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ABSTRACT 

This work is concerned with the influence of uniform suction or injection on unsteady incompressible Couette flow for 
the Eyring-Powell model. The resulting unsteady problem for horizontal velocity field is solved by means of homotopy 
analysis method (HAM). The characteristics of the horizontal velocity field and wall shear stress are analyzed and dis- 
cussed. Pade approximants and Taylor polynomials are also found for velocity profile and are used to make the maxi- 
mum error as small as possible. The graphs of the error for the Pade approximation and Taylor approximation are drawn 
and discussed. Convergence of the series solution is also discussed with the help of  and interval of conver- 
gence is also found. 

-curve

 
Keywords: Unsteady; Couette Flow; Eyring-Powell Model; Pade Approximants; Porous Plates 

1. Introduction 

The study of non-Newtonian fluids has generated much 
interest in recent years in view of their numerous indus- 
trial applications, especially in polymer and chemical 
industries. The examples of such fluids includes various 
suspensions such as coal-water or coal-oil slurries, mol- 
ten plastics, polymer solutions, food products, glues, 
paints, printing inks, soaps, shampoos, toothpastes, clay 
coating, grease, cosmetic products, custard, blood, etc. 
Some interesting studies of non-Newtonian fluids are 
given by Hayat et al. [1-5], Asghar et al. [6], Khan et al. 
[7,8], Cortell [9,10], Ayub et al. [11-13], Ariel et al. [14], 
Rajagopal [15-17], Erdogan [18], Siddiqui and Kaloni 
[19] and Fetecau [20]. Couette flow is an important type 
of flow in the history of fluid mechanics. Researchers 
have deep interest in this flow and they study it in many 
ways. Some important studies about this flow are as fol- 
lows: 

Fang [21] studied Couette flow problem for unsteady 
incompressible viscous fluid bounded by porous walls. 
Khaled and Vafai [22] considered Stokes and Couette 
flows due to an oscillating wall. Asghar et al. [23] dis- 
cussed unsteady Couette flow in a second grade fluid 
with variable material properties. Hayat et al. [24] ex- 
amined the axial Couette flow problem of an electrically 
conducting fluid in an annulus. Hayat and Kara [25]  

studied Couette flow of a third-grade fluid with variable 
magnetic field. Seth et al. [26] presented Couette flow 
problem for a porous channel. Bhaskara and Bathaiah [27] 
have analyzed Couette flow problem for flow through a 
porous straight channel with MHD and Hall effects. Das 
et al. [28] considered unsteady Couette flow problem in a 
rotating system. Ganapathy [29] presented a note on the 
oscillatory Couette flow in a rotating system. Guria [30, 
31] discussed Couette flow problem for rotating and os- 
cillatory flow. Sigh [32] found a periodic solution for 
oscillatory Couette flow. 

The Eyring-Powell model [33] although more mathe- 
matically complex, has certain advantages over the Sec- 
ond grade, Maxwell, Power-law and Micropolar fluid 
models. Eyring-Powell model is derived from the kinetic 
theory of liquids rather than the empirical relations. It 
correctly reduces to Newtonian behavior for low and 
high shear stress. Recently, Eldabe et al. [34] and Zueco 
and Beg [35] discussed the non-Newtonian fluid flow 
under the effect of couple stresses between two parallel 
plates using Eyring-Powell model. Prasad et al. [36] stu-
died momentum and heat transfer of a non-Newtonian 
Eyring-Powell fluid over a non-isothermal stretching 
sheet. Patel and Timol [37] presented a numerical treat- 
ment of MHD Eyring-Powell fluid flow. Sirohi et al. [38] 
studied Eyring-Powell fluid flow past a 90˚ wedge. Javed  
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et al. [39] discussed flow of an Eyring-Powell non- 
Newtonian fluid over a stretching sheet. Noreen and Qa-
sim [40] analyzed peristaltic flow of MHD Eyring- Pow-
ell fluid in a channel. 

Keeping this all in view, in the present paper, the au-
thors envisage studying the time-dependent Couette flow 
of incompressible non-Newtonian Eyring-Powell model 
with porous walls. The resulting unsteady problem is 
solved by means of homotopy analysis method (HAM) 
[41-58], which is very powerful and efficient in finding 
the analytic solutions for a wide class of nonlinear dif- 
ferential equations. The method gives more realistic se-
ries solution that converges very rapidly in physical pro- 
blems. The convergence region for the series solution is 
found with the help of . For a given amount of 
computational effort, one can usually construct a rational 
approximation that has smaller overall error in given 
domain than a polynomial approximation [59]. Our goal 
is to make the maximum error as small as possible. For 
this purpose, Pade approximants and Taylor polynomials 
are found. The graphs of the error for Pade approximants 
and Taylor polynomials are plotted and it is observed that 
maximum absolute error occurs at the end point 
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1Y  . 
The graphs for the horizontal velocity profile and shear 
stress at the wall for injection/suction are drawn and dis- 
cussed in detail. The tables for the initial slope and wall 
shear stress are also constructed and discussed. More 
significantly, the series solution clearly demonstrates 
how various physical parameters play their part in deter- 
mining properties of the flow. 

2. Mathematical Description of the Problem 

Consider an unsteady, incomprssible, non-Newtonian, 
Couette flow problem for the Eyring-Powell model, in 
which the bottom wall is fixed and subjected to a mass 
injection velocity w  and there is mass suction velocity 

 at the top wall,  correspond to injection and 
 correspond to suction. The top plate is stationary 

when , there is only mass transfer in the transverse 
direction, say direction. At , the top wall is 
started impulsively to a constant velocity 0 . The Ey- 
ring-Powell model is derived from the theory of rate 
processes, which describes the shear of a non-Newtonian 
flow. The Eyring-Powell model can be used in some 
cases to describe the viscous behavior of polymer solu-
tions and viscoelastic suspensions over a wide range of 
shear rates. The stress tensor in the Eyring-Powell model 
for non-Newtonian fluids is given by [33] 
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where   is the dynamic viscosity,   and c  are the 
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The governing equation for this problem can be ob- 
tained as 
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where     is the kinematic viscosity,   is the 
density of the fluid, bottom wall is located at 0y  , top 
wall is located at y h  and 0U  is the velocity at the 
upper wall. Equations (3) and (4) can be non-dimen- 
sionalized by defining 
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Then Equations (3) and (4) become 
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where e wR v h   is the Reynolds number,  

1m c  is the fluid parameter and  
2 2
0 2U c h  2  is the local non-Newtonian parameter  

based on velocity of plate . Using stream function 
relations with velocity [60] Equations (6) and (7) become 

0U

   

    
    23

,
,

 , 1  ,

, ,

e

f Y T
f Y T T

T
R T f Y T m T f Y T

m T f Y T f Y T


 


   

  


0,

      (8) 

   

   
0

1

,
0, 0,

, 1
1, ,    0,

Y

Y

f Y T
f T

Y

f Y T
f T T

Y T






  




   



      (9) 

where,  ,f Y T  is the reduced stream function and 
prime denotes ordinary derivative w. r. t Y . When 

0T  , Equation (8) becomes 
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where  is some arbitrary unknown function of .  T T

3. Analytic Solution 

To start with the homotopy analysis method it is very 
much important to choose an initial guess approximation 
and a linear operator. Therefore, due to the boundary 
conditions (9) it is reasonable to choose the initial guess 
approximation 
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and the linear operator 
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which satisfies the following property: 
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where 1  and 2  are arbitrary constants. If C C  0,1p  
is an embedding parameter and 1  is auxiliary non zero 
parameter then the so-called zero-order deformation equ-
ation is 
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subject to boundary conditions 
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where 
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and when  and , then 0p  1p 

       0, ;0 , ,   , ;1 , ,Y T f Y T Y T f Y T     (16) 

As the embedding parameter  increases from 0 to 1, 
 varies (or deforms) from the initial approxi- 

mation 
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Clearly, the convergence of the series (17) depends 
upon 1 . Assume that  is selected such that the se- 
ries (17) is convergent at , then due to equation (16) 
we have 
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For the  order deformation problem, we differen-
tiate Equations (13) and (14)  w.r.t  and 
then setting 
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 deformation equation for  is given by 
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Following the HAM and trying higher iterations with 
the unique and proper assignment of the results converge 
to the exact solution: 
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using the symbolic computation software such as MA-
THEMATICA, MATLAB or MAPLE to solve the sys-
tem of linear equations, (20), with the boundary condi-
tions (21), and successively obtain 
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4. Convergence of the Analytic Solution 5. Pade Approximation 

The auxiliary parameter 1  gives the convergence re- 
gion and rate of approximation for the homotopy analysis 
method for above problem. For this purpose, the 

 is plotted for above problem. It is obvious from 
Figure 1 that the range for the admissible values for 1  
is 1 . The solution series converges in the 
whole region of  and T  for  or 



-curve

0.5 


0.1
0.5

Y 1 0.1  1  . 

Pade approximants make up the best approximation of a 
function in the form of a rational function of a given or- 
der. Pade approximation helps us in improving the ac 
curacy of approximate solution available in the form of a 
polynomial. Pade approximants are better approximation 
of a function than its Taylor series, they work even in 
those cases where Taylor series does not converge. Pade  

 

 

Figure 1. -curve for the stream function 1  Tf Y T,  at m 0.001 , 0.001 , T 3  and . eR 0.0001
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approximations are also used to enlarge the interval of 
convergence of approximate series solution [61]. A stan-
dard MATHEMATICA routine can be used to find Pade 
approximant for the function  f Y . A  2,2  Pade 
approximant for the solution in Equation (24) at 1.5  , 

, , 0.01eR  0.0005m  1 0.1  ,  can be 
written as 

0.5T 

   
2

2,2 2

12.2395 0.201978 5.09203
,

1 0.0165022 0.0830199

Y Y
R Y

Y Y

 


 
 (26) 

Figure 2 depicts the graph of  f Y  and its Pade ap-
proximant    2,2 . From Figure 2 we observe that the 
difference between the HAM solution 

R Y
 f Y  and Pade 

approximate solution    2,2  is so small as to be in-
visible on this scale. The graph of the error  

R Y

 
       

2,2 2,2RE Y f Y R Y   over  0,1  for the Pade 

approximant  is shown in Figure 3. We note     2,2R Y

that the maximum absolute error occur at the end point, 
. The Taylor polynomials for  

 
 

2,2
1 0.0205034RE 

 

 

Figure 2. The graph of  and its Pade approximation  f Y

   R Y2,2
. 

 

 

Figure 3. The graph of the error  

 
       RE Y f Y R Y

2,2 2,2   for the Pade approximation 

   R Y2,2
. 

 f Y  of degree 4N   and  at 5N  1.5  , 
0.01eR  , 0.000m 5 , ,  obtained 

as 
1  0.1 T  0.5

  16
4

2 3

12.2395 8.66081 10

6.10815 0.100798 0.508761 ,

P Y Y

Y Y

  

   4Y
 

(27) 

  16 2
5

3 4

12.2395 8.66081 10 6.10815

0.100798 0.508761 0.0101178 .

P Y Y Y

Y Y

   

   5Y
  

(28) 

Figure 4 illustrates that the difference between  f Y  
and  4P Y  is invisible on this scale. Figure 5 indicates 
the graph of the error      Y

4
 over 4PE Y f Y P 

 0,1  for the Taylor approximation . It is ob- 
served that the largest absolute error occur at the end 
point, 

 4P Y

  0.006785
4

1PE 1 . Figure 6 describes that the  
 

 

Figure 4. The graph of  f Y  and its Taylor approxima-

tion  P Y4 . 

 

 

Figure 5. The graph of the error      PE Y f Y P Y
4 4 


 

for the Taylor approximation P Y4 . 
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difference between  f Y

 P Y

 and  is also invisible 
on this scale. Figure 7 explains the graph of the error 

5
 over 

 5P Y

    5PE Y f Y   0,1

9029

 for the Taylor ap-
proximation 5 . The maximum absolute error occur 
at the end point, 

5P . It is observed that 
the increase in the degree of Taylor polynomial increases 
the maximum absolute error. 

P Y
E

 1 0 .016

6. Graphs and Discussion 

In this part we discuss the graphs for the variation of the 
horizontal velocity profiles  and shear stress 
at the wall  with distance from the wall Y  
for different values of Reynolds number e , local 
non-Newtonian parameter 

 ,Tf Y T 
0,Tf T

R
 , fluid parameter , ho-

motopy parameter  and time T . 
m

1

Figures 8 and 9 describe the variation of the horizon-
tal velocity profiles  with Y  for several val-
ues of  by keeping 



 ,Tf Y T 
m  , e , 1  and T  fixed. Fig-

ure 8 shows that when there is mass injection  at  
R 

0eR 
 

 

Figure 6. The graph of  f Y  and its Taylor approxima-

tion  P Y5 . 

 

 

Figure 7. The graph of the error      PE Y f Y P Y
5 4   

for the Taylor approximation  P Y5 . 

 

Figure 8. The graph of the horizontal velocity profiles 

 Tf Y T,

eR 0.0001

 with  for several values of  and Y m

 . 

 

 

Figure 9. The graph of the horizontal velocity profiles 

 Tf Y T,

eR 0.0001 

 with  for several values of  and 

. 

Y m



 
the bottom wall, with increase in fluid parameter m , 
horizontal velocity profiles  shows decreasing 
trend. Figure 9 shows that when there is mass suction 

 ,Tf Y T

0eR   at the top wall, with increase in , m  ,TTf Y  
increases at all points. Figures 10 and 11 indicate the 
variation of the horizontal velocity profiles  ,TTf  
with  for several values of 

Y
Y   by keeping , e , 

1  and T  fixed. Figure 10 shows that when there is 
mass injection  at the bottom wall, with increase 
in fluid parameter 

m R


0eR 
 , horizontal velocity profiles 

 ,Tf Y T  increases at all points. Figure 11 shows that 
when there is mass suction  at the top wall, with 
increase in 

0eR 
 ,  ,TTf Y  increases in magnitude but 

have negative values, an inverted behavior is observed, 
which is consistent with what we expected. Figures 12 
and 13 illustrate the variation of the horizontal velocity 
profiles  ,TTf  Y  with Y  for several values of time 

, for fixed values of T  , , e  and . Figures 12 
and 13 are plotted for positive value of 

m R 1
 . Figure 12  
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shows that for mass injection  at the bottom wall, 
with increase in T , horizontal velocity profiles 

 shows increasing trend in magnitude but have 
negative values. From Figure 13 it is clear that for mass  

0eR 

 ,Tf Y T 

 

 

Figure 10. The graph of the horizontal velocity profiles 

 Tf Y T,  with  for several values of Y   and 

. eR 0.0001

 

 
Figure 11. The graph of the horizontal velocity profiles 

 Tf Y T,  with  for several values of Y   and 

. eR 0.0001 

 

 

Figure 12. The graph of the horizontal velocity profiles 

 Tf Y T,  with Y  for several values of , for +ve value 

of 

suction 0eR   at the top wall, with increase in T , 
 T,Tf Y  increases at all points and the reverse behav-

ior is observed. Figures 14 and 15 describe the variation 
of the horizontal velocity profiles  with Y  
for several values of time , for fixed values of 

 ,Tf Y T 
T  , , 

e  and . Figures 14 and 15 are plotted for negative 
value of 

m
R 1

 . From Figure 14 it is observed that for mass 
injection  at the bottom wall, with increase in , 
horizontal velocity profiles  shows increasing 
trend in magnitude but have negative values. From Fig. 
15 it is seen that for mass suction  at the top wall, 
with increase in T , 

0eR  T
 ,Tf Y T

R



0e 
 T,YTf   increases at all points 

and have positive values, that is, a reverse trend is ob-
served. From the comparison of the Figure 12 to 15 we 
observe that for positive and negative values of   the 
variation of horizontal velocity profiles  ,Y TTf  is 
same. The Figures 8 to 15 shows that mass transfer has a 
dominant effect on the horizontal velocity profiles 



 T,Tf Y . We observe from the graphs 8 to 15 that the  
 

 

Figure 13. The graph of the horizontal velocity profiles 

 Tf Y T,  with Y  for several values of , for +ve value 

of 

T

  and . eR 0.0001 

 

 

Figure 14. The graph of the horizontal velocity profiles 

 Tf Y T,  with Y  for several values of , for −ve value 

of 

T

  and . eR 0.0001

T

  and . eR 01 0.00
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fluid material parameters  and m   enhance the mag- 
nitude of the velocity profile. In Figures 8 to 15 it is ob- 
served that the behavior of suction is the reverse of the 
injection in all the cases, which is a confirmation for the 
validity of our results. Graphs from 8 to 15 are plotted 
for large values of the parameter , m   and T , be- 
cause for small values it is observed that the curves of 
different profiles overlaps and behavior is not clear, 
whether it is increasing or decreasing. 

Figure 16 and 17 elucidate the variation of the shear 
stress at the wall  with the parameter 0,Tf T    for 
several values of , for fixed values of e ,  and 

1 . Figure 16 is for mass injection e  at the bot- 
tom wall and Figure 17 is for mass suction e

m R
0

R

T

0
 R 

  at 
the top wall. Figure 16 shows that with increase in , 
shear stress at the wall  increases at all points 
for all values of 

m
0,T Tf 

  and have positive values. Figure 17 
shows that with increase in , shear stress at the wall  m

 

 

Figure 15. The graph of the horizontal velocity profiles 

 Tf Y T,  with Y  for several values of , for −ve value 

of 

T

  and . eR 0.0001 
 

 

Figure 16. The graph of the shear stress at the wall 

T

 0,Tf T  increases in magnitude for all values of   
but have negative values, inverse behavior is observed. 
Figures 18 and 19 illustrate the variation of the shear 
stress at the wall  0,Tf T  with the parameter m  for 
several values of  , for fixed values of e ,  and 

. Figure 18 shows that when there is mass injection 
 at the bottom wall with increase in 

R T

1
0eR   , shear 

stress at the wall  0,Tf T  increases and positive for 
all values of  From Figure 19 it is observed that for 
suction at top wall, with increase in 

.m
 ,  T0,Tf   in- 

creases in magnitude and have positive and negative 
values both for all values of . Figures 20 and 21 de- 
scribe the variation of the shear stress at the wall 

m

 0,Tf T  with time T  for several values of  , for 
fixed values of e ,  and 1 . Figure 20 shows that 
for mass injection  at the bottom wall, with in- 
crease in 

R m
0eR 



 , shear stress at the wall  T0,Tf  in- 
creases and positive for all values of time . Figure 21 


T

 

 

Figure 17. The graph of the shear stress at the wall 

 Tf T0,  with   for several values of  and m eR 5  . 

 

 

Figure 18. The graph of the shear stress at the wall 

 Tf T0,  with  for several values of f T0,  with   for several values of  and m eR 5 . m   and eR 5 . 
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Figure 19. The graph of the shear stress at the wall 

T f T0,  with  for several values of m   and eR 5  . 

 

 

Figure 20. The graph of the shear stress at the wall 

T f T0,  with T  for several values of   and eR 5 . 

 
shows that for mass suction  at the top wall, with 
increase in 

0eR 
 ,  increases in magnitude and 

have positive and negative values both for all values of 
time . In Figures 16 to 21 it is observed that shear 
stress for suction has reverse behavior of injection. 

0,Tf T 

T

7. Tables 

Here Tables 1-2 are prepared for the variation of the 
initial slopes  and dimensionless shear stress 
at the wall . These results are obtained for 
different values of 1  laying in the interval of conver-
gence, for different order of approximations. 

 0R f 
 0,Tf T


The diagonal Pade approximants can be used to inves- 
tigate the mathematical behavior of the solution  f Y  
to determine the initial slope . It can be seen from 
Table 1 that for a fixed value of e , ,  and 1 , 
with the increase in 

 0f 
R m T

 , the initial slope of  f Y  for 
Pade approximants ,  and  increases.  1,R 1  2,2R  55,R

 

Figure 21. The graph of the shear stress at the wall 

 Tf T0,  with  for several values of T   and eR 5  . 

 
For Pade approximants  3,3  and  4,4  initial slope 
becomes negative and magnitude of the slope decreases 
with increase in 

R R

 . 
It can be seen from Table 2 that for mass injection 

 at the bottom wall, for a fixed value of  and 

1 , with the increase in  the shear stress at the wall 
increases for all values of 

0eR 


T
m
 . It is observed that with the 

increase of mass injection shear stress at the wall also 
increases. It is also noted that for fixed value of , 1 , 

e  and m , with the increase in 
T 

R   shear stress at the 
wall increases. For all the parameters there is an increase 
is observed. 

8. Conclusions 

In this study, a series of solutions for the horizontal ve- 
locity field of unsteady incompressible Couette flow with 
Eyring-Powell model are constructed. The results are dis- 
cussed under the effects of parameters , m  , 1  and 

e  through graphs and tables. We have following ob- 
servations about the effects of pertinent parameters in the 
flow field on the horizontal velocity, shear stress at the 
wall and on initial slope of 


R

 f Y . 
● The solution series converges in the whole region of 

Y  and T  for 10.5 0.5   . 
● We have considered the general Pade and Taylor ap- 

proximations of  f Y . The polynomials of the ra- 
tional approximations are given in analytic form. 

● We note that the difference between the HAM solution 
 f Y  and Pade approximate solution    2,2R Y  is 

so small as to be invisible on this scale  0,1 . 
● We observe that the maximum absolute error for Pade 

approximant and Taylor approximations occur at the 
end point 1Y  . 

● It is observed that increase in the degree of Taylor 
polynomial increases the maximum absolute error.      
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Table 1. Variation of the initial slopes  at  R f 0 eR 0.01 , m 0.0005 , T 0.5  and  for various values of 1 0.1 
 . 

     1,1
0R f      2,2

0R f      3,3
0R f      4,4

0R f      5,5
0R f   

0.1 5.18127 0.387940 −0.0330993 −0.000251122 0.0027086 

0.2 5.18129 0.387971 −0.0330956 −0.000249615 0.00277907 

0.3 5.18131 0.388002 −0.0330918 −0.000248108 0.00284854 

0.4 5.18133 0.388033 −0.0330881 −0.000246601 0.00291704 

0.5 5.18136 0.388065 −0.0330844 −0.000245096 0.00298457 

0.6 5.18138 0.388096 −0.0330807 −0.000243591 0.00305117 

0.7 5.18140 0.388127 −0.0330770 −0.000242086 0.00311684 

0.8 5.18143 0.388158 −0.0330733 −0.000240582 0.00318161 

0.9 5.18145 0.388189 −0.0330696 −0.000239079 0.00324548 

1 5.18147 0.388221 −0.0330659 −0.000237577 0.00330848 

 
Table 2. Variation of the dimensionless shear stress at the wall  Tf T0,  at  and . 1 0.01  T 0.01

eR  m  1   2   3   

   0,Tf T   0,Tf T   0,Tf T  

0.2 0.0 5.98596 5.98596 5.98596 

 5.0 5.98892 5.99337 5.99781 

 10.0 5.99188 6.00076 6.00961 

 15.0 5.99484 6.00813 6.02137 

 20.0 5.99780 6.01549 6.03309 

0.4 0.0 5.98598 5.98598 5.98598 

 5.0 5.98894 5.99339 5.99783 

 10.0 5.99190 6.00078 6.00963 

 15.0 5.99486 6.00815 6.02139 

 20.0 5.99781 6.01551 6.03310 

0.6 0.0 5.98600 5.98600 5.98600 

 5.0 5.98896 5.99340 5.99784 

 10.0 5.99192 6.0008 6.00965 

 15.0 5.99488 6.00817 6.02141 

 20.0 5.99783 6.01553 6.03312 

 
● For positive and negative values of local non-Newto- 

nian parameter  , the variation of the horizontal ve- 
locity profiles is same. 

● The fluid material parameters m  and   enhance 
the magnitude of the velocity profile. 

● It is noted that the mass transfer has a dominant effect 
on the velocity profile and in all cases behavior of suc- 
tion is the reverse of the injection. 

● The curves of the velocity profile for small values of 
m ,   and T  overlaps and behavior is not ex- 
plainable. 

● For mass suction and injection at the bottom and top 
wall shear, stress at the wall increases in all cases but 

has opposite sign. 
Initial slope of  f Y  for Pade approximants ,   1,1

,  increases and for ,  it decreases  
R

 2,2R  5,5R  3,3R  4,4R

with increase in  . 
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