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ABSTRACT 

Elastic-plastic deformation behavior of austenitic, martensitic, and austenitic-martensitic high-Mn steels is investigated 
by using crystal plasticity theory. The development of expandable pipes made of two-phase steel for oil and gas well 
applications is needed for improved and efficient recovery of hydrocarbons from difficult reservoirs. The current re- 
search is aimed at improving the down-hole post-expansion material properties of expandable pipes. A mathematical 
model is first developed based on finite-deformation crystal plasticity theory assuming that slip is the prime mode of 
plastic deformation. The developed model is then numerically implemented by using the finite element software 
ABAQUS, through a user defined subroutine. Finite element simulations are performed for austenitic, martensitic, and 
austenitic-martensitic steels having different proportions of martensite in an austenite matrix. Three primary modes of 
loading are considered: uniaxial tension, compression and simple shear. The variation in yield strength, hardening pat- 
tern and dissipated energy is observed and analyzed. 
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1. Introduction 

As easily recoverable hydrocarbon resources are deplet- 
ing, the oil and gas industry focuses more on exploring 
oil and gas from ultra-deep, tight and pocketed reservoirs. 
Not only are these recoveries difficult and costly, but they 
require the development of new technologies and materi- 
als. There is a significant demand for new metallic materi- 
als for well drilling and construction that can meet strin- 
gent requirements regarding operation in sub-surface en- 
vironment, elevated strength, immunity to sulphur crack- 
ing, and light in weight. This poses new challenges for 
materials scientist and engineers. This need is a driving 
force for the development of modern innovative steel 
grades for oil and gas well applications. One of the new 
applications in well drilling and remediation is expand- 
able pipes, requiring the development of modern steels. 
These expandable pipes go through large diametral ex- 
pansion at depths of several kilometers in onshore or off- 
shore wells. The resulting large permanent deformation 
alters the post-expansion mechanical properties of the 
pipes and can lead to premature failure during operations. 
Since the first innovative development of expandable 
pipe [1] to the recent developments [2], the challenge of  

getting all desired material properties is still a distant 
reality. Although a series of innovative steels (TRIP, 
TWIP, Dual-phase, Martensitic steel, etc.) are being de- 
veloped in various research laboratories around the world, 
the applications are focused more on transportation in- 
dustry [3]. The idea revolves around complex thermo- 
operations to obtain sophisticated microstructures with 
combinations of different size grains, multiphase micro- 
structure, and preferred crystallographic orientation. The 
changes in grain morphology and the distribution of pha- 
ses at the micro level during manufacturing lead to sig- 
nificant improvement in material properties at macro 
level. Dual-phase steel is categorized as advanced high- 
strength steel (AHSS), and has two phases; either austen- 
ite and ferrite, or austenite and martensite. Austenite is a 
high temperature phase but in case of dual-phase steels, 
metastable austenite exists at room temperature which 
may transform into martensite upon application of ther- 
mo-mechanical loads [4]. The existence of retained aus- 
tenite plus the transformation mechanism may give rise 
to the phenomenon of transformation induced plasticity 
(TRIP), which ultimately enhances the strength and for- 
mability of an alloy [5]. It is envisaged that the down- 
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hole expansion of pipes in a well can be done in a way to 
exploit the interaction between micro-phases to elevate 
its properties after expansion [6]. The elevated properties 
will enhance structural integrity of the well, collapse and 
burst strength of the pipe, as well as providing a safe- 
guard against possible mechanical failures such as buck- 
ling etc. 

Currently, high-Mn steel is used to manufacture ex- 
pandable pipes consisting mainly of two phases, austenite 
and ferrite with some traces of martensite. Presence of a 
reasonable amount of martensite phase will greatly en- 
hance the mechanical properties of the pipe. In other 
words, if during permanent deformation process of pipes, 
the cubic austenite phase transforms to tetragonal mart- 
ensite phase due to the spontaneous shear deformation of 
crystal lattice by mechanical stressing, then the resulting 
property of the expanded pipe will be better than pre- 
expanded pipe. Extensive research has been done on 
martensitic transformation (MT) of steel, both theoretic- 
cally and computationally, but no work has been done 
with oil well applications in mind. Different types of MT 
models are developed which span from single to poly- 
crystalline, atomic to continuum, and microscopic to ma- 
croscopic [7]. Whether these models are simple or com- 
plex, one solution approach is based on the finite element 
method (FEM). Crystal plasticity FEM is one such tech- 
nique which is developed to define the complete trans- 
formation and deformation characteristics of single or 
poly-crystal to deform and/or transform from one type of 
crystal lattice to other. In this work, crystal plasticity 
theory based on finite element formulation is used to 
predict the deformation behavior of dual-phase high-Mn 
steel.  

An elastic-plastic deformation behavior of high-Mn 
steel is analyzed when subjected to external mechanical 
load. Different proportions of martensite in this steel are 
considered. The main objective is to estimate the defor- 
mation pattern of high-Mn alloy steel having different 
volume fractions of martensite phase in an austenite ma- 
trix. Initially, a mathematical model based on the crystal 
plasticity theory is presented in order to estimate the elas- 
tic-plastic deformation. Then, crystal plasticity model 
using the time integration procedure is implemented as a 
user defined material subroutine in the commercial finite 
element software ABAQUS [8]. Finally, finite element 
simulations are performed to analyze the stress-strain 
behavior of high-Mn steel having different percentage of 
austenite and martensite. 

2. Problem Formulation 

The elastic-plastic deformation behavior of single crystal 
is modeled using crystal plasticity theory, assuming that 
slip constitutes the dominant part of the plastic deforma- 
tion. The kinematics of a single crystal based on the finite 

deformation theory can be expressed using multiplicative 
decomposition of total deformation gradient [9] as given 
by  

,e pF F F                 (1) 

where F  represents the total deformation gradient, while 
eF  and pF  are the elastic and plastic deformation gra- 

dients, respectively. The elastic deformation gradient can 
be further decomposed into symmetric left stretch tensor 
and orthogonal rotation tensor:  

e e pF U R F  , 

where  is the left stretch tensor while  is the or- 
thogonal rotation tensor. The elastic deformation gradient 

eU eR

eF  describes the deformation of a crystal due to elastic 
stretch and rigid body rotation, while the plastic deforma- 
tion gradient pF  represents only the deformation due to 
crystallographic slip, which results due to dislocation 
movement on preferred crystallographic planes termed as 
slip planes. Crystallographic slip deformation does not 
alter the lattice structure and thus the elastic properties 
remain unchanged during the course of deformation. The 
plastic deformation gradient must satisfy plastic incom- 
pressibility condition . Therefore the determi- 
nant of total deformation gradient will be greater than zero, 

. The rotation and plastic deformation gradient 
tensors can be combined into a plastic rigid rotation tensor 

det 1pF 

det

*

0F

F  as 
*,e e pF U F F R F             (2) 

Let 0  and f  represent the reference (undeformed) 
and current (deformed) configurations of a material point. 
The decomposition of total deformation gradient can be 
represented by two intermediate states between these two 
end configurations, as shown in Figure 1. The two inter- 
mediate configurations 1  and 2  represent the states 
which the crystal experiences to attain the total deforma- 
tion. The first intermediate state  represents the con- 



1
 

 

Figure 1. Kinematic decomposition of elastic-plastic defor- 
mation of single crystal. 
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figuration with full plastic strain, which when subjected to 
rigid rotation leads to the second intermediate state 2 . 
The final deformed state of a material in current configu- 
ration  f  is projected from second intermediate state 

 through stretch tensor . 2

During elastic-plastic deformation of a crystal in slip 
mode, the major deformation mode is shear, resulting in 
plastic flow. This rate of shear strain is termed as plastic 
velocity gradient . The plastic deformation gradient 
can be represented in terms of plastic velocity gradient as  

 eU

pL

,p p pF L F                (3) 

In a crystal where slip activity happens on a number of 
crystallographic planes (slip planes), the plastic velocity 
gradient can be expressed as 

   1

1 1

,
SL SLN N

p p pL F F S m n    

 
 



 

         (4) 

where   represents a slip system , SL  
is the total number of slip systems in a crystal, 

 1, , SLN    N
  is the 

plastic shear strain rate on  -slip system, and S   is the 
Schmid orientation tensor in first intermediate configura- 
tion. The Schmid tensor is defined by the dyadic product of 
slip direction vector m  and area normal vector of slip 
plane n  as S m n   . The Schmid tensor must be 
updated in the second intermediate configuration to ac- 
count for the lattice rotation effects on the deformation 
behavior of the crystal. A forward mapping function is 
used to estimate the Schmid tensor in the second interme- 
diate configuration as 

 T
,e eS R S R m n              (5) 

where S  represents the Schmid tensor in second inter- 
mediate configuration 2 . The slip direction vector  m  
and area normal vector of slip plane n  can be estimated 
as 

, .e e e e em F m U R m R m n R n            (6) 

A list of slip directions and area normal vectors for face 
centered cubic (FCC) and body centered cubic (BCC) 
crystals can be found in [10]. The shear strain rate on 
 -slip system in Equation (4) can be estimated using the 
specific constitutive power law function [11], as given 
by 

 1

0 sin ,
m

s               (7) 

where 0  is the initial shear strain rate (constant for all 
slip systems),   is the resolved shear stress (RSS), s  
is the slip resistance for  -slip system, and m is the rate 
sensitivity parameter for the shear strain. The ratio of RSS 
and slip resistance in the constitutive formulation of Equa- 
tion (7) describes the slip activity, which is termed as slip 
activity ratio, while the sensitivity parameter indicates the  

response of a slip system subjected to the specific RSS 
value. Two similar slip systems may not activate at the 
same magnitude of RSS. The activity of slip system also 
depends on the slip resistance, which is mainly governed 
by the orientation of slip plane with respect to the loading 
axis. Any slip system cannot be activated unless this ratio 
becomes greater than unity. 

The slip resistance s  is responsible for the hardening 
or softening of a slip system in a crystal at micro level and 
affects material deformation at macro level. In addition, 
the slip resistance of an individual slip system mainly 
depends on the slip activity of other slip systems. For 
example, the slip resistance of  -slip system  i   
may increase or decrease if it interacts with another slip 
system   , , 1, , SLk k i N  1,  1,i  which is 
inactive or more/less active at the same stress level. This 
mechanism causes hardening or softening of  -slip sys-
tem. The interaction phenomenon becomes more complex 
when  -slip system may interact with more than one 
 -slip systems. Furthermore, the variation in shearing 
rate of  -slip systems may cause further complexity in 
hardening mechanism, which may result in problems of 
numerical solution convergence. These complexities can 
be lessened by assuming self-hardening i.e. no interaction 
among slip systems, and identical slip resistance for all 
 -slip systems. In this work, only identical slip resistance 
is considered for all slip systems. The slip resistance for 
 -slip system can be expressed as 

1
,SLN

s h 





                (8) 

where h  is the strain hardening parameter of  -slip 
system due to the interaction with  -slip system, and   
is the shear strain rate of  -slip system. The strain hard- 
ening parameter h  is estimated as ,hh q    
where q  represents the hardening coefficient of  - 
slip system. The value of  represents self- 
hardening 

1.0q 
   , while for hardening due to slip sys- 

tems interaction   
h

, . The single slip 
hardening parameter 

1q

  can be estimated as 

0 1
b

h h s s 
   ,            (9) 

where 0  is the initial value of hardening parameter, h s  
is the slip resistance of  -slip system, s  is the satura- 
tion value of slip resistance, and  is the hardening sen- 
sitivity parameter which depends on slip resistance. The 
hardening parameters 0 , 

b

h s  and b  are assumed to be 
constant for all slip systems. Considering the reference 
configuration, the Green finite strain tensor E  can be 
calculated from the elastic deformation gradient as 

 T* 1
.

2
e eE F F I    

         (10) 
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The elastic deformation gradient can be calculated using 
Equation (1) 

  1e pF F F


            (11) 

Once Green strain tensor is calculated, the second Piola- 
Kirchhoff stress T  can be obtained using crystal plas- 
ticity constitutive equation as given below 



* : ,T E  *              (12) 

where  is the elasticity tensor. The effective elasticity 
tensor, for current two-phase high-Mn steel is deter- 
mined using the elasticity tensors of austenite 


e

 a  and 
martensite  based on the rule of mixtures, the most 
common homogenization technique used in computational 
mechanics: 

 m 

m 1 ,e m a m     
           (13) 

where m  represents the volume fraction of martensite. 
The resolved shear stress on  -slip system of Equation (7) 
can be estimated using Schmid law  

* ,eF T S                 (14) 

where  is obtained using Equation (12) and other two 
parameters are already known from kinematic and hard- 
ening descriptions. Finally, the true stress T (Cauchy stress) 
can be calculated as 

T 

     T*det .e e eT F F T F          (15) 

It is interesting to observe the changes in amount of 
energy dissipated with increasing volume fraction of mar- 
tensite during the elastic-plastic deformation of crystal. 
The extended form of this dissipated energy is given in 
detail in [12] and is summarized as 

      
1

 
SLN

a a aD w     


        



           

(16) 
where   is the thermal equivalent part of resolved shear 
stress  , a  is the parameter which describes the strain 
(and depends on dislocation density), a

w
  is the modulus 

of rigidity, a  is the lattice defect energy parameter, and 
  is a parameter which depends on slip resistance of 

 -slip system. The three terms within the square bracket 
of Equation (20) represent the contribution of mechanical, 
thermal and lattice defect energies, respectively, to the 
energy dissipated during the deformation.  

The crystal plasticity model developed above is numeri- 
cally solved using finite element method. The algorithm 
followed is given in Table 1 and is implemented in 
ABAQUS using a user defined subroutine. 

3. Numerical Modeling 

Finite element simulations are done for polycrystalline 

austenitic, martensitic and two-phase high-Mn steel used 
for pipes in well applications. The two-phases considered 
are face centered cubic (FCC) austenite and body centered 
cubic (BCC) martensite. Both crystals are modeled as a 
single cubic finite element using 8-noded 3-D brick ele- 
ment with reduced integration (C3D8R), using one point 
integration rule. Each finite element represents 500 grains 
with random texture. In all cases, three primary deforma- 
tion modes are considered i.e. uniaxial tension and com- 
pression, and simple shear. Figure 2 shows geometry of 
one element with prescribed loading and boundary condi- 
tions for tension, compression and shear. The element is a 
cube with each side of 1 mm. For tension and compression 
modes, a displacement of ±0.25 mm is applied on the face 
having normal in the 3e  axis direction, and for simple 
shear displacement is applied in the 1  direction on the 
same surface (Figure 2). Planar symmetric boundary con- 
dition is applied on three faces while two remaining sur- 
faces are traction free. The material models for austenitic 
and martensitic steels include material and hardening pa- 
rameters. The material parameters are defined through 
their respective elasticity tensors,  and . The elas- 
ticity tensor elements for austenitic and martensitic steels 
are used in the current work as reported in [

e

a

mc



e

m

13]:  = 
286.6,  = 166.4, 44  = 145.0 and 11  = 372.4, 12  = 
345.0, 44  = 201.9 (in GPa). Here, superscripts a and m 
represent austenite and martensite, respectively. The ma- 
terial parameters for dual-phase steels are represented by 
the effective elasticity tensor,  as given in Equation 
(13). The hardening parameters for austenitic and marten- 
sitic steels are extracted from the calibration of experi- 
mental results reported in [

11
ac
mc12

ac
mc

ac



14], and given in Table 2.  

4. Results and Discussion 

Uniaxial tension, compression, and simple shear simula- 
tions have been performed in order to estimate the defor- 
mation behavior of steel with varying volume fraction of 
austenite and martensite phases. The simulations have 
been done for dual-phase steel having 5, 10, 15, 20, 25, 
and 50 percent of martensite. In uniaxial tension and 
compression, Cauchy stress component 33T  is plotted 
against logarithmic strain 33L  as other stress compo- 
nents are negligible. The results are shown in Figures 
 

  

Figure 2. FE model geometry and boundary conditions: (a) 
Tension/compression, (b) Simple shear. 
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Table 1. Numerical integration algorithm for crystal plasticity model. 

1) START: Given parameters nF , 1nF  , p

nF , nS , , 0h 0 , m, s ,   b

2) Initial trial  

Elastic deformation gradient   1

1 1

e p

n n nF F F


   

Green strain tensor    T*

1 1 1

1

2
e e

n n nE F F   I     

2nd Piola-Kirchhoff (PK) stress tensor * *

1 1:n nT E    

Slip resistance ns  

Resolved shear stress    T *

1 1 1 1

e e

n n n n
F F T S

n

 
   
  

3) Iterative scheme to compute *

1nT  , 1ns
  

3.1) Newton Raphson method to solve new estimate of *

1nT   

Compute shear strain rate  1

1 0 1 1sin
m

n n n ns        


n n

 

Compute plastic deformation gradient 1 11

SLNp p

n nF I S 


 

F      

Compute elastic deformation gradient   1

1 1 1

e p

n n nF F F


    

Compute Green strain tensor    T*

1 1 1

1

2
e e

n n nE F F   I     

Compute 2nd PK stress tensor * *

1 1:n nT E    

Check convergence: if *

1 2
TolnT   , GOTO step 3.2 ELSE 3.1 

3.2) Newton Raphson method to solve new estimate of 1ns  

Compute slip resistance  1 01
1SL bN

n n n ns s q h s s    

 1  
      

Check convergence: if 1 2
Tolns

  , GOTO step 4 ELSE 3.1 

4) Update rotation tensor   1 11
exp skewSLNe e

n n n nR t S 


 

    R

1



 

5) Update Schmid tensor  T

1 1 1 1

e e

n n n n n nS R S R m n  
       

6) Update Cauchy stress tensor      T*

1 1 1 1 1dete e

n n n n nT F F T F     e  

7) END: Output parameters *

1 1 1, ,n n nS T T
    

 
Table 2. Hardening parameters for austenite and martensite. 

Phase m   1

0 s    0 MPah   0 MPas   MPas  b  

Austenite 0.02 0.001 280 165 340 2.5 

Martensite 0.01 0.001 300 235 350 1.8 

 
3(a) and (b). In both loading conditions, the two main 
observations are that 1) stress-strain curves are higher, 
and 2) hardening pattern (shape of the stress-strain curve) 

varies with increasing volume fraction of martensite in the 
austenite matrix. Higher stresses for higher martensite con- 
tent are obviously as expected. As for hardening behavior,  
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Figure 3. Stress strain behavior: (a) Tension; (b) Compression; (c) Shear; (d) Yield strength variation. 
 
the hardening pattern (shape of the curve) of 5%-marten- 
site dual-phase alloy is almost the same as that of austen- 
ite; for higher martensite fraction (10% or more) the 
curves are more like pure martensite. One very interesting 
observation is that all dual-phase curves coincide at a 
strain value of about 0.15. 

Figure 3(c) shows the variation of von Mises stress with 
logarithmic strain component 12L  for austenitic, marten-
sitic and dual-phase steels in simple shear loading condi-
tion. At low magnitudes of strain, stress levels of steels 
having 5% - 20% of martensite are somewhat higher than 
pure austenite; but above the strain value of 0.2 these 
dual-phase steels show almost the same stress magnitude 
as that of austenitic steel. As observed for tension-com- 
pression, dual-phase alloys with 25% or more martensite 
show hardening behavior that is closer to martensite. 

The variation in yield strength under all three loading 
conditions (tension, compression, shear) is almost linear; 
Figure 3(d). Yield strength values are almost identical 
under tension and compression at martensite fraction of 
up to 20%. For higher amounts of martensite, there is a 
difference of about 20 MPa in yield strengths under ten- 

sion and compression. An increase in yield strength of an 
alloy with increasing martensite content (harder phase) is 
as expected. However, the difference in yield strength 
behavior under tension and compression for higher mart- 
ensite content may be due to various reasons: 1) increase 
in heterogeneity due to random distribution of harder 
phase, 2) mismatch in the crystal structure from FCC to 
BCC, which results in changing the slip deformation me- 
chanism, 3) dislocation pile up at the grain and austenite- 
martensite boundaries, which may delay the onset of 
yielding, etc. 

The magnitude of dissipated energy for austenitic, 
martensitic and dual-phase alloys for the three deformation 
modes is illustrated in Figure 4. As expected, martensitic 
steel (hardest and strongest phase) needs the highest 
amount of energy required to produce the same magnitude 
of permanent strain. The other steel alloys with different 
volume fraction of martensite show intermediate values of 
dissipated energy. It is interesting to note that under ten- 
sion, Figure 4(a), the dissipated energy of dual-phase 
alloys reduces after reaching equivalent strain of 0.2, ex- 
cept for 5% martensite. This trend is not observed in the  
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Figure 4. Dissipated energy variation of dual-phase steels: (a) Tension; (b) Compression; (c) Shear. 
 
case of compression or shear. This behavior could be due 
to the interaction among slip systems (latent hardening), 
which is responsible for hardening and softening of a me- 
tallic material during the course of deformation. In com- 
pression and shear, there is a high possibility for slip sys- 
tems to interact more than in tension because of the mate- 
rial flow behavior. This produces more hardening effects 
as a result of dislocation interlocking and dislocation pile- 
up at the grain boundary or within the grain. The energy 
required to deform the material permanently therefore 
becomes higher as the deformation progresses under com- 
pression and shear. It can also be seen (Figure 4) that 
under tensile loading there is a significant difference in 
dissipated energies of austenitic, martensitic and rest of the 
dual-phase steels. This trend is less prominent in com- 
pression and shear. These observations show that the ad- 
dition of harder martensite phase in an austenite matrix 
may give significant variation in material deformation 
behavior subjected to different loading conditions.  
All of the above results can be crucial in the applications 

of dual-phase alloy steels where large permanent defor- 
mation is required. This investigation becomes even more 

important when the material needs to be deformed using 
less energy. Prime examples are the use of expandable 
tubulars in the oil and gas industry, extrusion of seamless 
steel pipes, rolling of aluminum thin sheets, etc.  

5. Conclusion 

A mathematical model has been developed for the elastic- 
plastic deformation of austenitic, martensitic, and austen- 
itic-martensitic steels, and a numerical investigation has 
been carried out for their behavior under tension, compres- 
sion and shear. The percentage of martensite in dual-phase 
alloy is varied from 5% to 50%. Under tension and com- 
pression, 5% martensite steel behaves almost like austenite, 
while two-phase steels having 10% or more martensite 
exhibit hardening behavior (shape of stress-strain curve) 
that is closer to martensitic steel. Loaded under shear, 
stress levels of steels having 5% - 20% of martensite are 
somewhat higher than pure austenite; but above the strain 
value of 0.2, these two-phase steels show almost the same 
stress magnitude as that of austenitic steel. Variation of 
yield strength against martensite content is almost linear 
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under all loading conditions. Being the hardest and strong- 
est, martensitic steel needs the highest amount of energy 
required to produce a given amount of permanent strain, 
while two-phase alloys require intermediate values of 
dissipated energy. Under tension, less dissipated energy is 
required after reaching a strain value of around 0.2 - 0.3. 
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