One Sound and Complete R-Calculus with Pseudo-Subtheory Minimal Change Property*

Wei Li ${ }^{1}$, Yuefei Sui ${ }^{2}$
${ }^{1}$ State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing, China;
${ }^{2}$ Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
Email: liwei@nlsde.buaa.edu.cn, yfsui@ict.ac.cn

Received July 2013

Abstract

The AGM axiom system is for the belief revision (revision by a single belief), and the DP axiom system is for the iterated revision (revision by a finite sequence of beliefs). Li [1] gave an \mathbf{R}-calculus for \mathbf{R}-configurations $\Delta \mid \Gamma$, where Δ is a set of atomic formulas or the negations of atomic formulas, and Γ is a finite set of formulas. In propositional logic programs, one R-calculus \mathbf{N} will be given in this paper, such that \mathbf{N} is sound and complete with respect to operator $s(\Delta, t)$, where $s(\Delta, t)$ is a pseudo-theory minimal change of t by Δ.

Keywords: Belief Revision; R-Calculus; Soundness and Completeness of a Calculus; Pseudo-Subtheory

1. Introduction

The AGM axiom system is for the belief revision (revision by a single belief) [2-5], and the DP axiom system is for the iterated revision (revision by a finite sequence of beliefs) [6,7]. These postulates list some basic requirements a revision operator $\Gamma \circ \Phi$ (a result of theory Γ revised by Φ) should satisfy.
The R-calculus ([1]) gave a Gentzen-type deduction system to deduce a consistent one $\Gamma^{\prime} \cup \Delta$ from an inconsistent theory $\Gamma \cup \Delta$, where $\Gamma^{\prime} \cup \Delta$ should be a maximal consistent subtheory of $\Gamma \cup \Delta$ which includes Δ as a subset, where $\Delta \mid \Gamma$ is an \mathbf{R}-configuration, Γ is a consistent set of formulas, and Δ is a consistent sets of atomic formulas or the negation of atomic formulas. It was proved that if $\Delta|\Gamma \Rightarrow \Delta| \Gamma^{\prime}$ is deducible and $\Delta \mid \Gamma^{\prime}$ is an \mathbf{R}-termination, i.e., there is no \mathbf{R}-rule to reduce $\Delta \mid \Gamma^{\prime}$ to another \mathbf{R}-configuration $\Delta \mid \Gamma^{\prime \prime}$, then $\Delta \cup \Gamma^{\prime}$ is a contraction of Γ by Δ.

The R-calculus is set-inclusion, that is, Γ, Δ are taken as belief bases, not as belief sets [8-11]. In the following we shall take Δ, Γ as belief bases, not belief sets.

We shall define an operator $s(\Delta, t)$, where Δ is a set of theories and t is a theory in propositional logic programs, such that

[^0]- $\Delta, s(\Delta, t)$ is consistent;
- $s(\Delta, t)$ is a pseudo-subtheory of t;
- $s(\Delta, t)$ is maximal such that $\Delta, s(\Delta, t)$ is consistent, and for any pseudo-subtheory η of t, if $s(\Delta, t)$ is a pseudo-subtheory of η and η is not a pseudosubtheory of η then either $\Delta, \eta \vdash s(\Delta, t)$ and $\Delta, s(\Delta, t) \vdash \eta$, or Δ, η is inconsistent.
Then, we give one R-calculus \mathbf{N} such that \mathbf{N} is sound and complete with respect to operator $s(\Delta, t)$, where
- \mathbf{N} is sound with respect to operator $s(\Delta, t)$, if $\Delta \mid t \Rightarrow \Delta, s$ being provable implies $s=s(\Delta, t)$, and
- \mathbf{N} is complete with respect to operator $s(\Delta, t)$, if $\Delta \mid t \Rightarrow \Delta, s(\Delta, t)$ is provable.
Let \sqsubseteq be the pseudo-subtheory relation, $P(t)$ be the set of all the pseudo-subtheories of t, and \equiv_{Δ} be an equivalence relation on $P(t)$ such that for any
$\eta_{1}, \eta_{2} \in P(t), \eta_{1} \equiv_{\Delta} \eta_{2} \quad$ iff $\Delta, \eta_{1} \vdash \dashv \Delta, \eta_{2}$. Given a pseudo-subtheory $\eta \sqsubseteq t$, let $[\eta$] be the equivalence class of r with respect to \equiv_{Δ}.

About the minimal change, we prove that $[s(\Delta, t)]$ is \sqsubseteq-maximal in $P(t) / \equiv_{\Delta}$ such that $\Delta, s(\Delta, t)$ is consistent, that is,

- $\Delta, s(\Delta, t)$ is consistent; and
- for any η such that $[s(\Delta, t)] \sqsubseteq[\eta] \sqsubseteq[t]$, either $[\eta] \sqsubseteq[s(\Delta, t)]$ or Δ, η is inconsistent.
[$s(\Delta, t)]$ being \sqsubseteq-maximal implies that $s(\Delta, t)$ is a minimal change of t by Δ in the syntactical sense, not in the set-theoretic sense, i.e., $s(\Delta, t)$ is a minimal change of t by Δ in the theoretic form such that $s(\Delta, t)$
is consistent with Δ.
The paper is organized as follows: the next section gives the basic elements of the \mathbf{R}-calculus and the definition of subtheories and pseudo-subtheories; the third section defines the R-calculus \mathbf{N}; the fourth section proves that \mathbf{N} is sound and complete with respect to the operator $s(\Delta, t)$; the fifth section discusses the logical properties of t and $s(\Delta, t)$, and the last section concludes the whole paper.

2. The \boldsymbol{R}-Calculus

The R-calculus ([1]) is defined on a first-order logical language. Let L^{\prime} be a logical language of the first-order logic; φ, ψ formulas and Γ, Δ sets of formulas (theories), where Δ is a set of atomic formulas or the negations of atomic formulas.

Given two theories Γ and Δ, let $\Delta \mid \Gamma$ be an \mathbf{R} configuration.
The \mathbf{R}-calculus consists of the following axiom and inference rules:

$$
\begin{aligned}
& \left(\mathbf{A}^{\urcorner}\right) \quad \Delta, \varphi \mid \Gamma, \Rightarrow \Delta \varphi, \Gamma \\
& \left(\mathbf{R}^{\mathrm{cut}}\right) \frac{\Gamma_{1}, \varphi \vdash \psi \varphi \mapsto{ }_{T} \psi \Gamma_{2}, \psi \vdash \chi \Delta\left|\chi, \Gamma_{2} \Rightarrow \Delta\right| \Gamma_{2}}{\Delta\left|\varphi, \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta\right| \Gamma_{1}, \Gamma_{2}} \\
& \left(\mathbf{R}^{\wedge}\right) \frac{\Delta|\varphi, \Gamma \Rightarrow \Delta| \Gamma}{\Delta 乡 \varphi \bar{\Psi}, \Rightarrow \Delta \Gamma} \\
& \left(\mathbf{R}^{\vee}\right) \frac{\Delta|\varphi, \Gamma \Rightarrow \Delta| \Gamma \Delta|\psi, \Gamma \Rightarrow \Delta| \Gamma}{\Delta \psi \varphi \boxed{\psi}, \Rightarrow \Delta \Gamma} \\
& \left(\mathbf{R}^{\rightarrow}\right) \frac{\Delta \dagger \Gamma, \Rightarrow \Delta \Gamma \Delta \Gamma \psi, \Rightarrow \Delta \Gamma}{\Delta|\varphi \rightarrow \psi, \Gamma \Rightarrow \Delta| \Gamma} \\
& \left(\mathbf{R}^{\forall}\right) \frac{\Delta|\varphi[t / x], \Gamma \Rightarrow \Delta| \Gamma}{\Delta|\forall x \varphi, \Gamma \Rightarrow \Delta| \Gamma}
\end{aligned}
$$

where in $\mathbf{R}^{\mathrm{cut}}, \varphi \mapsto_{T} \psi$ means that φ occurs in the proof tree T of ψ from Γ_{1} and φ; and in R^{\forall}, t is a term, and is free in φ for x.

Definition 2.1. $\Delta\left|\Gamma \Rightarrow \Delta^{\prime}\right| \Gamma^{\prime}$ is an R-theorem, denoted by $\vdash^{R} \Delta\left|\Gamma \Rightarrow \Delta^{\prime}\right| \Gamma^{\prime}$, if there is a sequence $\left\{\left(\Delta_{i}, \Gamma_{i}, \Delta_{i^{\prime}}, \Gamma_{i^{\prime}}\right): i \leq n\right\}$ such that
(i) $\Delta\left|\Gamma \Rightarrow \Delta^{\prime}\right| \Gamma^{\prime}=\Delta_{n}\left|\Gamma_{n} \Rightarrow \Delta_{n^{\prime}}\right| \Gamma_{n^{\prime}}$,
(ii) for each $1 \leq i \leq n$, either $\Delta_{i}\left|\Gamma_{i} \Rightarrow \Delta_{i}^{\prime}\right| \Gamma_{i}^{\prime}$ is an axiom, or $\Delta_{i}\left|\Gamma_{i} \Rightarrow \Delta_{i}^{\prime}\right| \Gamma_{i}^{\prime}$ is deduced by some \mathbf{R}-rule of form $\frac{\Delta_{i-1}\left|\Gamma_{i-1} \Rightarrow \Delta_{i-1}^{\prime}\right| \Gamma_{i-1}^{\prime}}{\Delta_{i}\left|\Gamma_{i} \Rightarrow \Delta_{i}^{\prime}\right| \Gamma_{i}^{\prime}}$.

Definition 2.2. $\Delta|\Gamma \Rightarrow \Delta| \Gamma^{\prime}$ is valid, denoted by $\vDash \Delta|\Gamma \Rightarrow \Delta| \Gamma^{\prime}$, if for any contraction Θ of Γ^{\prime} by Δ, Θ is a contraction of Γ by Δ.
Theorem 2.3(The soundness and completeness theorem of the \mathbf{R}-calculus). For any theories Γ, Γ^{\prime} and Δ,

$$
\vdash \Delta|\Gamma \Rightarrow \Delta| \Gamma^{\prime}
$$

if and only if

$$
\vDash \Delta|\Gamma \Rightarrow \Delta| \Gamma^{\prime}
$$

Theorem 2.4. The \mathbf{R}-rules preserve the strong validity.
Let L be the logical language of the propositional logic. A literal l is an atomic formula or the negation of an atomic formula; a clause c is the disjunction of finitely many literals, and a theory t is the conjunction of finitely many clauses.

Definition 2.5. Given a theory t, a theory s is a sub-theory of t, denoted by $s \preceq t$, if either $t=s$, or
(i) if $t=\neg t_{1}$ then $s \preceq t_{1}$;
(ii) if $t=t_{1} \wedge t_{2}$ then either $s \preceq t_{1}$ or $s \preceq t_{2}$; and
(iii) if $t=c_{1} \vee c_{2}$ then either $s \preceq c_{1}$ or $s \preceq c_{2}$.

Let $t=(p \vee q) \wedge\left(p^{\prime} \vee q^{\prime}\right)$. Then,

$$
p \vee q, p^{\prime} \vee q^{\prime} \preceq t ;
$$

and

$$
p \wedge p^{\prime}, q \wedge p^{\prime}, p \wedge\left(p^{\prime} \vee q^{\prime}\right) \npreceq t .
$$

Definition 2.6. Given a theory $t\left[s_{1}, \ldots, s_{n}\right]$, where s_{1} is an occurrence of s_{1} in t, a theory
$s=t[\lambda, \ldots, \lambda]=t\left[s_{1} / \lambda, \ldots, s_{n} / \lambda\right]$, where the occurrence s_{i} is replaced by the empty theory λ, is called a pseu-do-subtheory of t, denoted by $s \sqsubseteq t$.

Let $t=(p \vee q) \wedge\left(p^{\prime} \vee q^{\prime}\right)$. Then,

$$
p \vee q, p^{\prime} \vee q^{\prime}, p \wedge p^{\prime}, q \wedge p^{\prime}, p \wedge\left(p^{\prime} \vee q^{\prime}\right) \sqsubseteq t .
$$

Proposition 2.7. For any theories t_{1}, t_{2}, s_{1} and s_{2},
(i) $s_{1} \preceq t_{1}$ implies $s_{1} \preceq t_{1} \vee t_{2}$ and $s_{1} \preceq t_{1} \wedge t_{2}$;
(ii) $s_{1} \sqsubseteq t_{1}$ and $s_{2} \sqsubseteq t_{2}$ imply
$\neg s_{1} \sqsubseteq \neg t_{1}, s_{1} \vee s_{2} \sqsubseteq t_{1} \vee t_{2}$ and $s_{1} \wedge s_{2} \sqsubseteq t_{1} \wedge t_{2}$.
Proposition 2.8. For any theories t and s, if $s \preceq t$ then $s \sqsubseteq t$.
Proof. By the induction on the structure of t.
Proposition 2.9. \preceq and \sqsubseteq are partial orderings on the set of all the theories.

Given a theory t, let $P(t)$ be the set of all the pseu-do-subtheories of t. Each $s \in P(t)$ is determined by a set $\tau(s)=\left\{\left[p_{1}\right], \ldots,\left[p_{n}\right]\right\}$, where each $\left[p_{i}\right]$ is an occurrence of p_{i} in t, such that

$$
s=t\left(\left[p_{1}\right] / \lambda, \ldots,\left[p_{n}\right] / \lambda\right) .
$$

Given any $s_{1}, s_{2} \in P(t)$, define

$$
\begin{aligned}
& s_{1} \sqcap s_{2}=\max \left\{s: s \sqsubseteq s_{1}, s \sqsubseteq s_{2}\right\} ; \\
& s_{1} \sqcap s_{2}=\min \left\{s: s \sqsupseteq s_{1}, s \sqsupseteq s_{2}\right\} .
\end{aligned}
$$

Proposition 2.10. For any pseudo-subtheories $s_{1}, s_{2} \in P(t), s_{1} \sqcap s_{2}$ and $s_{1} \sqcup s_{2}$ exist.

Let $P(t)=(P(t), \sqcup, \sqcap, t, \lambda)$ be the lattice with the greatest element t and the least element λ.

Proposition 2.11. For any pseudo-subtheories $s_{1}, s_{2} \in P(t), s_{1} \sqsubseteq s_{2}$ if and only if $\tau\left(s_{1}\right) \supseteq \tau\left(s_{2}\right)$. Moreover,

$$
\begin{aligned}
& \tau\left(s_{1} \sqcap s_{2}\right)=\tau\left(s_{1}\right) \cup \tau\left(s_{2}\right) ; \\
& \tau\left(s_{1} \sqcup s_{2}\right)=\tau\left(s_{1}\right) \cap \tau\left(s_{2}\right) .
\end{aligned}
$$

3. The \boldsymbol{R}-Calculus \mathbf{N}

The deduction system \mathbf{N} :

$$
\begin{aligned}
& \left(N_{1}^{a}\right) \frac{\Delta \nvdash \neg l}{\Delta \mid l \Rightarrow \Delta, l} \quad\left(N_{2}^{a}\right) \frac{\Delta \vdash \neg l}{\Delta \mid l \Rightarrow \Delta, \lambda} \\
& \left(N^{\wedge}\right) \frac{\Delta \mid t_{1} \Rightarrow \Delta, s_{1}}{\Delta\left|t_{1} \wedge t_{2} \Rightarrow \Delta, s_{1}\right| t_{2}} \\
& \left(N^{\vee}\right) \frac{\Delta\left|c_{1} \Rightarrow \Delta, d_{1} \Delta\right| c_{2} \Rightarrow \Delta, d_{2}}{\Delta \mid c_{1} \vee c_{2} \Rightarrow \Delta, d_{1} \vee d_{2}}
\end{aligned}
$$

where Δ, t denotes a theory $\Delta \cup\{t\} ; \lambda$ is the empty string, and if s is consistent then

$$
\begin{aligned}
& \lambda \vee s \equiv s \vee \lambda \equiv s \\
& \lambda \wedge s \equiv s \wedge \lambda \equiv s \\
& \Delta, \lambda \equiv \Delta
\end{aligned}
$$

and if s is inconsistent then

$$
\begin{aligned}
& \lambda \vee s \equiv s \vee \lambda \equiv \lambda \\
& \lambda \wedge s \equiv s \wedge \lambda \equiv \lambda
\end{aligned}
$$

Definition 3.1. $\Delta \mid t \Rightarrow \Delta, s$ is \mathbf{N}-provable if there is a statement sequence $\left\{\Delta_{i} \mid t_{i} \Rightarrow \Delta_{i}, s_{i}: 1 \leq i \leq n\right\}$ such that

$$
\Delta\left|t \Rightarrow \Delta, s=\Delta_{n}\right| t_{n} \Rightarrow \Delta_{n}, s_{n}
$$

and for each $i \leq n, \quad \Delta_{i} \mid t_{i} \Rightarrow \Delta_{i}, s_{i}$ is either by an $N^{a}-$ rule or by an N^{\wedge}-,or N^{\vee}-rule.

An example is the following deduction for $\neg l_{1} \mid l_{1} \vee l_{2}, l_{1} \vee \neg l_{2}:$

$$
\begin{array}{lll}
\neg l_{1} \mid l_{1} & \Rightarrow \neg l_{1} \\
\neg l_{1} \mid l_{2} & \Rightarrow \neg l_{1}, l_{2} \\
\neg l_{1} \mid l_{1} \vee l_{2} & \Rightarrow \neg \neg l_{1}, \lambda \vee l_{2} \equiv \neg l_{1}, l_{2} \\
\neg l_{1}, l_{2} \mid l_{1} & \Rightarrow \neg l_{1}, l_{2} \\
\neg l_{1}, l_{2} \mid \neg l_{2} & \Rightarrow \neg \neg l_{1}, l_{2} \\
\neg l_{1}, l_{2} \mid l_{1} \neg l_{2} \neg & & l_{1}, l_{2} \\
\neg l_{1} \mid l_{1} \vee l_{2}, l_{1} & \neg \nexists & \neg \vee l_{1}, l_{2} \mid l_{1} \quad l_{2} \\
& \Rightarrow & \Rightarrow l_{1}, l_{2} .
\end{array}
$$

Notice that $\neg l_{1} \mid l_{1} \Rightarrow \neg l_{1}$ and
$l_{1} \equiv\left(l_{1} \vee l_{2}\right) \wedge\left(l_{1} \vee \neg l_{2}\right)$.
Theorem 3.2. For any theory set Δ and theory t, there is a theory s such that $\Delta \mid t \Rightarrow \Delta, s$ is \mathbf{N}-provable.

Proof. We prove the theorem by the induction on the structure of t.

If $t=l$ is a literal then either $\Delta \vdash \neg l$ or $\Delta \nvdash \neg l$. If $\Delta \vdash \neg l$ then $\Delta \mid l \Rightarrow \Delta, \lambda$ and $s=\lambda$; if $\Delta \nvdash \neg l$ then $\Delta \mid l \Rightarrow \Delta, l$ and $s=l$;
If $t=t_{1} \wedge t_{2}$ then by the induction assumption, there are theories s_{1}, s_{2} such that $\Delta \mid t_{1} \Rightarrow \Delta, s_{1}$ and
$\Delta, s_{1} \mid t_{2} \Rightarrow \Delta, s_{1}, s_{2}$. Therefore, $\Delta \mid t_{1} \wedge t_{2} \Rightarrow \Delta, s_{1}, s_{2}$ and $s=s_{1} \wedge S_{2}$.

If $t=c_{1} \vee c_{2}$ then by the induction assumption, there are theories s_{1}, s_{2} such that $\Delta \mid c_{1} \Rightarrow \Delta, s_{1}$ and
$\Delta \mid c_{2} \Rightarrow \Delta, s_{2}$. Therefore, $\quad \Delta \mid c_{1} \vee c_{2} \Rightarrow \Delta, s_{1} \vee s_{2} \quad$ and $s=s_{1} \vee s_{2}$.
Proposition 3.3. If $\Delta \mid t \Rightarrow \Delta, s$ is \mathbf{N}-provable then $s \sqsubseteq t$.
Proof. We prove the proposition by the induction on the length of the proof of $\Delta \mid t \Rightarrow \Delta$, s.

If the last rule used is $\left(N_{1}^{a}\right)$ then $t=l$, and $s=l \sqsubseteq t=l$;

If the last rule used is $\left(N_{2}^{a}\right)$ then $t=l$, and $s=\lambda \sqsubseteq t=l$;
If the last rule used is (N^{\wedge}) then $\Delta \mid t_{1} \Rightarrow \Delta, s_{1}$ and $\Delta, s_{1} \mid t_{2} \Rightarrow \Delta, s_{1}, s_{2}$. By the induction assumption, $s_{1} \sqsubseteq t_{1}$ and $s_{2} \sqsubseteq t_{2}$. Hence, $s_{1} \wedge s_{2} \sqsubseteq t_{1} \wedge t_{2}=t$;
If the last rule used is $\left(N^{\wedge}\right)$ then $\Delta \mid c_{1} \Rightarrow \Delta, s_{1}$ and $\Delta \mid c_{2} \Rightarrow \Delta, s_{2}$. By the induction assumption, $s_{1} \sqsubseteq t_{1}$ and $s_{2} \sqsubseteq t_{2}$. Hence, $s_{1} \vee s_{2} \sqsubseteq c_{1} \vee c_{2}=t$.

Proposition 3.4. If $\Delta \mid t \Rightarrow \Delta, s$ is \mathbf{N}-provable then $\Delta \cup\{s\}$ is consistent.
Proof. We prove the proposition by the induction on the length of the proof of $\Delta \mid t \Rightarrow \Delta$, s.

If the last rule used is $\left(N_{1}^{a}\right)$ then $\Delta \nvdash \neg l$, and $\Delta \mid l \Rightarrow \Delta, l$. Then, $\Delta \cup\{l\}$ is consistent;
If the last rule used is $\left(N_{2}^{a}\right)$ then $\Delta \vdash \neg l$, and $\Delta \mid l \Rightarrow \Delta, \lambda$. Then, $\Delta \cup\{\lambda\}$ is consistent;

If the last rule used is $\left(N^{\wedge}\right)$ then $\Delta \mid t_{1} \Rightarrow \Delta, s_{1}$ and $\Delta, s_{1} \mid t_{2} \Rightarrow \Delta, s_{1}, s_{2}$. By the induction assumption, $\Delta \cup\left\{s_{1}\right\}$ and $\Delta \cup\left\{s_{1}, s_{2}\right\}$ is consistent, and so is $\Delta \cup\left\{s_{1} \wedge s_{2}\right\}=\Delta \quad\{s\} ;$

If the last rule used is $\left(N^{\vee}\right)$ then $\Delta \mid c_{1} \Rightarrow \Delta, s_{1}$ and $\Delta \mid c_{2} \Rightarrow \Delta, s_{2}$. By the induction assumption, $\Delta \cup\left\{s_{1}\right\}$ and $\Delta \cup\left\{s_{2}\right\}$ is consistent, and so is
$\Delta \cup\left\{s_{1} \vee s_{2}\right\}=\Delta \quad\{s\}$.

4. The Completeness of the \boldsymbol{R}-Calculus \mathbf{N}

For any theory t, define $s(\Delta, t)$ as follows:

$$
s(\Delta, t)= \begin{cases}\lambda & \text { if } t=l \text { and } \Delta \vdash \neg l \\ l & \text { if } t=l \text { and } \Delta \nvdash \neg l \\ s\left(\Delta, t_{1}\right) \wedge s\left(\Delta \cup\left\{s\left(\Delta, t_{1}\right)\right\}, t_{2}\right) \\ & \text { if } t=t_{1} \wedge t_{2} \\ s\left(\Delta, t_{1}\right) \vee s\left(\Delta, t_{2}\right) & \text { if } t=t_{1} \vee t_{2}\end{cases}
$$

About the inconsistence, we have the following facts:

- if $\Delta \vdash \neg l$ then $\Delta \cup\{l\}$ is inconsistent;
- $\Delta \cup\left\{t_{1} \wedge t_{2}\right\}$ is inconsistent if and only if either $\Delta \cup\left\{t_{1}\right\}$ is inconsistent or $\Delta \cup\left\{t_{1}, t_{2}\right\}$ is in- consistent;
- $\Delta \cup\left\{c_{1} \vee c_{2}\right\}$ is inconsistent if and only if both $\Delta \cup\left\{c_{1}\right\}$ and $\Delta \cup\left\{c_{2}\right\}$ are inconsistent.

Proposition 4.1. For any consistent theory set Δ and a theory $t, \Delta \cup\{s(\Delta, t)\}$ is consistent.

Proof. We prove the proposition by the induction on the structure of t.

If $t=l$ and l is consistent with Δ then $s(\Delta, l)=l$ is consistent with Δ; if $t=l$ and l is inconsistent with Δ then $s(\Delta, l)=\lambda$ is consistent with Δ;
If $t=t_{1} \wedge t_{2}$ then by the induction assumption, $\Delta \cup\left\{s\left(\Delta, t_{1}\right)\right\}$ and $\Delta \cup\left\{s\left(\Delta, t_{1}\right), s\left(\Delta \quad\left\{s\left(\Delta, t_{1}\right)\right\}, t_{2}\right)\right\}$ are consistent, so $\Delta \cup\left\{s\left(\Delta, t_{1} \wedge t_{2}\right)\right\}$ is consistent;

If $t=c_{1} \vee c_{2}$ then by the induction assumption, $\Delta \cup\left\{s\left(\Delta, c_{1}\right)\right\}$ and $\Delta \cup\left\{s\left(\Delta, c_{2}\right)\right\}$ are consistent, so $\Delta \cup\left\{s\left(\Delta, c_{1} \vee c_{2}\right)\right\}=\Delta \quad\left\{s\left(\Delta, c_{1}\right) \vee s\left(\Delta, c_{2}\right)\right\} \quad$ is consistent.

About the consistence, we have the following facts:

- if $\Delta \nvdash \neg l$ then $\Delta \cup\{I\}$ is consistent;
- $\Delta \cup\left\{t_{1} \wedge t_{2}\right\}$ is consistent if and only if $\Delta \cup\left\{t_{1}\right\}$ is consistent and $\Delta \cup\left\{t_{1}, t_{2}\right\}$ is consistent;
- $\Delta \cup\left\{c_{1} \vee c_{2}\right\}$ is consistent if and only if either $\Delta \cup\left\{c_{1}\right\}$ or $\Delta \cup\left\{c_{2}\right\}$ is consistent.
Theorem 4.2. If $\Delta \cup\{t\}$ is consistent then
$\Delta, t \vdash s(\Delta, t)$ and $\Delta, s(\Delta, t) \vdash t$.
Proof. We prove the theorem by the induction on the structure of t.

If $t=l$ and l is consistent with Δ then $s(\Delta, l)=l$, and the theorem holds for l;
If $t=t_{1} \wedge t_{2}$ then $\Delta \cup\left\{t_{1}\right\}$ and $\Delta \cup\left\{t_{1}, t_{2}\right\}$ is consistent, and by the induction assumption,

$$
\begin{array}{ll}
\Delta, t_{1} & \vdash s\left(\Delta, t_{1}\right) \\
\Delta, s\left(\Delta, t_{1}\right) & \vdash t_{1} ; \\
\Delta, s_{1}, t_{2} & \vdash s\left(\Delta \cup\left\{s_{1}\right\}, t_{2}\right) \\
\Delta, s\left(\Delta \cup\left\{s_{1}\right\}, t_{2}\right) & \vdash t_{2},
\end{array}
$$

where $s_{1}=s\left(\Delta, t_{1}\right)$. Hence,

$$
\begin{array}{ll}
\Delta, t_{1} \wedge t_{2} & \vdash s\left(\Delta, t_{1}\right) \wedge s\left(\Delta \cup\left\{s_{1}\right\}, t_{2}\right) \\
\Delta, s\left(\Delta, t_{1}\right) \wedge s\left(\Delta \cup\left\{s_{1}\right\}, t_{2}\right) & \vdash t_{1} \wedge t_{2} .
\end{array}
$$

If $t=c_{1} \vee c_{2}$ then either $\Delta \cup\left\{c_{1}\right\}$ or $\Delta \cup\left\{c_{1}, c_{2}\right\}$ is consistent, and by the induction assumption, either

$$
\begin{array}{ll}
\Delta, c_{1} & \vdash s\left(\Delta, c_{1}\right) \\
\Delta, s\left(\Delta, c_{1}\right) & \vdash c_{1}
\end{array}
$$

or

$$
\begin{array}{ll}
\Delta, c_{2} & \vdash s\left(\Delta, c_{2}\right) \\
\Delta, s\left(\Delta, c_{2}\right) & \vdash c_{2} .
\end{array}
$$

Hence, we have

$$
\begin{array}{ll}
\Delta, c_{1} \vee c_{2} & \vdash s\left(\Delta, c_{1}\right) \vee s\left(\Delta, c_{2}\right) \\
\Delta, s\left(\Delta, c_{1}\right) \vee s\left(\Delta, c_{2}\right) & \vdash c_{1} \vee c_{2} .
\end{array}
$$

Theorem 4.3. $\Delta \mid t \Rightarrow \Delta, s$ is \mathbf{N}-provable if and only if $s=s(\Delta, t)$.

Proof. (\Rightarrow) Assume that $\Delta \mid t \Rightarrow \Delta, s$ is N-provable. We assume that for any $i<n$, the claim holds.

If $t=l$ and the last rule is $\left(N_{1}^{a}\right)$ then $\Delta \nvdash \neg l$ and $\Delta \mid l \Rightarrow \Delta, l$. It is clear that $s=l=s(\Delta, l)$;

If $t=l$ and the last rule is $\left(N_{2}^{a}\right)$ then $\Delta \vdash \neg l$ and $\Delta \mid l \Rightarrow \Delta, \lambda$. It is clear that $s=\lambda=s(\Delta, l)$;

If $t=t_{1} \wedge t_{2}$ and the last rule is $\left(N^{\wedge}\right)$ then
$\Delta \mid t_{1} \Rightarrow \Delta, s_{1} \quad$ and $\quad \Delta\left|t_{1} \wedge t_{2} \Rightarrow \Delta, s_{1}\right| t_{2} \Rightarrow \Delta, s_{1}, s_{2} . \quad$ By the induction assumption, $s\left(\Delta, t_{1}\right)=s_{1}$ and $s\left(\Delta \cup\left\{s_{1}\right\}, t_{2}\right)=s_{2}$. Then, $s=s_{1} \wedge s_{2}=s\left(\Delta, t_{1}\right) \wedge s\left(\Delta \cup\left\{s_{1}\right\}, t_{2}\right)=s\left(\Delta, t_{1} \wedge t_{2}\right) ;$

If $t=c_{1} \vee c_{2}$ and the last rule is (N^{\vee}) then $\Delta \mid c_{1} \Rightarrow \Delta, s_{1}$ and $\Delta \mid c_{2} \Rightarrow \Delta, s_{2}$. By the induction assumption, $s_{1}=s\left(\Delta, c_{1}\right), s_{2}=s\left(\Delta, c_{2}\right)$, and $s=s_{1} \vee s_{2}=s\left(\Delta, c_{1}\right) \vee s\left(\Delta, c_{2}\right)=s\left(\Delta, c_{1} \vee c_{2}\right)$.
(\Leftarrow) Let $s=s(\Delta, t)$. We prove that $\Delta \mid t \Rightarrow \Delta, s$ is \mathbf{N}-provable by the induction on the structure of t.

If $t=l$ and $\Delta \vdash \neg l$ then $s(\Delta, l)=\lambda$, and $\Delta \mid l \Rightarrow \Delta, \lambda$, i.e., $\Delta \mid l \Rightarrow \Delta, s ;$
If $t=l$ and $\Delta \nvdash \neg l$ then $s(\Delta, l)=l$, and
$\Delta \mid l \Rightarrow \Delta$, l, i.e., $\Delta \mid l \Rightarrow \Delta, s$;
If $t=t_{1} \wedge t_{2}$ then
$s\left(\Delta, t_{1} \wedge t_{2}\right)=s\left(\Delta, t_{1}\right) \wedge s\left(\Delta \cup\left\{s\left(\Delta, t_{1}\right)\right\}, t_{2}\right)$. By the induction assumption, $\Delta \mid t_{1} \Rightarrow \Delta, s\left(\Delta, t_{1}\right)$ and
$\Delta, s_{1} \mid t_{2} \Rightarrow \Delta, s_{1}, s\left(\Delta \cup\left\{s\left(\Delta, t_{1}\right)\right\}, t_{2}\right)$. Therefore,
$\Delta \mid t_{1} \wedge t_{2} \Rightarrow \Delta, s_{1}, s\left(\Delta \cup\left\{s\left(\Delta, t_{1}\right)\right\}, t_{2}\right) ;$
If $t=c_{1} \vee c_{2}$ then
$s\left(\Delta, c_{1} \vee c_{2}\right)=s\left(\Delta, c_{1}\right) \vee s\left(\Delta \cup\left\{s\left(\Delta, c_{1}\right)\right\}, c_{2}\right)$. By the induction assumption, $\Delta \mid c_{1} \Rightarrow \Delta, s\left(\Delta, c_{1}\right)$ and
$\Delta \mid c_{2} \Rightarrow \Delta, s\left(\Delta, c_{2}\right)$. Therefore,
$\Delta \mid c_{1} \vee c_{2} \Rightarrow \Delta, s\left(\Delta, c_{1}\right) \vee s\left(\Delta, c_{2}\right)$.

5. The Logical Properties of t and $s(\Delta, t)$

It is clear that we have the following
Proposition 5.1. For any theory set Δ and theory t,

$$
\xi(\Delta, t) \sqsubseteq s(\Delta, t) .
$$

Theorem 5.2. For any theory set Δ and theory t,

$$
\begin{array}{lll}
\Delta, \xi(\Delta, t) & \vdash s(\Delta, t) \\
\Delta, s(\Delta, t) & \vdash & \xi(\Delta, t) .
\end{array}
$$

Proof. By the definitions of $s(\Delta, \xi), \xi(\Delta, t)$ and the induction on the structure of t.

Proposition 5.3. (i) If $\Delta, s(\Delta, t) \nvdash t$ then Δ, t is inconsistent;
(ii) If $\Delta, s(\Delta, t) \vdash t$ then Δ, t is consistent.

Define

$$
\begin{aligned}
& C_{t}^{\Delta}=\{s \in P(t): \Delta \cup\{s\} \text { is consistent }\} \\
& I_{t}^{\Delta}=\{s \in P(t): \Delta \cup\{s\} \text { is inconsistent }\}
\end{aligned}
$$

Then, $C_{t}^{\Delta} \cup I_{t}^{\Delta}=P(t)$ and $C_{t}^{\Delta} \cap I_{t}^{\Delta}=\varnothing$.
Define an equivalence relation \equiv_{Δ} on $\mathbf{P}(t)$ such that for any $s_{1}, s_{2} \in P(t)$,

$$
s_{1} \equiv_{\Delta} s_{2} \text { iff } \Delta, s_{1} \vdash \dashv \Delta, s_{2}
$$

Given a pseudo-subtheory $s \in P(t)$, let $[r]$ be the equivalence class of s. Then, we have that

$$
[s(\Delta, t)],[\xi(\Delta, t)] \subseteq C_{t}^{\Delta}
$$

Proposition 5.4. $[s(\Delta, t)]=[\xi(\Delta, t)]$.
Define a relation \simeq on $P(t)$ such that for any s_{1} and $s_{2} \in P(t), s_{1} \simeq s_{2}$ iff

$$
\left\{\begin{array}{l}
l_{1}=l_{2} \quad \text { if } s_{1}=l_{1} \text { and } s_{2}=l_{2} \\
c_{11}=c_{22} \& c_{12}=c_{21} \text { o } c_{1} r=c_{21} \& c_{12}=c_{22} \\
\text { if } s_{1}=c_{11} \vee c_{12} \text { and } s_{2}=c_{21} \vee c_{22} \\
s_{11}=s_{22} \& s_{12}=s_{21} \text { o } s_{11} \mathrm{r}=s_{21} \& s_{12}=s_{22} \\
\text { if } s_{1}=s_{11} \wedge s_{12} \text { and } s_{2}=s_{21} \wedge s_{22}
\end{array}\right.
$$

Proposition 5.5. \simeq is an equivalence relation on $P(t)$, and for any $s_{1}, s_{2} \in P(t)$, if $s_{1} \simeq s_{2}$ then $s_{1} \vdash \dashv s_{2}$.
Theorem 5.6. If $\Delta \mid t \Rightarrow \Delta, s$ is provable then for any η with $s \sqsubseteq \eta \sqsubseteq t, \Delta \mid \eta \Rightarrow \Delta, s$ is provable.
Proof. We prove the theorem by the induction on the structure of t.
If $t=l$ and $\Delta \vdash \neg l$ then $s=\lambda$, and for any η with $s \sqsubseteq \eta \sqsubseteq t, \eta=\lambda$, and $\Delta \mid \eta \Rightarrow \Delta, \lambda$ is provable;

If $t=l$ and $\Delta \nvdash \neg l$ then $s=l$, and for any η with $s \sqsubseteq \eta \sqsubseteq t, \eta=l$, and $\Delta \mid \eta \Rightarrow \Delta, s$ is provable;

If $t=t_{1} \wedge t_{2}$ and the theorem holds for both t_{1} and t_{2} then $s=s_{1} \wedge s_{2}$, and for any η with $s \sqsubseteq \eta \sqsubseteq t$, there are η_{1} and η_{2} such that $s_{1} \sqsubseteq \eta_{1} \sqsubseteq t_{1}$ and
$s_{2} \sqsubseteq \eta_{2} \sqsubseteq t_{2}$. By the induction assumption,
$\Delta\left|\eta_{1} \Rightarrow \Delta, s_{1}, \Delta, s_{1}\right| \eta_{2} \Rightarrow \Delta, s_{1}, s_{2}$, and by $\left(N^{\wedge}\right)$, $\Delta \mid \eta_{1} \wedge \eta_{2} \Rightarrow \Delta, s_{1}, s_{2} \equiv \Delta, s_{1} \wedge s_{2}$;
If $t=c_{1} \vee C_{2}$ and the theorem holds for both c_{1} and c_{2} then $s=s_{1} \vee s_{2}$, and for any η with $s \sqsubseteq \eta \sqsubseteq t$, there are η_{1} and η_{2} such that $s_{1} \sqsubseteq \eta_{1} \sqsubseteq c_{1}$ and $s_{2} \sqsubseteq \eta_{2} \sqsubseteq c_{2}$. By the induction assumption,
$\Delta\left|\eta_{1} \Rightarrow \Delta, s_{1} ; \Delta\right| \eta_{2} \Rightarrow \Delta, s_{2}$, and by $\left(N^{\vee}\right)$,
$\Delta \mid \eta_{1} \vee \eta_{2} \Rightarrow \Delta, s_{1} \vee s_{2}$.
Theorem 5.7. For any η with $s \sqsubseteq \eta \sqsubseteq t$, if Δ, η is consistent then $\Delta, \eta \vdash \dashv \Delta, s$, and hence, $[\eta]=[s]$; and if Δ, η is inconsistent then $\Delta, \eta \vdash \dashv \Delta, t$, and hence, $[\eta]=[t]$.

Proof. If Δ, η is consistent then by Theorem 6.6, $\Delta \mid \eta \Rightarrow \Delta, s$, and we prove by the induction on the structure of t that $\Delta, t \vdash \dashv \Delta$, s.

If $t=l$ and $\Delta \nvdash \neg l$ then $s=l$, and $\Delta, t \vdash \dashv \Delta, s$;
If $t=t_{1} \wedge t_{2}$ and the claim holds for both t_{1} and t_{2} then $s=s_{1} \wedge s_{2}, \Delta, t_{1} \vdash \dashv \Delta, s_{1}$ and $\Delta, t_{2} \vdash \dashv \Delta, s_{2}$. Therefore, $\Delta, t_{1} \wedge t_{2} \vdash \dashv \Delta, s_{1} \wedge s_{2}$.

If $t=c_{1} \vee c_{2}$ and the theorem holds for both c_{1} and c_{2} then $d=d_{1} \vee d_{2}$, and there are three cases:

Case 1. Δ, c_{1} and Δ, c_{2} are consistent. By the induction assumption, we have that
$\Delta, c_{1} \vdash \dashv \Delta, d_{1}, \Delta, c_{2} \vdash \dashv \Delta, d_{2}$, and hence,
$\Delta, c_{1} \vee c_{2} \vdash \dashv \Delta, d_{1} \vee d_{2}$;

Case 2. Δ, c_{1} is consistent and Δ, c_{2} is inconsistent. By the induction assumption, we have that $\Delta, c_{1} \vdash \dashv \Delta, d_{1}$, and $\Delta \mid c_{2} \Rightarrow \Delta$. Then,

$$
\begin{aligned}
\Delta, d_{1} & \equiv \Delta, d_{1} \vee d_{2} \\
& \vdash c_{1} \\
& \vdash c_{1} \vee c_{2} ;
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta, c_{1} \vee c_{2} & \equiv\left(\Delta \wedge c_{1}\right) \vee\left(\Delta \wedge c_{2}\right) \\
& \equiv \Delta \wedge c_{1} \\
& \equiv \Delta, c_{1} \vdash d_{1} \vdash d_{1} \vee d_{2},
\end{aligned}
$$

where $d_{2}=\lambda$.
Case 3. Similar to Case 2.
Corollary 5.8. For any η with $s \sqsubseteq \eta \sqsubseteq t$, either $[\eta]=[s]$ or $[\eta]=[t]$. Therefore, $[s]$ is \sqsubseteq-maximal such that Δ, s is consistent.

6. Conclusions and Further Works

We defined an R-calculus \mathbf{N} in propositional logic programs such that \mathbf{N} is sound and complete with respect to the operator $s(\Delta, t)$.

The following axiom is one of the AGM postulates:

$$
\text { Extensionality : if } p \vdash \dashv q \text { then } K \circ p=K \circ q
$$

It is satisfied, because we have the following
Proposition 7.1. If $t_{1} \vdash \dashv t_{2} ; t_{1} \mid s \Rightarrow t_{1}, s_{1}$ and
$t_{2} \mid s \Rightarrow t_{2}, s_{2}$ then $s_{1} \vdash \dashv s_{2}$.
It is not true in \mathbf{N} that
(*) if $s_{1} \vdash \dashv s_{2} ; t \mid s_{1} \Rightarrow t, s_{1}^{\prime}$ and $t \mid s_{2} \Rightarrow t, s_{2}^{\prime}$ then $s_{1}^{\prime} \vdash \dashv s_{2}^{\prime}$.

A further work is to give an R-calculus having the property (*).

A simplified form of (*) is
$\left({ }^{* *}\right)$ if $s_{1} \simeq s_{2} ; t \mid s_{1} \Rightarrow t, s_{1}^{\prime}$ and $t \mid s_{2} \Rightarrow t, s_{2}^{\prime}$ then $s_{1}^{\prime} \vdash \dashv s_{2}^{\prime}$, which is not true in \mathbf{N} either.
Another further work is to give an R-calculus having the property ($* *$) and having not the property (*).

REFERENCES

[1] W. Li, "R-Calculus: An Inference System for Belief Revision," The Computer Journal, Vol. 50, 2007, pp. 378390. http://dx.doi.org/10.1093/comjnl/bxl069
[2] C. E. Alchourrón, P. Gärdenfors and D. Makinson, "On the Logic of Theory Change: Partial Meet Contraction and Revision Functions," Journal of Symbolic Logic, Vol. 50, 1985, pp. 510-530. http://dx.doi.org/10.2307/2274239
[3] A. Bochman, "A Foundational Theory of Belief and Belief Change," Artificial Intelligence, Vol. 108, 1999, pp. 309-352. http://dx.doi.org/10.1016/S0004-3702(98)00112-X
[4] M. Dalal, "Investigations into a Theory of Knowledge

Base Revision: Preliminary Report," Proceedings of AAAI-88, St. Paul, 1988, pp. 475-479.
[5] P. Gärdenfors and H. Rott, "Belief Revision," In: D. M. Gabbay, C. J. Hogger and J. A. Robinson, Eds., Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 4, Epistemic and Temporal Reasoning, Oxford Science Pub., 1995, pp. 35-132.
[6] A. Darwiche and J. Pearl, "On the Logic of Iterated Belief Revision," Artificial Intelligence, Vol. 89, 1997, pp. 1-29. http://dx.doi.org/10.1016/S0004-3702(96)00038-0
[7] E. Fermé and S. O. Hansson, "AGM 25 Years, TwentyFive Years of Research in Belief Change," Journal of Philosophical Logic, Vol. 40, 2011, pp. 295-331. http://dx.doi.org/10.1007/s10992-011-9171-9
[8] N. Friedman and J. Y. Halpern, "Belief Revision: A Criti-
que," In: L. C. Aiello, J. Doyle and S. C. Shapiro, Eds., Journal of of Logic, Language and Information, Principles of Knowledge Representation and Reasoning, Proceedings of the 5th Conference, 1996, pp. 421-431.
[9] S. O. Hansson, "Theory Contraction and Base Contraction Unified," Journal of Symbolic Logic, Vol. 58, 1993, pp. 602-626. http://dx.doi.org/10.2307/2275221
[10] A. Herzig and O. Rifi, "Propositional Belief Base Update and Minimal Change," Artificial Intelligence, Vol. 115, 1999, pp. 107-138. http://dx.doi.org/10.1016/S0004-3702(99)00072-7
[11] K. Satoh, "Nonmonotonic Reasoning by Minimal Belief Revision," Proceedings of the International Conference on Fifth Generation Computer Systems, Tokyo, 1988, pp. 455-462.

[^0]: *This work was supported by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-2010KF-06, Beijing University of Aeronautics and Astronautics, and by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901.

