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ABSTRACT 

We present path integral quantization of a massive superparticle in 4d   which preserves 
1

4
 of the target space su- 

persymmetry with eight supercharges, and so corresponds to the partial breaking 8N N 2   . Its worldline action 
contains a Wess-Zumino term, explicitly breaks 4d   Lorentz symmetry and exhibits one complex fermionic 

-symmetry. We perform the Hamilton-Jacobi formalism of constrained systems, to obtain the equations of motion of 
the model as total differential equations in many variables. These equations of motion are in exact agreement with those 
obtained by Dirac’s method. 


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1. Introduction 

The theory of constrained systems is a basis of modern 
physics: gauge field theories, quantum gravity, supergra- 
vity, string and superstring models are examples of sys- 
tems with constraints. For such theories, one should speci- 
fy not only an evolution equation but also additional re- 
quirements (constraints) being imposed on initial condi- 
tions [1].  

A standard consistent way of dealing with singular 
systems was first formulated by Dirac [2]. In Dirac for- 
mulism, when a singular Lagrangian in configuration 
space is transformed into a singular Lagrangian in phase 
space, the inherent constraints would be generated, which 
are called Dirac primary constraints [3-5]. Through the 
consistency conditions, step by step, using these primary 
constraints may generate more new inherent constraints, 
which are called Dirac secondary constraints. Such a way 
to calculate different constraints in Dirac formalism is 
named as Dirac-Bergmann algorithm, which was first 
proposed by Bergmann [6,7]. 

Canonical path integral method is a kind of quantiza- 
tion method [8,9], which depends on Hamilton-Jacobi 
formalism shown by Güler [10,11]. This method has 
some very useful properties of obviating the need to dis- 
tinguish primary and secondary constraints and the first  

and the second types of constraints. The method is sim- 
pler, and does not have such a hypothesis of Diracs con- 
jecture, thus it has evoked much attention [12-20]. 

Partial breaking of global supersymmetry (PBGS) [21- 
24] is widely understood to be an inborn feature of su- 
persymmetric extended objects. The concept of PBGS 
provides a manifestly off-shell supersymmetric world- 
volume description of various superbranes in terms of 
Goldstone superfields    ,i ix x  . The physical world- 
volume multiplets of the given superbrane are interpreted 
as Goldstone superfields realizing the spontaneous brea- 
king of the full brane supersymmetry group down to its 
unbroken worldvolume subgroup [25,26]. The technical 
tools here are the method of nonlinear realizations 
[27-29]. Recently, there has been a growing interest in 
PBGS options other than the 1/2 breaking [30-34]. This 
is essentially due to the discovery of the  super-
gravity solutions preserving 1/4 or 1/8 of the 

11d 
11d   

supersymmetry [30] and their subsequent interpretation 
in terms of intersecting branes. Since branelike world- 
volume effective actions which would be capable of de- 
scribing those solutions are still unknown, it seems inter- 
esting to study pointlike models that mimic the exotic 
supersymmetry breaking options inherent in the inter- 
secting branes. Such models could share some character- 
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istic features of the systems of intersecting branes, much 
like the ordinary superparticle bears a similarity to the 
Green-Schwarz superstring. Superparticle models exhib- 
iting 3/4 or 1/4 PBGS have been constructed [35-38]. 
The 1/4 breaking of the original  supersymmetry 
down to  manifests itself in the presence of only 
one complex-symmetry in the corresponding worldline 
action. This is achieved at the cost of the explicit break-
ing of the target space Lorentz symmetry down to SO(3) 
symmetry (in the fermionic sector). 

8N 

8 N 

2N 

4|8

 t 

In the present paper we study the canonical path in- 
tegral quantization for  model as a ty- 
pical example of massive superparticles with 1/4 PBGS 
in an ordinary four dimensional Minkowski spacetime 
(with  as the target superspace and explicitly bro- 
ken Lorentz symmetry) [39]. Prior to quantization, Ham- 
iltonian analysis is accomplished in full detail, by ob- 
taining the set of inherent constraints, and the equations 
of motion as total differential equations. Our paper is 
organized as follows. Hamilton-Jacobi formulation is 
presented in Section 2. In Section 3, the canonical path 
integral quantization of our model is investigated. In Sec- 
tion 4, the conclusion is given. 

2

n

N  

R

2. Hamilton-Jacobi Formalism of  
Constrained Systems 

The system that is described by the Lagrangian  
, ,i iL q q , , is constrained system if the 

Hessian matrix  
1, ,i 

2

, 1, , ,ij
i j

L
A i j n

q q



  

           (1) 

has a rank   , . In this case we have  
momenta are dependent of each other. The generalized 
momenta i  corresponding to the generalized coor- 
dinates  are defined as, 

n 

p

iq

r r n r

1, , ,a
a

L
p a n

q


 





r                   (2) 

1, , .n
L

p n r
q



   







               (3) 

Since the rank of the Hessian matrix is n r , one 
may solve (2) for  as aq

 , ,a a iq q  aq p .              (4) 

Substituting (4) into (3), we obtain relations in 
, ,i aq p q  and t  in the form 

 , , , , .
a aq i a a

L
p H q q q

q   





   
   


ap t   (5) 

The canonical Hamiltonian 0H  is defined as 

 0 , , , .i a a a a p HH L q q q t p q p
          

The set of Hamilton-Jacobi partial differential equa- 
tions (HJPDE) is expressed as 

; ; ; 0,

, 0, 1, , ,

a a
a

S S
H q q p p

q q

n r n

  


 

        
   

     (7) 

where 

0 0 0 ;H p H                  (8) 

.H p H                   (9) 

with 0q t  and  being the action. The equations of 
motion are obtained as total differential equations in 
many variables such as, 

S

d a
a

H
q

p
 d ,t





             (10) 

d
H

p
q
 d ,t 






             (11) 

d da
a

H
.Z H p t

p


 

 
    

         (12) 

where  , aZ S t q .These equation are integrable if 
and only if 

0dH 0,                  (13) 

d 0, 1, , .H n r n              (14) 

If the conditions (13) and (14) are not satisfied iden- 
tically, we consider them as new constraints and we ex- 
amine their variations. Thus repeating this procedure, one 
may obtain a set of constraints such that all the variations 
vanish, then we may solve the equations of motion (10) 
and (11) to get the canonical phase-space coordinates as 

   , , , , 1, ,a a a aq q t t p p t t r      .   (15) 

In this case the path integral representation may be 
written as 

1

Out In

d d exp d ,
n r ta a

at
a a

S

H
q p i H p t

p





 

 



  
       
 

 (16) 

1, , , 0, 1, , .a n r n r n       
We should notice that the integral (16) is an integra-

tion over the canonical phase space coordinates 
 ,a aq p . 

3. Hamilton-Jacobi Formulation of  
Superparticle with 1/4 Supersymmetry  
Breaking 

  (6) 
The action functional of a massive superparticle model 
exhibiting 1/4 PBGS, is written as [39] 
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   0 0 21 1
d .  

(17) 
2 2

i i i iS em im
e

          
    

where  

0 0 ,
2 2 2 2

, 1,2,3.

i i i i

i i i i

i i i i
x

x i i i

     

   

     

    

   


 

and , i   are four complex fermions parameterizing the 

odd sector of the model. The Lagrangian is 

   0 0 21 1
,

2 2
i i i iL em im

e
             

(18) 

The singularity of the the Lagrangian follows from the 
fact that the rank of the Hessian matrix ijA  is two. 

The canonical momenta defined in (2) and (3) read as 

0 0
0

1
,

2 2 2 2
i i i iL i i i i

P x
ex

                
   


  

(19) 

1
,i i i

i

L
P x i i

ex
i   

   





              (20) 

 0 ,
2

i iL i
P m iP H   




     
 

        (21) 

 0 ,
2

i iL i
P m iP H   




     
 

        (22) 

 0 ,
2

i
i

i

L i
P m H 

 



    
 

i             (23) 

 0 ,
2

i
i

i

L i
P m H 

 



    
 

i             (24) 

and 

0 .             (25) e e

L
P H

e


   


Now the velocities 0x  and ix
iP
 can be expressed in 

terms of the momenta  and  respectively as 0P

0 .
2 2 2 2

o i ii i i i
x eP       i i     


    




 (26) 

and 

 .i i i ix eP i i                 (27) 

The canonical Hamiltonian H  is obtained as 

 0 0 21
.

2
i iH e P P P P m           (28) 

The set of HJPDE’s are 

 0 0 21
0,

2
i iH P e P P P P m      

 0 0,
2

i ii
H P m iP                   (30) 

 0 0,
2

i ii
H P m iP                   (31) 

 0 0,
2

i
i i

H P m
  i                   (32) 

 0 0,
2

i
i i

H P m
  i                   (33) 

and 

0.e eH P                  (34) 

Therefore, the total differential equations for the cha- 
racteristics read as 

0d d d d d d
2 2 2 2

o i ii i i i
x eP ,i i                 

(35) 

d d d di i i ix eP i i ,                       (36) 

0dP 0,                                  (37) 

d 0iP ,                                  (38) 

 0d
2

i
P m d ,                          (39) 

 0d
2

i
P m d ,                          (40) 

 0d d d
2

i i i
iP P m ,i                    (41) 

 0d d d
2

i i i
iP P m ,i                    (42) 

and 

 0 0 21
d d

2
i i

eP P P P P m .           (43) 

To check whether the set of Equations (35)-(43) are 
integrable or not, let us consider the total variations of 
the set of (HJPDE)’s. The variation of 

dH 0,                                 (44) 

dH 0,                                 (45) 

dH 0,                                (46) 

d iH


0,                                (47) 

d iH


0,                                (48) 

are identically zero, whereas 

 0 0 21
d d

2
i i

e ed .H P P P P m H t         (49) 

         (29) 
where 
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 0 0 21
0.

2
i i

eH P P P P m            (50) 

is a new constraint. Thus the equations of motion (35)- 
(43) and the new constraint (50) represent an integrable 
system. 

Now to obtain the path integral quantization of this 
system, we can use (12) to obtain the canonical action 
integral as 

   0 0 21 1
d .

2 2
i i i iS e P P P P em im         


  




 

(51) 

By using (51) and (16) the path integral for the system 
is expressed as 

 

 

0 0

0 0 0 0

2

, , ; , ,

1
d d d d exp

2

1
d

2

i i

i i i

i i

x x x x

ix x P P i e P P P P

em im

 

   

  

   
     

 

 

   (52) 

4. Conclusion 

The path integral qantization of constrained systems is 
obtained for using the canonical path integral method, 
which based on the constrained Hamilton theory. The 
equations of motion are obtained as total differential 
equations in many variables, and the integrability con- 
ditions were shown to be equivalent to the vanishing of 
the variation of each H , i.e. ’s, then the sys- 
tem is integrable. In this paper, we examined Hamilto- 
nian treatment of a massive superparticle model with 1/4 
partial breaking of global supersymmetry which propa- 
gates in four dimensional flat spacetime. We obtain con- 
straints in phase space, which contains all kinds of con- 
straints (primary and secondary, first and second class 
ones). This example is very illustrative, since it allows a 
comparison between all features of Diracs and Hamil- 
ton-Jacobi formalisms. In Dirac’s formalism, we must 
reduce any constrained singular system to one with first- 
class constraints only, and we must call attention to the 
presence of arbitrary variables in some of the Hamil- 
tonian equations of motion due to the fact that we have 
gauge dependent variables, therefore we have made a 
gauge fixing. This does not occur in Hamilton-Jacobi 
formalism since it provides a gauge-independent descrip- 
tion of the systems evolution due to the fact that the 
Hamilton-Jacobi function S contains all the solutions that 
are related by gauge transformations. Our results are in 
agreement with those given in Dirac’s method [39]. 

dH  0
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