoming a popular format for storing
astronomical data.

The main focus of this project was to compress the to-
tal size of the files containing the astronomical data
without any loss of data, and do this while streaming the
data from the source to the end user. This main objective
has been divided into the following research goals:

1) Investigate and experiment with different data com-
pression techniques and algorithms;

2) Find the optimal data compression algorithm for the
given data sets;

3) Attempt to implement the algorithm while stream-
ing the data sets from a server;

4) Demonstrate the algorithms functionality by testing
it in a similar environment to the SKA as a stand-alone
program.

3. Background

3.1. Astronomical Data in Radio Astronomy

Astronomical data refers to data that is collected and
used in astronomy and other related scientific endeavours.
In radio astronomy, data that is collected from radio
telescopes and satellites is stored and analysed by as-
tronomers, astrophysicists and scientists [1]. Digital as-
tronomical data sets have traditionally been stored in the
FITS file format, and are very large in size [8]. More
recently, the Hierarchical Data Format (HDF5) has been
adopted in some quarters, and is designed to store and
organize large amounts of numerical data.

The invention and commercialization of CCD data
volumes has led to astronomical data sets growing expo-
nentially in size [9]. (Figure 1) below provides evidence
of this, showing how astronomical data has grown in size
from the 1970s. These results were obtained from a study
carried out on the LOFAR project, which is a pathfinder
to the SKA.

Figure 1. Increasing bit size of astronomical data [10].

Most astronomers do not want to process and analyze
data and have to delete it afterwards. Variable astrono-
mical objects show the need for astronomical data to be
available indefinitely, unlike Earth observation or me-
teorology. The biggest problem that arises from this situ-
ation is the overwhelming quantity of data which is now
collected and stored [1].

Furthermore, the storage and preservation of astro-
nomical data is vital. The rapid obsolescence of storage
devices means that great efforts will be required to en-
sure that all useful data is stored and archived. This adds
to the necessity of using a new standard to overcome the
potential break down of existing storage formats [11].

3.2. The HDF5 File Format

The Hierarchical Data Format (HDF) technology is a
library and a multi-object file format specifically de-
signed to transfer large amounts of graphical, numerical
or scientific data between computers [12]. HDF is a
fairly new technology and was developed by the National
Centre for Supercomputing Applicaionts (NCSA), while
the HDF Group currently maintains it. It addresses prob-
lems of how to manage, preserve and allow maximum
performance of data which have the potential for enor-
mous growth in size and complexity. It is developed and
maintained as an open source project, making it available
to users free of charge.

HDF5 (the 5th iteration of HDF) is ideally suited for
storing astronomical data as it is [13,14]:
 Open Source: The entire HDF5 suite is open source

and distributed free of charge. It also has an active
user base that provides assistance with queries.

 Scalable: It can store data of almost any size and type,
and is suited towards complex computing environ-
ments.

 Portable: It runs on most commonly used operating
systems, such as Windows, Mac OS and Linux.

 Efficient: It provides fast access to data, including
parallel input and output. It can also store large
amounts of data efficiently, has built-in compression
and allows for people to use their own custom built
compression methods.

3.3. Data Compression Algorithms

Data compression algorithms determine the actual proc-

Open Access CN

K. RAJESWARAN, S. WINBERG 371

ess of re-arranging and manipulating the contents of files
and data to reduce their size. Golomb coding and Rice
Coding are two of the most commonly used algorithms,
and serve as the basis for numerous compression tech-
niques.

The following were found to be the best performing
algorithms for the given HDF5 files.

3.3.1. SZIP
SZIP is an implementation of the extended-Rice lossless
compression algorithm. The Consultative Committee on
Space Data Systems (CCSDS) has adopted the ex-
tended-Rice algorithm for international standards for
space applications [15]. SZIP is reported to provide fast
and effective compression, specifically for the data gen-
erated by the NASA Earth Observatory System (EOS)
[16].
SZIP and HDF5
SZIP is a stand-alone library that is configured as an op-
tional filter in HDF5. Depending on which SZIP library
is used, an HDF5 application can create, write, and read
datasets compressed with SZIP compression, or can only
read datasets compressed with SZIP.

3.3.2. GZIP
GZIP, is a combination of LZ77 and Huffman coding
and is based on the DEFLATE algorithm. DEFLATE
was intended as a replacement for LZW and other data
compression algorithms which limited the usability of
ZIP and other commonly used compression techniques.

3.3.3. LZF
The LZF filter is a stand-alone compression filter for
HDF5, which can be used in place of the built-in DE-
FLATE or SZIP compressors to provide faster compres-
sion. The target performance point for LZF is very high-
speed compression with an “acceptable” compression
ratio [17].

3.3.4. PEC
The Prediction Error Coder (PEC) is a highly optimized
entropy coder developed by researchers at the University
of Barcelona in conjunction with the Gaia mission, which
is a space astrometry mission of the European Space
Agency (ESA) [18]. The PEC is focused on the compres-
sion of prediction errors, thus a pre-processing stage
based on a data predictor plus a differentiator is needed.
It is a very fast and robust compression algorithm that
yields good ratios under nearly any situation [13].
FAPEC
The FAPEC (Fully Adaptive Prediction Error Coder) is a
fully adaptive model of the PEC, meaning that it auto-
matically calibrates the necessary settings and parameters
based on the type of data that needs to be compressed.

It is a proprietary solution commercialized by DAP-
COM Data Services S.L., a company with expertise on
efficient and tailored data compression solutions, besides
data processing and data mining. The company offers not
only this efficient data compression product, applicable
to a large variety of environments, but also the develop-
ment of tailored pre-processing stages in order to maxi-
mize the performance of the FAPEC on the kind of data
to be compressed.

3.3.5. LZ4
The LZ4 algorithm was developed by Yann Collet and
belongs to the LZ77 family of compression aglorithms.
Its most important design criterion is simplicity and
speed [19].

4. Methodology

The data collected from the SKA will be stored in huge
data centres, from which various end users will access
the data. It was initially proposed that the compression
should occur while the data is stored at the server end (as
soon as it is collected), before the end user can access it
(Figure 2).

This was modified at a later stage, with the compres-
sion to occur while the files were being read from the
server, which is in line with the third objective of the
project.

The intention was for the compression algorithm to be
assimilated into the software stack that the SKA cur-
rently has in place. An additional functionality was that it
should work as a stand-alone program.

From discussions with the SKA, the main priority with
regards to the compression of the data was the compres-
sion ratio, with compression time and memory usage
coming next. It was also mentioned that all of the data
contents must be preserved, including any noise, making
the compression lossless. Thus, two main stages of test-

Figure 2. Image showing the process of data capture, stor-
age and consumption (Adapted from [20]).

Open Access CN

K. RAJESWARAN, S. WINBERG

Open Access CN

372

ing were carried out:
1) Compressing the entire data set and attempting to

obtain as the highest possible compression ratio;
2) Modifying and using different parameters within the

algorithms to opitmize their performance and obtain the
best results.

Various algorithms were investigated and considered,
with the following 5 being chosen for use in the testing
process based on the compression ratios and speeds they
provided for the given data sets.

1) GZIP
2) SZIP
3) LZF
4) FAPEC
5) LZ4
The algorithms were evaluated as follows:

 Each algorithm was run on data sets of different sizes,
across a wide range (30 MB to 9 GB).

 The compression ratio and time taken were recorded
for each test.

 The results from these tests helped to determine
which algorithm/technique was the best for the given
astronomical data sets.

 Compression was applied while the data sets were
streamed from the server to the user, simulating the
SKA environment.

5. System Design and Testing

The testing system was comprised of the:
 Testbeds—Computers and software used for testing
 Datasets—Files collected from SKA to be tested on
 Compression techniques—Techniques used to com-

press datasets on the testbeds
The different compression techniques were installed

on the testbeds. When the datasets were loaded or read,
the testing environment was activated and the algorithms
were run on the files being tested. The achieved com-
pression ratio, time taken and memory used (in certain
scenarios) then formed the results for this project (Figure
3).

5.1. Testbeds

The testbeds consisted of the computers, and the software
applications and tools on them that were used to run and
test the performance of the different compression tech-
niques on the datasets.

In order to obtain relevant results, it was necessary to
attempt to simulate the computing environment used by
the SKA. This included:
 Computers running Linux-based operating sys-

tems—The majority of the machines at the SKA run
versions of the Ubuntu operating system. Given that
Ubuntu is open source and that the researcher had
previous experience using it, it was chosen as operat-
ing system to use.

 h5py Interface—The h5py interface is a python
module designed for the HDF5 format. It allows users
to easily access and manipulates HDF5 files using py-
thon commands.

 Streaming files from a server—This involved stream-
ing the datasets from another computer (which acted
as the server) and attempting to compress them as
they were being read.

A main computer (primary testbed) was used to run
the compression algorithms, while a second machine
(server testbed) was used to host and send the data when
re-creating the streaming environment. This machine had
the same specifications as the main computer.

Figure 3. High level system design.

K. RAJESWARAN, S. WINBERG 373

5.2. Datasets

A total of 11 datasets were obtained from the SKA. They
ranged from 30 MB to 9.35 GB in size, of which 10 were
collected during a 24 hour period on the 1st of Decem-
ber, 2012. File number 6 was collected on the 16th of
December 2011. (Table 1) below shows each dataset and
its size.

5.3. Compression Techniques

The selected lossless compression algorithms, SZIP,
GZIP, LZF, FAPEC and LZ4, were installed and run on
the primary testbed.

5.4. Streaming Compression

The aim of streaming compression is to compress a file
while it is being read. This normally involves loading the
file that is being read into memory and then applying the
compression algorithm to the file. The effectiveness of
this process relies heavily on the amount of RAM that is
available and the size of the file that is being compressed.

Given the requirements for the project, two important
factors had to be considered:
 The amount of time taken to compress the data while

streaming;
 The time taken to send the file (network throughput).

These two metrics are crucial to the process of stream-
ing compression as the trade-off between the time taken
to compress the file and the time taken to send it would
determine the effectiveness of streaming compression.

As a result, the following equations were established:

=oT So

c

 (1)

=cT C S (2)

where:

Table 1. List of the datasets.

File No. File size (MB) Dataspace Dimensions

1 29.8 37X1024X84X2

2 43.9 55X1024X84X2

3 69.6 88X1024X84X2

4 75.9 96X1024X84X2

5 342.4 105X4096X84X2

6 466.5 503X1024X112X2

7 2720 3483X1024X84X2

8 3390 4347X1024X84X2

9 4690 6009X1024X84X2

10 5590 7020X1024X84X2

11 9350 2868X4096X84X2

 To is the total time taken to transfer the original file
 So is the time taken to stream the original file
 Tc is the total time taken to transfer the compressed

file
 C is the time taken to the compress the file
 Sc is the time taken to stream the compressed file

For streaming compression to be effective, Tsc would
always have to be less than To.

5.4.1. SKA Compress
In order to explore the feasibility of streaming compres-
sion, a program was written which would perform the
tasks shown in the following image. The program was
named “SKA Compress”. The algorithm which was used
to design the program is shown in (Figure 4).

The threshold of the file size would need to be set in
the program depending on which compression algorithm
was being used and the available network speed.

For example, if it took 30 seconds to transfer File A,
and a total time of 40 seconds to compress and then
transfer the compressed version of File A, the program
would not compress the file and simply transfer. How-
ever, if it took 60 seconds to transfer a larger file (File B),
and 50 seconds to compress and transfer the compressed
version of File B, then the program would go ahead and
compress the file and send it to the user.

The program was designed to take in the file that was
to be opened as an input parameter. It would then com-
press the file, creating a compressed file named “temp-
file”, which would then be sent to the user. Once the us-
ers have finished accessing the file, they could close the
program, upon which the temporary file would be deleted.

Figure 4. SKA compress flowchart.

Open Access CN

K. RAJESWARAN, S. WINBERG 374

Although the program would not strictly be compressing
the file while it was being streamed to the user, the inten-
tion was for the program to operate so quickly that it
would give the impression that stream-only compression
was being achieved.

5.4.2. Stream-Only Compression
The final step was to implement stream-only compres-
sion i.e. applying the compression only while the file was
being streamed from the primary testbed to the secondary
testbed, neither before nor after.

The LZ4 algorithm implemented a function to carry
out such a process, which was modified slightly to im-
prove its performance. However, it was not tailored to
suit the specific content and format of the files. Thus, it
carried out a more generic approach towards the stream-
only compression.

6. Results and Evaluation

Three phases of testing that were carried out, which
were:

1) Initial performance testing
2) Final performance testing
3) Streaming compression testing

6.1. Initial Performance Testing

An inital set of testing was carried out smaller data sets
to compare the performances of the different algorithms.
These were files 1-6, which ranged from 29 MB to 466.5
MB in size.

This testing helped to give an indication of the algo-
rithms’ compatibility with the specific arrangement and
structure of these files, so that the best performing algo-
rithms could be tested on the larger files (Figure 5).

The compression ratios, with the odd exception, gra-
dually decreased as the file sizes increased, which is to
be expected [18]. SZIP and GZIP provided the highest
ratios, ranging between 1.4 - 1.6, while the FAPEC and
LZ4 provided lower but consistent ratios. The LZF filter
provided the lowest ratios. The relative compression ra-
tios for SZIP, GZIP and LZF were in line with those that
were found in the studies conducted by Yeh et al. [16]
and Collette [17]. This was reflected further in the com-
pression times.

The FAPEC and LZ4 were significantly faster than the
other three algorithms. The LZ4 filter was also relatively
quick while SZIP took longer, with GZIP being by far
the slowest (Figure 6).

6.2. Final Performance Testing

The best three compression algorithms were selected
from the initial testing in this stage. Based on the three
key metrics, it was intended that the algorithms which

Figure 5. Compression ratios for initial performance test-
ing.

provided the best ratio, quickest compression times and
had the least memory usage would be selected. However,
LZ4 provided the quickest compression speeds as well as
the least memory usage, thus the FAPEC was chosen, as
its ratio and timing results were very similar to those of
LZ4. The final algorithm that was selected was SZIP,
which provided the highest compression ratios.

Datsets 7-11 were used for LZ4 and SZIP, but only 7
and 8 could be used for the FAPEC due to time restric-
tions in sending the datasets to the researchers at the
University of Barcelona.

Figure 7 below compares the compression ratios ob-
tained from the final performance testing. As was with
the inital stage, the FAPEC and LZ4 provided steady and
similar ratios, ranging between 1.15 and 1.25. SZIP ini-
tially provided high ratios close to 1.5 for files 7 and 8,
but its performance drastically declined on the three files
greater than 4GB in size, reaching a similar level to that
of LZ4.

Figure 8 compares the compression times obtained
from the final performance testing. SZIP was considera-
bly slower than the FAPEC and LZ4. In the most ex-
treme case SZIP took almost 34 minutes longer than LZ4
to compress dataset 11. LZ4 was extremely quick, with
the FAPEC performing slightly slower.

The results from this section clearly showed that LZ4
provided the best overall performances for the given data
sets. It performed considerably faster than the other two
algorithms, as well as being memory efficient and pro-
viding ratios greater than 1.1. As a result, it was chosen
as the optimal algorithm to develop the stream-based
system. The FAPEC provided promising results which
were likely to be close to those achieved by LZ4.

Open Access CN

K. RAJESWARAN, S. WINBERG

Open Access CN

375

File Number

Figure 6. Compression times for initial performance testing.

fer the original, uncompressed files and the compressed
files. The first graph shows the results for datasets 1-6,
and the second graph shows the results from datasets 7-
11.

Using Equations (1) and (2), for streaming compres-
sion to be effective, Tc needed to be less than To. The two
graphs show that Tc was less than To for all of the data-
sets except number 6, where a lower compression ratio of
1.083 was obtained. The difference in time between To
and Tc increased as the files got larger in size, while the
difference was small (less than 5 seconds on average)
with files smaller than 100 MB.

This showed that SKA Compress performed success-
fully and met the objective of providing results where Tc
was consistently less than To.

Figure 7. Compression ratios for final performance testing.

6.3. Streaming Compression Testing

6.4. Stream-Only Compression
The results in this section are split into two sub-sections,
those from the initial stage of the SKA Compress pro-
gram, and those when stream-only compression was in-
tegrated and attempted.

The final step was to implement stream-only compres-
sion i.e. applying the compression only while the file was
being streamed from the server testbed to the main test-
bed, neither before nor after.

Figures 11 and 12 show the results that were obtained
from stream-only compression.

SKA Compress
The transfer speed from the server testbed to the main
testbed averaged between 2.5 MB/s and 2.8 MB/s. As shown in Figure 12, the time taken to compress

and stream the files generally took much longer than it Figures 9 and 10 show the time taken to trans-

K. RAJESWARAN, S. WINBERG 376

Figure 8. Compression times for final performance testing.

Figure 9. Comparing the streaming compression times for
datasets 1-6.

would to simply transfer the original, uncompressed files.
The stream-only compression program performed in a
time efficient manner for the first three files. For every
file after that, the differences in the time taken were pro-
gressively longer. The one outlier result for SKA Com-
press was due to the file becoming corrupted during that

Figure 10. Comparing the streaming compression times for
datasets 7-11.

set of testing.

The compression ratios obtained through stream-only
compression were comparable to those from SKA Com-
press for the first four files. However, there was a drastic
decrease for every file after that. The compression ratio
dropped to a very low level, such that the ratio obtained
for file 11 was entirely negligible, with the compressed

Open Access CN

K. RAJESWARAN, S. WINBERG 377

Figure 11. Comparing the compression times between To and Sc.

Figure 12. Comparing the compression ratios between SKA
Compress and stream-only compression.

file only 0.03% smaller than the original. This can be
attributed to the larger block sizes that had to be sent
through the memory buffer.

One of the problems that came up from stream-only
compression was that the compressed versions of files 7-
11 could not be read and were corrupted. Given that file
7 is 2.7 GB in size, it was suspected that the reason for
those outcomes was a result of the header of the files and
the end of the files not reaching the user in the same ses-
sion. It was observed that when memory usage became
extremely high (greater than 50%), the disk would be in a
“sleeping” state and thus the process would be paused for
a short period time, before resuming. In that period, it is
likely that the files greater in size than half of the avail-
able RAM (which would be 1 GB) caused the disk to
enter the ‘sleeping’ state, thus not concatenating the
header with the end of the file.

As a result, although the entire compressed files would

reach the user, they were not in the exact same format
and structure as the original, causing them to be cor-
rupted.

7. Conclusions and Recommendations

The FAPEC and LZ4 provided the best overall results,
and both algorithms achieved this while being signifi-
cantly faster and using less memory than the other three.
The commercial restrictions of the FAPEC did not allow
for more rigorous testing. However, the nature of the
algorithm and the results it provided were very promising.
The LZ4 results provided the best performance when
considering the key performance metrics and they were
successfully used to develop the SKA Compress pro-
gram.

The results using SKA Compress were excellent and
met most of the criteria detailed in the requirements for
the project. They showed that it was possible to run a
program which eased the load on the available comput-
ing resources (storage space and memory) and allowed
users to access the datasets in a time efficient manner. It
was also evident that certain thresholds would need to be
set within the program based on the network speed, in
order to maximize its performance.

The outcome of attempting stream-only compression
was not entirely successful, as it was extremely memory
intensive and regularly created corrupted datasets which
could not be read by the end user. However, the few
successful attempts indicate that it is an aspect which
needs to be worked on and could provide hugely benefi-
cial outcomes if improved upon.

The following lists of recommendations are intended
to provide a guideline to build upon the work carried out
in this study.

1) Test on greater number of datasets—While this

Open Access CN

K. RAJESWARAN, S. WINBERG 378

study managed to cover a wide range of datasets, more
accurate results could be obtained by testing a greater
number of files within the same range. This would pro-
vide clearer indications on how to optimize parameters in
the compression programs, particularly with regard to
pure streaming compression.

2) Refinement of LZ4 to be more specific to the
datasets—The LZ4 algorithm provided excellent results
in all three key metrics. However, the algorithm was only
slightly modified and was run without considering the
format or contents of the files. Tailoring the performance
of the LZ4 algorithm to the HDF5 format and treating
dataspaces within the datasets based on the nature of the
data, could yield much better results.

3) Obtain final version of FAPEC—The FAPEC pro-
vided very similar results to LZ4, but it was slightly
slower. However, the nature of the FAPEC means that it
is designed to progressively compress the HDF5 files as
they are being transferred/streamed, and that it is fully
adaptive. This would indicate that the final commercial
version of the FAPEC could provide even better and
more specifically applicable compression.

8. Acknowledgements

We acknowledge the intellectual contributions of our
colleagues in the Radar and Remote Sensing Group at the
University of Cape Town. This research was done in col-
laboration with the South African SKA MeerKAT pro-
ject.

REFERENCES
[1] L.-L. Stark and F. Murtagh, “Handbook of Astronomical

Data Analysis,” Springer-Verlag, Heidelberg-Berlin, 2002.

[2] W. D. Pence, R. Seaman and R. L. White, “Lossless As-
tronomical Image Compression and the Effects of Noise,”
Publications of the Astronomical Society of the Pacific,
Vol. 121, No. 4, 2009, pp. 414-427.
http://dx.doi.org/10.1086/599023

[3] “South Africa’s Meerkat Array,” 2012.
http://www.ska.ac.za/download/factsheetmeerkat2011.pdf

[4] R. Mittra, “Square Kilometer Array-A Unique Instrument
for Exploring the Mysteries of the Universe Using the
Square Kilometer Array,” Applied Electromagnetics Con-
ference (AEMC), Kolkata, 14-16 December 2009, pp. 1-6.

[5] D. L. Jones, K. Wagstaff, D. R. Thompson, L. D’Addario,
R. Navarro, C. Mattmann, W. Majid, J. Lazio, R. Preston,
and U. Rebbapragada, “Big Data Challenges for Large

Radio Arrays,” IEEE Aerospace Conference, Big Sky,
3-10 March 2012, pp. 1-6.

[6] J.-L. Starck and F. Murtagh, “Astronomical Image and
Signal Processing,” IEEE Signal Processing Magazine,
Vol. 18, No. 2, 2002, pp. 30-40.

[7] S. de Rooij and P. M. Vitanyi, “Approximating Rate-Dis-
tortion Graphs of Individual Data: Experiments in Lossy
Compression and Denoising,” IEEE Transactions on
Computers, Vol. 23, No. 4, 2012, pp. 14-15.

[8] S. Finniss, “Using the Fits Data Structure,” Master’s The-
sis, University of Cape Town, Cape Town, 2011.

[9] K. Borne, “Data Science Challenges from Distributed
Petascale Astronomical Sky Surveys,” DOE Conference
on Mathematical Analysis of Petascale Data, 2008.

[10] K. R. Anderson, A. Alexov, L. BaŁhren, J. M. Griemeier,
M. Wise, and G. A. Renting, “LOFAR and HDF5: To-
ward a New Radio Data Standard,” SKAF2010 Science
Meeting, 10-14 June 2010.

[11] B. B. C. I. of Technology, “Astronomy Needs New Data
Format Standards,” 2011.
http://astrocompute.wordpress.com/2011/05/20/astronom
y-needs-new-data-format-standards/

[12] “Hdf5 for Python,” 2013.
www.alvfen.org/wp/hdf-5for-python

[13] C. E. Sanchez, “Feasibility Study of the PEC Compressor
in hdf5 File Format,” Master’s Thesis, Universitat Polite-
cnica de Catalunya, 2011.

[14] “What Is HDF5,” 2013.
www.hdfgroup.org/hdf5/whatishdf5.html

[15] P.-S. Yeh, W. Xia-Serafino, L. Miles, B. Kobler and D.
Menasce, “Implementation of CCSDS Lossless Data Com-
pression in HDF,” Space Operations Conference, Hous-
ton, 9-12 October 2002.

[16] “Implementation of CCSDS Lossless Data Compression
in HDF,” Earth Science Technology Conference, Pasa-
dena, 11-13 June 2002.

[17] “LZF Compression Filter for HDF5,” 2013.
http://www.h5py.org/lzf/

[18] J. Portell, E. Garcia Berroad, C. E. Sanchez, J. Castaneda,
and M. Clotet, “Efficient Data Storage of Astronomical
Data Using HDF5 and PEC Compression,” SPIE High-
Performance Computing in Remote Sensing, Vol. 8183,
2011, Article ID: 818305.

[19] “LZ4 Explained,” 2013.
http://fastcompression.blogspot.com/2011/05/lz4-explain
ed.html

[20] “From Big Bang to Big Data: Astron and IBM Collabo-
rate to Explore Origins of the Universe,” 2012.
http://www-03.ibm.com/press/us/en/pressrelease/37361.w
ss

Open Access CN

http://dx.doi.org/10.1086/599023

