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Abstract 
 
This paper deals with the Alienor method to tackle multiobjective nonlinear optimization problems. In this 
approach, the multiple criteria of the optimization problem are aggregated into a single one using weighted 
sums. Then, the resulting single objective nonlinear optimization problem is solved using the Alienor method 
associated with the Optimization Preserving Operators  . .O P O  technique which has proved to be suitable 
for (nonlinear) optimization problems with a large number of variables (see [1]). The proposed approach is 
evaluated through test problems. The results show that the approach provides good approximations of the 
Pareto front while requiring small computational time, even for large instances. 
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1. Introduction 
 
These last years, the field of multicriteria optimization 
have experienced some significant evolutions. This have 
allowed the development of several solutions methods or 
approaches. This multiplicity of multiobjective optimiza- 
tion methods is perceived like one of the wealth of this 
field. This high number of approaches is explained by 
the diversity of the problems and the existence of various 
possible and legitimate solutions to these problems. 
However, this phenomenon reveals also some weak- 
nesses. 

As in monoobjective optimization, the optimization 
algorithms used to solve multiobjective optimization pro- 
blem (MOP) can be classified into exact and approxi- 
mate algorithms. In the literature on exact algorithms, 
more attention has been devoted to bicriteria optimi- 
zation problems by using exact methods such as branch 
and bound algorithms, A  algorithm and dynamic pro- 
gramming. These methods are effective for small size 
problems. But, for problems with more than two criteria, 
there aren’t many effective exact procedures, given the 
simultaneous difficulties coming from the NP-hard com- 
plexity of problems and the multicriteria framework of 
the problems [2]. 

To tackle these difficulties, we propose a determinist 

approach called Alienor method to solve multiobjective 
optimization. This approach is based on concepts such as 
Aggregation Method (weighted sum), Penalized method 
(for constrained problem) and Alienor method associated 
to the . .O P O ’s technique. It can be used in various 
multicriteria situations. In [3], Maimos et al. proposed to 
solve multiojective linear programming (MOLP) pro- 
blems by using Alienor method associated to the 

. .O P O ’s technique. 
This paper aims at extending the Alienor method ap- 

proach to multiobjective nonlinear programming (MONLP) 
problems. The Alienor method associated to the . .O P O ’s 
technique would then appear like a unique determinist 
method to solve efficiently linear or non-linear multi- 
ojective programming. 

Let’s consider the following MONLP problem: 

        1 2, , ,
"min" kF x f x f x f x

x

 







      (1) 

where 2k   is the number of objectives,  1= , , nx x x  
is the vector representing the decision variables and D  
represents the set of feasible solutions associated with 
equality and inequality constraints and explicit bounds. 
        1 2= , , , kF x f x f x f x  is the objective’s vector 

to be optimized. 
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The problem to solve is:  
Find a good one or several compromises in a subset of 
n . 
The aggregation method is one of the first and most 

used methods to generate Pareto optimal solutions. It 
consists in using an aggregation function to transform the 
MONLP (1) into a monoobjective problem using a con- 
vex combination of the objective functions if  into a 
single function 1S  as follows: 

 1
=1

, = ,
k

i i
i

S F f               (2) 

where 

=1

= 1,     0.
k

i i
i

    

i  are the weights that reflect the relative importance of 
each criteria. 

Now, the problem (1) becomes: 

1( )
min

.

S x

x


  

                 (3) 

Let us notice that some Pareto optimal solutions may 
be obtained by the resolution of the mathematical pro- 
gram (3) for various values of the weight vector  . 
Such solutions are known as supported solutions [2]. 

The complexity of MONLP is equivalent to the one of 
the subjacent monoobjective optimization problem. If the 
subjacent optimization problems are polynomial, it will 
be relatively easy to generate the supported solutions. 
Nevertheless, there exists other Pareto optimal solutions 
that cannot be obtained by the resolution of a mathe- ma- 
tical program (3). Indeed, these solutions, known as non- 
supported solutions, are dominated by convex combina- 
tions of supported solutions. 

The obtained results in the resolution of the problem 
(3) depend strongly on the parameters chosen for the 
weight vector  . In this paper, we use the “priori mul- 
tiple weights” strategy [2] which consists in generating 
various weight vectors. The problem (3) is solved in pa- 
rallel and independent ways for the different vector wei- 
ghts. Various weights may provide different supported 
solutions. However, the same solution can be generated 
by using different weights [2]. 

The remainder of this paper is organized as follows: 
Section 2 presents the penalization technique used to 
transform a constrained optimization problem into an un- 
constrained one. Section 3 is devoted to the Alienor me- 
thod and the *. .O P O ’s technique. Section 4 presents the 
main algorithm to solve the MOP problem. To illustrate 
our approach, computational results and an automatic 
way to generate the weight vectors are presented in Sec- 
tion 5. 

2. The Penalized Problem 
 
The approach using the Alienor method that we are pro- 
posing here requires the resolution of a contrained opti- 
mization problem. The main idea to solve the constr- 
ained optimization problem is to transform this pro- blem 
into an unconstrained one. The classic way to achieve 
such transformation uses the Lagrangian parameters. 

In this section we use a transformation proposed by 
Konfé et al. [4]: 

Definition 1 Let’s denote by L  the continuous func- 
tion mapping I  into   and defined by:  

        1
=1

= .
m

i i
i

L x S x K l x l x       (4) 

where 
I  is a subset of n . 

)(xli  are the functions mapping n  into   defi- 
ning the set of constraints  . |.|  is the absolute value 
in   and K  is a real positive number sufficiently 
large. 

We can define the unconstrained global optimization 
problem associated to (3) by:  

.min ( )
n

Glob L x

x


  

           (5) 

Indeed, we have the following theorem: 
Theorem 1 [1] 
Let x , be the global minimizer of  L x ; then x , 

is the global minimizer of  1S x : In other words, 

   

 

1= .min min

subject to:

0, = 1, ,

n nx x

i
n

Glob L x Glob S x

l x i m

x

 






 




          (6) 

The complete proof for this theorem is given in Konfé 
et al. [4]. 

 
3. Alienor Method Associated to O.P.O* 

Technique 
 
3.1. Alienor’s Method 
 
The Alienor reducing transformation method is based on 
a simple idea consisting in approximating an n  vari- 
ables function by a single variable function by using 

dense   curves. These curves have the property of fil- 
ling the space [5]. More precisely, consider a continuous 
n  variables function: 

 1 2, , , nL x x x  

The reducing transformation method consists in set- 
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ting: 

 = ,   > 0   = 1, ,i ix h i n   . 

where   is a real variable and the ih  are regular fun- 
ctions generally C defining an dense   curve. There- 
fore, the n  variables function  1 2, , , nL x x x  beco- 
mes: 

        1 2= , , , nL L h h h     . 

First we recall the following definition [6,7]: 
Definition 2 Given a positive number a, a continuous 

function 
: nh I   D   is said to be dense   in D if: 

1.  h I  D  
2. For any ,PD  there exists    such that: 

  , ,d P h    

where d  is the euclidian distance in .n  
Let us now consider the following problem: 

 
 1

, , K1

. min , , ,n
x xn

Glob L x x


         (7) 

where L  is a continuous function and where   is a 
compact of n . Then, using any dense   curve 

        1 2= , , , nH h h h     of   allows to tran- 
sform (6) into the following global optimization 
problem: 

 .minGlob L




I

                (8) 

where  = 0 , maxI  and 
         1 2= , , , nL L h h h      Note that max  

only depends on the compact set  . It is possible to 
assert that if    is a solution of (7), then 

      1 2, , , nh h h      is an approximation of (6). 
Moreover there exists a solution x  of (6) such that (see 
[6,7]): 

    , < ,d x H є            (9) 

where   0є    as 0  . About the choice of the 
reducing transformation, the smaller the length of the 
curve is, the smaller the calculation time gets. Several 
works [5-8] have been devoted to find dense   
curves with a minimal length and a good precision (small 
co- efficient  ). 

For instance we can cite the Mora transformation [5], 
the Cherruault-Konfé-Benneouala transformation [5, 
8] or the Cherruault transformation [9]. 

The transformation: 

   = , = 1, , ,i i ix cos i n     

where  i  and  i  are slowly increasing se- 
quences densifies = [ 1,1]n . The densification   
parameter is given by: 

1= 2 1 , > 0,n

n

r n r





  

where r  is a real number. 
Remark 1 This curve is dense   in = [ 1,1] .n . 

It is easy to extend this curve to 
=1

= [ , ]
n

i ii
a b . 

It is sufficient to set: 

   1
= ,

2i i i i i ix b a h b a      

where ( )ih   is  -dense in  

 = 1,1 .
n  

and with: 

 0, ,max   

where max  depends on the reducing transformation; 
this will be precised later. 

Theorem 2 The transformation: 

 = ,i ix h   

where: 

     1
= ,

2i i i i i ih b a h b a       

 i i
  and  i i

  being slowly increasing sequences, is 
dense   in  . 

Practical applications of this reducing technique show 
that the obtained function L  is, in most cases, a multi- 
modal function involving a long calculation-time to find 
a global minimum. That’s why a new concept to solve a 
multimodal function optimization problem was develo- 
ped by Mora et al. [10]. 
 
3.2. Optimization Preserving Operators* 

(O.P.O*) 
 
Konfé et al. [11] have proposed a new type of . .O P O  
called . .O P O : The . .O P O  is defined as follows [5, 
11] : 

Definition 3 Let L  be an objective function mapp- 
ing   into  : We assume that L  is a lipschitzian 
function having a globally convex property. Let 0  be 
an arbitrary element of  : 

The operator  :T C F  noted 
L

T   where F  

is a subset of continuous functions; defined by: 

       0 0( )

1
=

2L
T L L L L


      


      

is an Optimization-Preserving-Operator* (O.P.O*). The 
globally convex property means that: 

( )L
T

    as 

   . 

Then we have the following fundamental theorem: 
Theorem 3 Fundamental result: Let L  be an ob- 
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jective function, 0  is an arbitrary element of .I  Let 
S  be the set of the solutions of: 

  = 0.
L

T                 (10) 

     If = , then = .min
I

S Glob L L


     


 

In other words, if S  contains a unique element, it is 
the solution of the global minimization problem. 

The complete proof for this theorem is given in [11]. 
To solve the global optimization problem (7), we use 

the O.P.O* to find a unique 0  such that: 

 
= 0.

L
T

  

 
4. Algorithm 
 
Now, we fully describe the algorithm we propose to 
solve our initial problem (1). 
The MOP problem to solve is: 

        1 2, , ,
"min" kF x f x f x f x

x

 







    (11) 

Step 1: Use the weighted sum to aggregate the di- 
fferent functions and therefore obtain the following ob- 
jective function: 

   1
=1

= .
k

i i
i

S x f x             (12) 

where 

=1

= 1,     0.
k

i i
i

    

Step 2: If the problem (1) is constrained, use the 
penalization technique to define the multidimensional 
function  L x  as in (13): 

        1
=1

= ,
m

i i
i

L x S x K l x l x       (13) 

given that   = 0,  = 1, ,n
iD x l x i m   ; other- 

wise, set    1=L x S x . 
Step 3: Use Alienor method to convert the multi- 

dimensional function  L x  into a one variable function 
 L   by setting: 

 = ,i ix h   

where: 

     1
= ,

2i i i i i i ih b a cos b a         

 0, 2 .   

Step 4: O.P.O* 
1) Initialization. 

*Take an arbitrary initial point 0  in  . 
Use OPO*: 

   
       0 0

0
=

2L

L L L L
T



   


     
 

to eliminate all local minima, i.e. solve 

   
0

= 0.
L

T


  

2) *Now let 
i

S  be the set of solutions defined by: 

  ( )= : = 0Li i
S T     

If  =
i

S    then stop:    is a global minimizer of 
F  ; go to Step 3 

*otherwise go to 3. 
3) *update .FT  

*Choose 

j i
S   

*then go to 2. 
Step 5: Find:  

     1
= , = 1, ,

2i i i i i ix b a h b a i n        

   where = cos , = 1, ,i i ih w i n       

 calculate .F    

 
5. Computational Results 
 
Computing environment: 
We implemented the algorithm in Maple12 software on 
an Intel Core2Duo CPU T5850 @2.16 GHz  computer 
with 4 GB RAM using a windows vista Service patch 2, 
operating system. 

In order to have graphical representations, we have 
only considered bi-criteria problems with a large number 
of variables. 
 
5.1. Example 1: Zitzler’s Test Function 
 
For the first example, we solve the well known Zitzler’s 
test function. Note that this example is an unconstrained 
MONLP problem, it has been solved in [12] and the true 
Pareto fronts is found when   = 1g X : 

 

     
 

1 1

1
2

"min"
g 1

f X x

f X
f X X

g X

 
  

      

 

where 

     1
=2

9
= 1      ,   = , ,

1

n

i n
i

g X x X x x
n
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n  is the number of variables of the decision vector X . 
In our example, we set = 30n . 

With our approach, we obtain the result (see Table 1) 
with a computational time of 411.09 s. 

The Pareto optimal front is represented by Figure 1. 
Using Matlab 7.01, we plot together our result and 

Pareto curve obtained using NSGA II. It is clear that 
Alienor method shows a better efficiency, compared to 
NSGA II which is the most used algorithm nowadays 
(see Figure 2). 
 
5.2. Example 2: Test Function 2 
 
This second problem is a constrained MONLP. It has 
been proposed and solved in [13]. 

 
 

2
1 1

2 2
2 1 1 2

1
"min"

4 5

f x x

f x x x x

  


   
 

s.t 
2 2
1 1 24 5 3.5x x x     

1 20,    0.x x   

Our algorithm obtain the result (see Table 2) with a 
computational time of 17.971 s. 

The Pareto optimal front is represented by Figure 3. 
 
5.3. Example 3: BINH and KORN Problem  
 
Another constrained MONLP is solved here. Let us con- 
sider the BINH and KORN problem define as: 

   

2 2
1 1 2

2 2

2 1 2

4 4
"min"

5 5

f x x

f x x

  


   
 

Table 1. Zitzler’s test function results. 

1  2  1f  2f   g X  

0 1 0.9895962710 0.00727777585 1.004099073 

0.1 0.9 0.9895962710 0.00727777585 1.004099073 

0.2 0.8 0.9895962710 0.00727777585 1.004099073 

0.3 0.7 0.5550921215 0.2582018882 1.005170626 

0.4 0.6 0.3482051119 0.4138490867 1.005583140

0.5 0.5 0.1677741466 0.5951394153 1.005960807

0.6 0.4 0.04451568665 0.7947088139 1.006366816

0.7 0.3 0.04183878110 0.8019512260 1.006835654

0.8 0.2 0.00001179260 1.003389902 1.007235154

0.9 0.1 92.200000000 10  1.027937178 1.027984734

Table 2. Test function 2 results. 

1  2  1f  2f  

0 1.0 2.249936783 1.000260889 

0.1 0.9 2.249936783 1.000260889 

0.2 0.8 2.249936783 1.000260889 

0.3 0.7 1.994514416 1.075514962 

0.4 0.6 1.994514416 1.075514962 

0.5 0.5 1.897817760 1.150115890 

0.6 0.4 1.666328758 1.446575427 

0.7 0.3 1.503077479 1.772426491 

0.8 0.2 1.258651445 2.527075404 

0.9 0.1 1.101403269 3.371648047 

1 0 1.091958615 3.489179030 

 

 

Figure 1. The Pareto curve of Zitzler’s test function T1. 
 

 

Figure 2. Alienor method and NSGA II solutions. 
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Figure 3. The Pareto curve of test function 2. 

 

   
     

   

2 2
1 1 2

2 2

2 1 2

1 2

. 5 25

8 3 7.7

and 0,5 , 0,3 .

s t c x x x

c x x x

x x

   

    

 

 

This problem has been solved in [14]. With our appr- 
oach, we have the result (see Table 3) with a computa- 
tional time of 12.667 s. 

The Pareto optimal front is represented by Figure 4. 
 
5.4. Example 4: Osyczka and Kundu Problem 
 
For the last two objectives test function, we consider the 
following Osyczka and Kundu problem which has been 
solved in [14]. 

     
   

 
 
 
 
   
   

22 2

1 1 2 3

22

4 5

2 2 2 2 2 2
2 1 2 3 4 4 6

1 1 2

2 1 2

3 2 1

4 1 2

2

5 3 4

2

6 5 6

25 2 2 1

"min" 4 1

. : 2 0

6 0

2 0

2 3 0

4 3 0

3 4 0

f x x x

x x

f x x x x x x

s t c x x x

c x x x

c x x x

c x x x

c x x x

c x x x

       
   


     
   

   

   

   

    

    

 

and      1 2 6 3 5 4, , 0,10 ; , 1,5 ; 0,6 .x x x x x x    

Alienor method with *OPO  technique give the re- 
sult in 286.761 s (see Table 4). 

Table 3. Binh and Korn problem results. 

1  2  1f  2f  

0 1 135.9995500 4.000075000 

0.1 0.9 79.40217891 6.913583013 

0.2 0.8 47.10895519 13.25083286 

0.3 0.7 28.52832998 19.42671728 

0.4 0.6 15.98878694 25.76765326 

0.5 0.5 8.195583414 31.81004556 

0.6 0.4 3.999314138 36.86265913 

0.7 0.3 1.337259144 42.50299851 

0.8 0.2 0.7192930295 44.20812605 

0.9 0.1 0.2258427468 46.70712606 

1 0 82.339494930 10  49.99923040 

 

 

Figure 4. The Pareto curve for BINH and KORN problem. 
 

The Pareto optimal front is represented by Figure 5. 
 
5.5. Example 5: Tamaki Test Problem 
 
In this section, we propose a three objective test func- 
tions: The Tamaki test problem defined by: 

 
 

1 1

2 2

3 3

2 2 2
1 1 2 3

1 2 3

"max"

. :

0

and , , , 0, 4

f x

f x

f x

s t

c x x x x

x x x
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This problem has been solve in [15]. Alienor method 
associated to the *OPO  technique give the following 
results. To generate the weight vector, we use the follow- 
ing maple software code which can be easily extended to 
more than three objective functions. 

compteur := 1:

for i from 0 to 10 do

for j from 0 to 10 - i do

lambdai[compteur] := [i, j,10 - i - j];

compteur := compteur +1;

od :

od :

kas := [seq(lambdai[i] /10.0,i = 1..compteur -1)];

 

The Pareto optimal front is represented by Figure 6. 
With this example we show that our method allows us 

to solve the MOP with more than two objective functions. 
The only difficulty was to find a procedure to generate 
the weight vectors in this case. This difficulty was over- 
comed with the preceding code. However, we observed 
the great calculation time due to the number of optimi- 
zation problems to solve. For instance, with three obje- 
ctive functions we have to solve 66 optimization prob- 
lems and 286 with 4 objective functions. In further works, 
our interest is in the resolution of the calculation time 
problem and the combinatory multiobjective optimiza- 
tion problem using the Alienor method associated with 

*OPO  technique. 
 

Table 4. Osyczka and Kundu problem results. 

1  2  1f  2f  

0 1 –20.16899675 5.660266584 

0.1 0.9 –56.16791081 7.547854107 

0.2 0.8 –194.7566171 25.71891365 

0.3 0.7 –194.7566171 25.71891365 

0.4 0.6 –194.7566171 25.71891365 

0.5 0.5 –194.7566171 25.71891365 

0.6 0.4 –194.7566171 25.71891365 

0.7 0.3 –194.7566171 25.71891365 

0.8 0.2 –234.0825312 142.5275348 

0.9 0.1 –234.0825312 142.5275348 

0 1 –234.0825312 142.5275348 

 

Figure 5. The Pareto curve for Osyczka and Kundu problem. 
 

 

Figure 6. The Pareto curve for Tamaki test problem. 

 
6. Conclusions 
 
We have proposed in this paper an extended approach to 
solve multiobjective non linear optimization problems 
(MONLP). Solving such problems is crucial since nu- 
merous real-life siutations in science and engineering are 
modelled as non linear optimization problems with mul- 
tiple objectives. Our approach relies on aggregation tech- 
niques and the Alienor method to generate the Pareto 
curve of MONLPs. It is an alternative to metaheuristics 
which are the most popular approach nowadays to tackle 
complex multiobjective problems. Using test problems 
from the MONLP literature, our computational experi- 
ments have shown that our approach provides good 
approximations to feasible Pareto-optimal fronts, and is 
time efficent, even when the problems have a large num- 
ber of variables. 
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