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ABSTRACT

In this paper, we discuss the average errors of multivariate Lagrange interpolation based on the Chebyshev nodes of the
first kind. The average errors of the interpolation sequence are determined on the multivariate Wiener space.
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1. Introduction

Let F be a real separable Banach space equipped with
a probability measure x on the Borel sets of F. Let
X be another normed space such that F is continuously
embedded in X . By ||-]|y we denote the norm in X.
Any T:F— X such that fs| f-T(f)|, is a
measurable mapping is called an approximation operator.
The average error of T is defined as

12
eU,F7II’I|x)Z=(fII f=T(F)I% ﬂ(df)j :

For d>1, let
Cou ={f €C[0,1]* | f (X, %) =0,
whenever x, =0 for some 1<i<d}.

The space C,, equipped with the sup norm
Il 1= sup [ ()]

te[0,11°
The classical Wiener sheet measure Wy on B(C,,)
is Gaussian with mean zero and covariance kernel

R, ()= [ f(s)f (t)w, (df)
Co,d

y 1)
=T min{s, . t.}, s,te[0,1]°.

i=1

For more detailed discussion and properties of w,
we refer to [1].

In this paper, we let
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Fo ={f €C[-111" | 9(%, . %,)
=f(2x-1--,2%, -1) eCy }.

For every measurable subset AeB(F,), we define
the measure of A by

g (A) =w{g (X, -+, %)
=f(2x -1,---,2x, —1) € A}.

-1
Let p(Xl,---,Xd):(H?ﬂ«/l—xf) , the weighted L, -

normfor f eF, isdefined as

@)

I F 1=l f ||z,pi=[ [ 1f®F p(t)dtj :

-1

Let

7, k=1--,n

& = cfkm =C0S

is the zeros of T, (x)=cosnéd (x=cosé), the nth degree
Chebyshev polynomial of the first kind. For f e F,, the
well-known Lagrange interpolation polynomial of f

based on {él,---,gﬁd}in”:l is given by
L,q(f,x)
n 3
D SR IRCA BRI CH M
i =1
where
oo NiTee g
Iivij(xj)_kzl%lij)fij—fk’ J=tomd
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2. Main Result

Since the polynomial interpolation operators are impor-
tant approximation tool in the continuous functions space,
there are a number of papers studying the convergence
for interpolation polynomial, especially the interpolation
polynomial based on roots of orthogonal polynomials.
Xu Guigiao [2] studied the average errors of univariate
Lagrange interpolation based on the Chebyshev nodes on
the Wiener space. Motivated by [2], we consider the av-
erage errors of multivariate Lagrange interpolation. We
first study the bivariate Lagrange interpolation, then the
general multivariate Lagrange interpolation. Our main
results are the following:
Theorem 1. Let

X=(X.%) € [_1.1]2 )
1

p(x, %) = '—l—Xlz '—1—X22,

and
L, (f,x)= Zmlzn: PG €5 O 5 (%2),
where
~ m X, _gk,m
()= k:ﬂii)m,
n X, —
(%)= 2—55'1

silsr) &y =&

Then we have

& (L, Pl Ilz,) = 111 F00 = Ly (F,3) 15, 42, (dlf)

F,

m 2m

. T V3 . T T /2 T . T T
sin—cos——+sin—(1-cos—) sin—cos— +sin— (1—cos—)
2m m n 2n 2 n

n

NN

m2(1—cos )
m

1

+

n?(l—cos’)
n

. T T . V4 V4 . T T . T T
sin—cos——+sin——(1—cos—) sin—cos— +sin— (1—cos—)
m 2m 2m m” n 2n 2n n

2 m2(1—cos )
m

Theorem 2. Let
X=X, %) €[],

o0 = (i)

and L,,(f,x) be defined by (3). Then we have
&’ (Lyg. Fyull-Il,,,)

=FI 0= Ly (F. )1, 44 (df)

_Lo(d) e
-t El[kj( b

. T T . T T
sin —cos— +sin— (1—cos—)
n 2n 2n n R

n2(1-cos ")
n

k

Remark 1. Let us recall some fundamental notions
about the information-based complexity in the average
case setting. Let F be a set with a probability measure
v,and let G be a normed linear space with norm ||-||.
Let S be a measurable mapping from F to G
which is called a solution operator. Let N be a mea-
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n?(1-cos’)
n

surable mapping from F into R, and let ¢ be a
measurable mapping from R® into G which are
called an information operator and an algorithm, respec-
tively. The average error of the approximation ¢oN
with respect to the measure v is defined by

1
e(S,N,g) = ([_IIS(F)=g(N(F)IF v(df) )2,
and the average radius of information N with respect to
v is defined by
r(S,N) ::ir;f e(S,N,¢),

where ¢ ranges over the set of all possible algorithms
that use information N. Furthermore, let A, be the
class of all deterministic information operators N with
cardinality m. Then, the mth minimal average radius
is defined by

r(S,A,) = ng/f r(s,N).

For F=Cy4,v=w,,S=1 (the identity mapping),
and A, consisting of function values taken at grid
points, i e.,

N(f)=[f(h, hy)-, F(ih, - ihy),
o, f@=h,-,1-h))]

JAMP



Z.B.ZHANG, Y. J. JIANG 3

for some h,---,hy, by [3,p.16] we know Note that m=n?, we can say that the average error of

rS,A )= 1 . L., is weakly equivalent to the corresponding n® th
mj/zu

minimal average radius.
From Theorem 2 we have

3. Proof of Theorem 1
e(Lndv d’” ”zp)/\_'

Proof of Theorem 1. By a simple computation, we have

& (L Fyoll-1l,,,) = JJ

[-11]

JE) =Ly (F,%) F p(x)dxas, (df )

= I[,mz{f (1200 -2 (X)L, (F,%)+L2, (F,%)) 15, (dF Y} (x)dx

@)
=]t j F2(X)u, (d)o()dx~2[ | { j F Ly, (1,04, (d)}o0dX+ [ . {J L5 (F, )1, (df 3 p(x)dx

= |1—2|2 L,
On using (1) and (2), we obtain

1_ 12{J.f (X)ﬂz(df)}P(X)dx I[ 11]2{'[ X1+1 X, +1

El

2 ®)
lel+1 1 le+1 1
T2 e 2 1

From [2], we have

=1 “]Z{J F OO Ly, (F,X)42, (A J}o(x)lx = ZZJ [ Jf(x1 X) F (& o &) (AF) -1 ()1, (%) (%, X, ),

i=1l j=1

N L (L RALE

iZ“;J‘ J.l 1+m|n2X1 §|m}1+m|n 2X2: }'|1,i(X1)|z,j(Xz)P(X1,Xz)dxidxz (6)

:iJ‘l 1+min{x1:6:i‘m} L (%) dx1~il+min{xz'§j'"} 2,(X)

i 2 \/1—x12 1 2 \/1 X

1 sinﬁcoszlﬂinzl(l—cosz) sin—cosz—+sin2—(1—cos£)
:—(ﬂ'— m m m m )-(7[— n n n n ),

2 T 2 T
m“(1—-cos— n?(1—cos>
(1—cos ) (1-cos )

and

j —1112 j "( f, X)luz (df )}p(X)dX

DA IR CRER L MO MO RN LR LS

i=1 j=1 k=1 s=1

™

=SEISLLL T 0 5 05 L d0) 1, (0L (0L, (L. (1)t )
LR +mm{ém§km}n.(x1)llk(xl) o TEmingé S 1, 6L, 06)
_22;171 2 \/1 d JZ;;J.{ 2 \/1 X X
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On combining (4)-(7), we obtain

. T T . T T . T v . T T
2 1 smacos%Jrsm%(l—cosa) smﬁcos%ﬂm%(l—cosﬁ) 72
ez(LmnvFZ-“'”Z,p):T_E(ﬂ-_ . )-(m— p= )+T
m?(1—cos ) n?(1-cos ™)
m n
sinﬁcolersinl(l—cosﬁ) sinzcoslﬂini(l—cosz)
_Z(—m__2m 2m m ,_nh _2n 2n n-y
2 m’(L—cos ") n?(1-cos’)
m n

. T A . V2 v . T v . T v
1sm—cos—+sm—(1—cos—) sin—cos— +sin — (1-cos —)
m 2m 2m m _ n 2n 2n n

2 m?(1—cos ) n?(1—cos %)
m n

we complete the proof of Theorem 1.

4. Proof of Theorem 2

Proof of Theorem 2. Similar to the proof of Theorem 1,
e (L. Fll-l,,) = JII F)—L,a(F,0)115, 4, (df)

d{,f(f () - 2f(X)|-nd(f X)+ Lo (F,3)0) 41, (dlf )3 p(x)dx

[-11]

®)
I[md{j 2 (), (df Y}o(x)dx — 2j d{j f (X)L, 4 (F, X) 22, (df Yho(x) X+ j d{j 2, (f, X), (df Y}p(x)dx
=J3,-23,+1,.
Form (1) and (2),
L=[ M]d{J P2 00, (df Po()dx = | md{J Xl”,--- Xd+1)wd(df)}p(x)dx
©)
doax +1 1 )
:Ejl,l k2 -~ k_(zj
By a simple computation similar to (6)-(7) we obtain
= gL £ 0L (1 0 (A (00
3 Tl O ) TG 8 it (O M () () (%m0 X, ) -~
NG RE]
n ] l 1
- 2 Juwt] 05 Lo g (00) 1, ()l ()P0, )0 0%, (10)

d 1+m|n{xk,<§,k}

= Z .[[ 11]"1_[

A () g i, (X ) p (X, Xy )X - Xy

ipenig =1 k=1
. T T . T T
d 11+m|n{ éik} k|k(x) 1 SIHFCOS%-FSII‘]%(l—COSF) d
HZI 2 AT 7 ),
o ‘/1_Xk n?(1—cos )
n
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and
=] el j L2 4 (F,) 145 (df J3p(x)dx
- "Jd_l Jo U 1Gn 8 1 M Th, 00T, 00000 3, )e -
i Z.;‘-lh Z;,d_lf[ Mld{I G 2+1).g(§i12+1,...,él’d;l)wd (dg)ljlkyik (Xk)'lj's‘js ()P0 X, )X, -+~ X (1)

d 0 o, 1+min fl,é k|k(x)|k1(x) ‘
1122 i } N (”)

On combining (8)-(11), we obtain

(7 -

F

pu d
(nd’ dl” ||zp):(2j -

. T T . T T
sin —cos— +sin— (1—cos—)
n 2n 2n

sin— cos—+sm—(1 cos ) d
1 n_ 2n 2n n"ys J{”]

n“(l—cos—
*(1-cos )

—~

1 3(d k-1
= — —1 .
ST kl[kj( )

We complete the proof of Theorem 2.
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