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ABSTRACT 

Experimentally the plateaus characteristic for the integer quantum Hall effect is obtained in vicinity of specific values of 
the magnetic induction. The paper demonstrates that the ratios of these induction values to carrier concentration in the 
planar crystalline samples approach systematically the quanta of the magnetic flux important for the behavior of super-
conductors. Moreover, the same quanta can be deduced from the Landau levels theory and their application in the mag-
netoresistance theory gives results being in accordance with experiments. The quanta of the magnetic flux similar to 
those for the integer quantum Hall effect can be obtained also for the fractional quantum Hall effect. This holds on con-
dition the experimental ratio of the magnetic flux to carrier concentration is multiplied by the filling factor of the Lan-
dau level. 
 
Keywords: Quantum Hall Effect-Integer and Fractional; Magnetic Induction; Carrier Concentration; Quanta of the 

Orbital Magnetic Flux 

1. Introduction 

Experimentally the discovery of the integer quantum Hall 
effect for the planar metallic-like crystals led to a result 
that the magnetic flux in such crystals is quantized with a 
very high accuracy by the values equal to 

*

hc

e
                      (1) 

determined from the Bohr-Sommerfeld quantization con- 
dition imposed on the orbital motion of a charged particle 
in the magnetic field (see e.g. [1]). Equation (1) gives a 
tool in obtaining the effective charge e* of that particle. A 
well-known result for  in case of the superconducting 
systems is [2,3] 



72.07 10 gauss cm .
2

hc

e
     2

e

      (2) 

Result in (2) implies that the effective charge carried 
in superconductors is a double of the electron charge, i.e. 

2 ,e                   (3) 

leading to an idea of the coupled electron pairs as the 
particles providing the electric current. More recently, a 

source of interest in   is raised by the fractional quan- 
tum Hall effect in which e* is considered as a fraction of 

 [4,5]. e
Our aim is to examine the  in the quantum Hall 

effect beginning with the integer form of that effect: 


2
.

h

e
                     (4) 

In Section 2, we show that the flux in (2) leads to the 
result presented in (4).  

The formula of (4) is characteristic for the magnetore- 
sistance of the integer quantum Hall effect, but also the 
magnetoresistance values 

2

h

e
                    (5) 

specific for the fractional quantum Hall effect can be 
obtained [6-8]. Here the coefficient   is a simple 
fraction like  

1 2 2
, , ,

3 3 5
                  (6) 

A predominant feature of (6) is that any fraction has an 
odd integer number in its denominator. 
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As a rule the experiments leading to (4)-(6) were per- 
formed for some definite value of the magnetic field in- 
duction zB , or some plateau of these values. The zB  
directed, say, parallelly to the axis  were assumed to 
be normal to the planar crystalline samples, so each 
experiment concerned a specific concentration  of the 
electric carriers (electrons or holes) present in the sample 
plane. 

z

n

Theoretically an approach to the quanta of (4) and (5) 
can be attained by calculating the magnetoresistance of a 
metal on the basis of a single free-electron like band of 
states [9-12]. Here the off-diagonal Hall resistance and 
diagonal resistance can be considered.The change xx  
of the diagonal tensor component of the electric re- 
sistance xx  upon the action of the magnetic field is 
represented by the formula 

el 0
2

el

.xx
xx xx

xx

m

ne

 
 

  
 

        (7) 

Expression (7) holds because [9-12] 
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and 

2
el

;xx

m

ne



                 (9) 

see e.g. [13]. The el  is the relaxation time for the 
electric resistance, 

0
zeB

mc
                   (10) 

is the electron gyration frequency in the field zB , 

mag
0

 


                 (11) 

is the relaxation time due to the presence of the magnetic 
field, 

1

2
                     (12) 

is a constant number entering formula (11) obtained on 
the basis of a quantum-mechanical calculation [9,11]. 
Because of (12) we obtain from (7): 

2
.z

xx

B

nec
                (13) 

Expression (13) is equal to the double absolute value 
of the Hall resistance: 

z
xy

B

nec
                 (14) 

The formula (14) remains unmodified in comparison 
with the well-known result obtained before (see e.g. [14]) 
without any use of mag . The lack of change is due to the 

property of the tensor which is representing the modi- 
fication of the electric resistance given by the presence of 
the magnetic field: the tensor contains mag  both in the 
numerator and denominator of the off-diagonal matrix 
element representing the Hall effect, so [9,11]: 
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on condition we note that 

mag 0                    (16) 

because of the formula (11) for  . In the last step of 
(15), a conventional notation for the Hall resistance is 
applied. A similar property of independence on the re- 
laxation time has the Hall matrix element of the original 
tensor for the magnetoresistance [13], but this concerns 
the relaxation time el  due to the electric field and not 

mag  for the magnetic field. 
The plateaus of magnetoresistance which signalize the 

presence of the integer quantum Hall effect refer to some 
definite experimental values of zB  and n . Because of 
the ratio 

zB n                (17) 

entering (13), (14) and (15) our aim is to examine (17) in 
some detail. 

2. Electron Population of the Landau Levels 
Provides Us with the Quanta of 
Magnetoresistance and Those of the 
Magnetic Flux 

For the magnetic field zB  strong enough to collect all 
electrons on a single Landau level, the number of elec- 
tron orbits occupying that level is equal to [14] 

2
2 .

2 2z

eL n
D B

c
 


L            (18) 

In the second step of (18) the spin degeneracy of the 
orbits is explicitly taken into account,  is the edge of 
the square occupied by the planar metallic-like sample. 
In a situation represented by (18) the ratio (17) becomes: 

L

1

2
zB c h

n e e


 
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              (19) 

which is identical with (2); see also [13]. The ratio of (19) 
can be substituted to the formulae (13) and (14)-(15). In 
the first case the result  

2
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2xx
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ec e e
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is identical to (4); in the second case we obtain 
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2

1 1 1

2 2xy

hc h

ec e e
               (21) 

which is a half of the diagonal magnetoresistance in (20). 
Henceforth we consider (21) as a quantum of the Hall 
resistance given by a fully occupied single Landau level. 

An application of the formalism can be done for a text- 
book example of the experimental presentations of xx  
and xy  for which, however, no carrier concentration 

 for the examined two-dimensional system has been 
given [15]. The obtacle can be avoided when, in the first 
step, the equivalence of (14) and (21) for a completely 
filled Landau level is taken into account. In this case 

n

2

1

2
zB h

nec e
                 (22) 

so 
2

.zB e
n

hc
                  (23) 

Experimentally the quantum Hall plateau correspond- 
ing to the Hall resistance (21) begins at Bz = 4T = 4 × 104 
gauss. Therefore from (23) 
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This  provides us with the ratio n

4

11

7 2

4 10
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n

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


  

        (25) 

being in a perfect agreeement with (19); see (2). 
The end point of the plateau is at  and this 

gives the magnetic flux per electron 
7 TzB 

4

11

7 2

7 10

1.93 10

3.6 10 gauss cm ,

zB

n






  

         (26) 

therefore dispersion of  for a given  can be large.  n

3. Calculation of the Magnetic Flux from the 
Experimental Data for Bz and n 

Rather surprisingly the ratio (17) leading to the quantum 
(21) of the Hall resistance seems to be not very ex- 
tensively examined on the experimental basis. In Table 1 
we present a list of the values of zB ,  and ratios n

zB n  associated with the plateaus of the quantum Hall 
resistance observed in different compounds; see [16-41]. 
This study shows that the experimental data for zB n  
approach the quantum value obtained for (2) and in (19). 
The dispersion of the data in Table 1 is not much diffe-  

Table 1. List of the experimental Bz values of the magnetic 
induction (in the tesla units) connected with the plateaus of 
the quantum integer Hall effect [equal to  h e21 2 ], 

carrier concentrations n (in 1011 cm−2) and the ratios zB n . 

In some cases the data are observed for other Landau levels 
than the first one and transformed to those corresponding 
to a single fully occupied Landau level. 

Reference zB  n  
zB n  

 (in T) (in ) 11 210 cm (in )7 210 gauss cm 

[16] 15 7.8 1.92 

[17] 5 2.46 2.03 

[18] 8 4.0 2.0 

[19] 3 1.48 2.03 

[20] 2.5 1.23 2.03 

[21] 4.3 2.1 2.05 

[22] 6.7 3.4 1.8 

[23] 4.0 1.5 2.67 

[24] 4 2.1 1.9 

[24] 6.5 3.5 1.9 

[25] 6.0 3.0 2.0 

[26] 5.2 2.23 2.26 

[27] 9.0 6.0 1.5 

[28] 1 2 6.0  1.45 2.07 

[29] 5.0 2.4 2.08 

[30] 2 5.4  5.6 1.93 

[30] 3 3.8  5.6 2.04 

[30] 4 2.8  5.6 2.0 

[30] 5 2.2  5.6 1.96 

[31] 0.8 0.4 2.0 

[32] 2.0 1.04 1.92 

[33] 1.2 0.571 2.1 

[34] 1.5 0.581 2.58 

[35] 2.25 1.06 2.12 

[36] 10 4 2.5 

[37] 2.7 1.26 2.14 

[38] 1.5 0.66 2.27 

[38] 0.9 0.41 2.2 

[38] 2.5 1.26 1.98 

[39] 4.3 1.93 2.2 

[39] 6.0 3.0 2.0 

[40] 3.2 1.53 2.09 

[41] 10.5 5.1 2.06 

[41] 7.9 3.8 2.08 

[41] 5.5 2.65 2.08 
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rent from that observed in superconducting cyllinders 
[42]. 

For some experiments the ratio 

1

2

xy

xx







 

[see (20) and (21)] could find its confirmation in the 
observed data obtained for almost the same induction 
value zB  [29,39]. 

4. Discussion: Reference to the Fractional 
Quantum Hall Effect 

A natural extension of the problem of  considered for 
the integer quantum Hall effect concerns the fractional 
version of that effect. In this case the orbit population (18) 
a Landau level is changed by a factor of 



  giving the 
relation 

.
2

zeB n

hc
                  (27) 

Evidently in this case we obtain the formula 

1

2
zB hc

n e
                 (28) 

instead of (19), so the expected magnetic flux per one 
carrier unit becomes 

*
.

2
zB hc hc

n ee 
               (29) 

Here it should be noted that only a substitution of 

zB n  from the formula (29) into (13) can provide us 
with the result 

2

2

2xx

hc h

ec e e


 
              (30) 

in accordance with experiment; see (5). Since we have 
mainly 1  , the formula (29) implies the presence of 
the carriers having their charge 

2 2e e   .e               (31) 

However, an alternative approach to  can be ob- 
tained on the basis of the assumption that no 


* 2e e  

are present but the number of the filled Landau levels 
which take part in experiment is increased from 1 to 1  ; 
for the sake of simplicity we assume that 1   is an 
integer number [43]. An increase of the filled levels 
number can be attained by a corresponding change of 

zB  for a single filled level to zB  which makes on 
each level a decrease of the original concentration  to n

n . In effect we obtain 

1

2
z z

L

B B hc

n n e




               (32) 

for each component level which is the same ratio as for a 
single filled Landau level; see (19). In result of that 
situation only a sum of L  in (32) performed over all 
occupied 1  levels can give the magnetic flux equal to 
that presented in (29). 

Since   is a constant and  is a discrete integer 
parameter, the behaviour of the magnetic flux in the 
quantum Hall effects indicates that 

n

zB  in (29) should be 
a quantized parameter. The quantum of zeB  is expected 
to be the smallest experimentally acceptable number of 

1610 dyne
2

n
hc


              (33) 

obtained on condition we assume that 1n   . 
By considering zB n  as the magnetic flux   it 

can be noted that the following relation exists between 
 , the energy  of the quantum state and current E

xj nev  [44]: 

E
j  



                 (34) 

where   is a constant. In fact, for a one electron energy 
on the Landau level obtained by the change of zB  to 

zB , viz. 

0 ,LE N                  (35) 

we obtain from (34) the relation: 
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which gives 

,
F
x

L

ck

N
                    (37) 

representing a number independent of  , zB  and n . 
The F

xk  is a component of the Fermi wave vector, LN  
is the index of the Landau level. 

5. Examples of the Magnetic Flux Calculated 
for the Fractional Quantum Hall Effect 

In Tables 2-4, we present several examples of the quanta 
of the magnetic flux obtained when the measured data for 

zB , n and   entering the experiments on the fractional 
quantum Hall effect are substituted on the left-hand side 
of the formula (28). These quanta approach evidently the 
result given in (2), as it could be expected on the basis of 
(28). Similar quanta of Table 1 are, in average, more 
distant from the result in (2) because the very existence 
of plateaus of zB  in the integer quantum Hall effect 
makes the calculations of  more uncertain than in  
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Table 2. Quanta of the magnetic flux zB

n


 for the frac- 

tional quantum Hall effect deduced from the experimental 
data corresponding to a similar set of   but different 
carrier densities  are taken into account. See [38], Figure 
9.15 and [37]. The factor of 2 in  is due to spin dege- 
neracy. 

n
n

  
zB  n  zB

n


 

 (in tesla units) (in ) 11 210 cm (in )7 210 gauss cm 

2/3 14.25 2 0.68  2.08 

3/5 14.75 2 0.68  2.09 

1/2 15.75 2 0.68  2.11 

2/5 17.75 2 0.68  2.06 

1/3 18.75 2 0.68  1.96 

1/5 13.75 2 0.68  1.91 

2/3 15.75 2 0.92  2.08 

3/5 16.25 2 0.92  2.04 

1/2 17.52 2 0.92  2.04 

2/5 19.52 2 0.92  2.07 

1/3 11.75 2 0.92  1.99 

2/3 16.25 2 1.03  2.02 

3/5 17.25 2 1.03  2.04 

1/2 18.52 2 1.03  2.06 

2/5 10.52 2 1.03  2.04 

1/3 12.52 2 1.03  2.02 

2/3 16.75 2 1.10  2.05 

3/5 17.52 2 1.10  2.05 

1/2 19.75 2 1.10  2.05 

2/5 11.25 2 1.10  2.05 

1/3 13.52 2 1.10  2.05 

4/5 16.5 2 1.16  2.07 

2/3 17.5 2 1.16  2.01 

3/5 18.5 2 1.16  2.07 

1/2 19.5 2 1.16  2.05 

1/3 14.5 2 1.16  2.08 

4/5 17 2 1.32  2.12 

2/3 18 2 1.32  2.02 

1/2 11 2 1.32  2.08 

4/5 17.5 2 1.43  2.10 

2/3 19.5 2 1.43  2.10 

4/7 10.5 2 1.43  2.10 

1/2 11.5 2 1.43  2.01 

4/5 8.5 2 1.55  2.06 

2/3 9.5 2 1.55  2.04 

4/7 11.5 2 1.55  2.03 

1/2 13.5 2 1.55  2.09 

Table 3. List of the experimental Bz values of the magnetic 
induction (in the tesla units) connected with the magnetore- 
sistance maxima due to the fractional quantum Hall effect 
observed for different filling factors   and carrier con- 

centration n (in 11 210 cm ) in different crystal samples [28]. 

The ratios zB n  are calculated in  

units. The n of [28] listed in the Table are doubled because 
of the spin degeneracy taken into account. 

7 210 gauss cm 

  
zB  n  

zB n  

 (in T) (in ) 11 210 cm (in )7 210 gauss cm 

1/3 19 2 1.53  2.07 

2/3 15 2 2.42  2.07 

2/5 22 2 2.13  2.07 

3/5 14.7 2 2.13  2.07 

5/3 5.3 2 2.06  2.14 

3/7 20.6 2 2.13  2.07 

 
Table 4. The magnetic flux calculated from the experi- 
mental data for  , Bz and n given in the diagrams of [45]. 

  
zB  n  

zB n  

 (in tesla) (in ) 11 210 cm (in )7 210 gauss cm 

2 15.3 2 2.6  2.04 

8/5 16.8 2 2.6  2.09 

10/7 17.4 2 2.6  2.03 

4/3 18.2 2 2.6  2.10 

6/5 18.9 2 2.6  2.05 

1 10.8 2 2.6  2.08 

4/5 13.2 2 2.6  2.00 

2/3 16.2 2 2.6  2.05 

4/7 18.2 2 2.6  1.98 

1/2 21.2 2 2.6  2.02 

4/9 23.2 2 2.6  1.97 

2/5 27.2 2 2.6  2.08 

1/3 33.2 2 2.6  2.12 

 
case of the fractional quantum Hall effect. 
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