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ABSTRACT 
Efficiency of the autofocusing algorithm implementations based on various orthogonal transforms is examined. The 
algorithm uses the variance of an image acquired by a sensor as a focus function. To compute the estimate of the vari- 
ance we exploit the equivalence between that estimate and the image orthogonal expansion. Energy consumption of 
three implementations exploiting either of the following fast orthogonal transforms: the discrete cosine, the Walsh-Ha- 
damard, and the Haar wavelet one, is evaluated and compared. Furthermore, it is conjectured that the computation pre- 
cision can considerably be reduced if the image is heavily corrupted by the noise, and a simple problem of optimal word 
bit-length selection with respect to the signal variance is analyzed. 
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1. Introduction 
We say that the image is sharp (in focus) when it is the 
most detailed representation of the actual scene seen via 
a lens. This intuitive observation led to many heuristic 
algorithms which measure, like for instance (see e.g. 
[1-3]): 
• the variance of the image, 
• the sum of squared Laplacian of the image, or 
• the sum of squared values of the image transform by 

selected edge-detection algorithms. 
In this work we consider the first measure for the fol- 

lowing reasons: 
• it can be shown that the variance of the image pro- 

duced by the lens is a unimodal function which has a 
maximum when the image is in focus. Moreover, 

• the variance can effectively be estimated even in the 
presence of a random noise. 

Automatic focusing seems to not only be a desired fea- 
ture of consumer electronic devices like digital cameras 
and camcorders, but also an important tool used in secu- 
rity or industrial applications (like surveillance or micro- 
scopy; cf. [1,4]). The focusing algorithm whose efficien- 
cy we examine is a passive algorithm (that is, it does not 
require additional equipment) and operates on the data 
acquired by the image sensor; see e.g. [5]. We use a va- 
riance of the image data as the focus function and to find  

its (single) maximum (i.e. to get the sharpest image) we 
employ the golden section search (GSS) algorithm; see 
[6]. Note that fast yet precise focusing in both surveil- 
lance and microscopy is rather cumbersome since we 
have to deal there with a thin depth-of-focus (DOF) issue 
(in the former, it comes from application of large aper- 
ture (fast) lenses while in the latter, this is a consequence 
of short distances between a scene and a lens). A thin 
DOF makes the maximum search problem much harder 
since it typically implies a flat-tailed focus function with 
a steeply-sloped peek whose unimodality is easily vi- 
olated in a noisy environment.1 

We begin with a problem statement and a focus func- 
tion formula. Next, we present the focusing algorithm 
and three implementations of the variance estimate com- 
putation routines based on either: 
• the discrete cosine, 
• the Walsh-Hadamard, or 
• the Haar wavelet orthogonal transforms, respectively. 

Then, we experimentally establish the energy effi- 
ciency of each implementation using an ARM processor 
simulator. Finally, we shortly examine the minimum 
word-length selection as a denoising algorithm in the 
1In the shape from focus (SFF) applications, where the three dimen-
sional (3D) scene is reconstructed from a sequence of two-dimensional 
(2D) images focused at the different distances, thinner DOFs enable 
higher accuracy reconstructions; see e.g. [3,7,8]. 
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presence of a thermal (Gaussian) noise. 

2. Autofocusing Algorithm 
The proposed algorithm can be considered as the solution 
to a stochastic approximation problem. The captured 
scene, the lens system and the image sensor are modelled 
as follows; see Figure 1 and cf. [5]): 

1) The scene is a 2D homogenous second-order sta- 
tionary process with unknown distribution and unknown 
correlation function; cf. [9]. 

2) The lens has a circular aperture system that satisfies 
the first-order optics laws, and is represented by a cen- 
tered moving average filter of order proportional to the 
distance vs −  of the sensor from the image plane and 
to the size of the lens aperture D ; cf. [10]. 

3) The image sensor acts as an impulse sampler on the 
lens-produced process. 

The autofocusing algorithm simply seeks for the maxi- 
mum of the focus function, which in our case is the va- 
riance of the image produced by the lens for a given 
scene. The assumptions above allow demonstrating the 
unimodality property of this focus function, and hence, 
enable an application of the simple golden-section search 
algorithm to find the maximum. Since, for a given scene, 
lens and a sensor, the number of steps performed by the 
GSS algorithms is the same, it suffices to compare effec- 
tiveness of the variance estimation implementations in 
order to assess the effectiveness of the whole AF algo- 
rithm. 

We will now present the equivalence between the va- 
riance estimate and the orthogonal expansion of the im- 
age data. Thanks to this equivalence we can not only 
compute the estimate (which can clearly be computed 
directly from a standard variance estimate formula), but 
we can also interpret the image as a regression function 
(which can in turn be estimated separately in order to 
remove the noise from the image). For simplicity we 
examine the one-dimensional case (which can be justi- 
fied by the symmetry argument since, by Assumption 2, 
the lens aperture is circular). 
 

 
Figure 1. A block diagram of the AF circuit [5]. 

Let [ ]TNxxX 1=  be the vector representing the raw 
image (i.e. a sample function of the process produced by 
the lens). The variance of such an image can be estimated 
by the standard formula 
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Also, the vector X  can be expanded in a discrete or-
thogonal series{ }kϕ , Nk ,,1= , so that 
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Hence, if the first term 1ϕ  of the orthogonal series 
expansion is a constant function (as it is the case in all 
three considered series), then we can easily ascertain that 
the squared value of the first expansion coefficient  

,1
1

1 n
N
n xN ∑ =

−=α  equals to second term in the variance 
estimate (1). As a result, we obtain the equivalent va- 
riance estimation formula 
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in which the expansion coefficients { }kα  are computed 
using the appropriate fast transform algorithm [11,12]. 

3. Orthogonal Transforms 
Here we recollect some basic properties of the consi-
dered transforms. Each of them has the corresponding 
matrix representation 

,AXY =  

where A  is a square NN ×  orthogonal matrix (i.e. a 
matrix of the unit spectral norm, 1

2
=A ) and  

[ ]TNY αα 1=  is the vector collecting the transformed 
image (i.e. the transform coefficients). 

3.1. DCT Transform Matrix 
The matrix of the discrete cosine transform (DCT) con-
sists of the cosine basis functions sampled at the uniform 
grid. The matrix is orthogonal and with entries; see e.g. 
[12,13]: 
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Observe that: 
• The matrix dimension N is an arbitrary natural num- 

ber (i.e. it is not restricted to powers of two like the 
remaining transforms (this is because the orthogonal 
systems of the trigonometric functions remain ortho- 
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gonal on a uniform discrete grid [14,15]). 
• The matrix entries are real numbers, that is, in the 

transform computations their truncated (approximated) 
values are used. 

• A direct implementation has a polynomial complexity
( )2NO . 

• The Fast Discrete Cosine Transform is an in situ al- 
gorithm and requires only ( )NNO log  operations, 
i.e., can be computed in a linearithmic (i.e. quasili- 
near) time. 

Example 1: For 4=N  the DCT matrix takes the 
form 
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3.2. Walsh-Hadamard Transform Matrix 

The matrix of the Walsh-Hadamard (W-H) transform has 
the following properties; see e.g. [11,16]: 
• The matrix dimension N is a dyadic natural number 

(i.e. it is a power of two). 
• The entries are equal either 1  or 1− , i.e. there is no 

multiplication in the transform algorithm. 
• A direct implementation has a polynomial complexity 

( )2NO . 
• The Fast Walsh Transform is an in situ algorithm and 

requires ( )NNO log  operations, i.e., can also be 
computed in a linearithmic (i.e. quasilinear) time. 

Example 2: For 4=N the W-H matrix takes the form 
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3.3. Haar Transform Matrix 
The matrix corresponding to the Haar Wavelet Trans- 
form algorithm is somehow unique when compared to 
the former two. In particular: 
• A direct implementation results in a linearithmic 

complexity ( )NNO log . 
• The Fast Haar Transform requires merely ( )NO  

operations, i.e., it can be computed in a linear time 
(its lifting version can furthermore be computed in 
situ). Nevertheless, 

• Its dimension is an integral power of two (like in the 
W-H case—in order to preserve orthogonality). 

• The entries are not integer like in the DCT case (they 
are integral powers of 2  instead). 

Example 3: The matrix of the four-point Haar trans- 
form has the following entries; see e.g. [12]: 

.

2200
0022
1111

1111

2
1



















−
−

−−
=A  

Note that the Haar transform matrices become sparser 
(i.e. they have more-and-more zero entries) as their di- 
mensions grow. 

4. Energy Consumption Evaluation 
From the formal point of view, all implementations are 
equivalent, that is, given the same image data, they al- 
ways yield the same value of the variance estimate. 
However, different numerical properties of the trans- 
forms suggest that the energy consumption of each im- 
plementation may vary significantly. 

In order to verify this conjecture, we measured expe- 
rimentally the energy consumptions of the variance cal- 
culation. The experiments were run on two sample pic- 
tures (Figure 2). The pictures were scaled to three sizes: 

3232× , 6464× , and 128128× , and converted to 8-bit 
grayscale bitmaps. We used the DCT, Walsh-Hadamard 
and Haar transforms implemented in the FXT library, 
[17], and compiled them with the standard GCC compi-
ler.2 For our energy consumption assessment we em-
ployed the Panalyzer simulator of the ARM processor, 
which is a popular SimpleScalar simulator augmented 
with the power models of this processor.3 

The calculations were performed using the double pre-
cision floating-point numbers. Additionally, in attempt to 
exploit the specifics of the Walsh-Hadamard transform, 
we calculated the variance using the fixed-point imple-
mentation with the help of a separate integer number 
routine4. In all simulations, we measured the total energy 
consumption of the processor microarchitecture. 

The results are shown in Figure 3. Clearly, the energy 
consumption does not depend on the particular image 
and grows with the image size. Moreover: 
• The implementation based on the Haar transform was 

the most efficient energy consumption-wise. 
• Next in order was the implementation based on the 

DCT transform. 
• The least efficient was the Walsh-Hadamard trans- 

form-based implementation, both in floating- and 
fixed-point versions. 

While it seems to be obvious that the Haar transform 
implementation has the best efficiency (as the result of 
the transform’s linear computational complexity), the 
smaller energy consumption of the DCT implementation 
in relation to the Walsh one is somehow surprising and  

2GCC 4.0.1 compiler, all optimization options disabled. 
3Sim-panalyzer 2.0.3; see http://web.eecs.umich.edu/ ~panalyzer/ 
4See: http://math.ewha.ac.kr/~jylee/SciComp/sc-crandall/ walsh.c 
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Figure 2. The two sample images I and II. 

 

 
Figure 3. Energy consumption of the three implementations 
measured in mJ for the processor clocked at 500 MHz. 
 
requires further study (it can be related with e.g. a better 
low-level optimization of the DCT transform in the FXT 
library). In turn, the almost identical results of the fixed- 
and floating-point Walsh implementations suggest that 
only a very small fraction of energy is consumed by the 
arithmetic instructions in relation to the whole algorithm. 

5. Word-Length Selection and Denoising 
In this section we consider the word-length problem (i.e. 
the required precision of the data representation) in the 
presence of noise. The stochastic nature of the noise na- 
ture creates random ‘fake’ local maxima in the focus 
function estimate in which the GSS algorithm can easily 
stuck (see however the analysis of the GSS algorithm in 
[18], where the probability of such an event is shown to 
vanish with the growing number of pixels). The simplest 
way to attenuate the influence of the noise is to average 
multiple pictures taken at each focus distance. This solu- 
tion however results in a slower and more power con- 
suming focusing routine. In embedded systems, one 
should therefore prefer more energy efficient, single- 
image, approaches based on e.g. nonparametric regres- 
sion estimation; see [19,20]. 

Inspired by the one of the most prominent estimation 
techniques, the wavelet shrinking, we examine here the 
simple algorithm reducing the noise and based on the 
word-length selection problem solution; cf. e.g. [21]. We 
assume here that the additive random noise kε  is i.i.d. 
and has the Gaussian distribution ( )2,0 εσN . Thus, each 
pixel value can be described as 

.nnn ux ε+=  

where nu are the actual (noiseless) raw images. The un- 

iformly quantized (i.e. finite precision) versions of nx , 
for M fractional bits, can be represented as 

  ,
2

½2
M

nn
M

n
ux ++

=
ε  

where  ⋅  denotes the standard floor function. 
To establish the minimum number of fractional bits 

M such that the inaccuracy in the final (transformed) 
image imposed by the quantization error do not exceed 
the variance error introduced by the noise nε , we con- 
sider the following mean squared error (MSE) error of 
the transformed image 
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where { }kα  are the pixels of the transformed image 
computed from the noiseless raw image pixels { }nu ,
{ }kα̂  are the pixels of the transformed image computed 
in exact arithmetic from the noisy pixels { },nx  and 
{ }kα  are its quantized versions. For simplicity we will 
examine the above error for the Walsh-Hadamard trans- 
form only. We have 
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Exploiting the orthonormality property of the trans-
form matrix A  and the independence of the noise nε , 
we obtain that 
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Comparison of these two error terms yields the fol-
lowing word-length selection formula 

,
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which guarantees that, given the number of fractional bits 
is M, the quantization-induced inaccuracy does not ex- 
ceed (in the MSE sense) the noise-induced inaccuracy. 

Remark 1: Since the noise “occupies” the least signif-
icant bits which are truncated by the quantization, one 
can expect that for the selected M  the noise will also 
be (partially) shrinked (this aspect needs however a more 
careful further examination). Alternatively, one can also 
consider performing the classic shrinkage algorithm on 
the transformed image (prior to the variance calculation) 
in order to remove the noise [19,20]. 
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6. Final Remarks 
In the paper we presented three implementations of the 
image variance estimate evaluation which is the core and 
the most computationally demanding part of the autofo- 
cusing algorithm. We provided an experimental evidence 
that the implementation based on the fast Haar transform 
has a much better (by a wide margin) energy efficiency 
than the remaining two implementations based on the 
discrete cosine and the Walsh-Hadamard transforms. 
Somehow unexpectedly, the experiments revealed that 
there is no advantage of using the integer number Walsh- 
Hadamard transform over the cosine one. Finally, having 
in mind an ASIC implementation of the algorithm, we 
also proposed the word-selection algorithm which deter- 
mines the required precision of the image data with re- 
spect to the size of the image data and to the variance of 
the noise present in the data. The actual benefit of this 
algorithm needs however to be verified experimentally. 
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