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ABSTRACT 

In this paper, the authors continue the researches described in [1], that consists in a comparative study of two methods 
to eliminate the static hazard from logical functions, by using the form of Product of Sums (POS), static hazard “0”. In 
the first method, it used the consensus theorem to determine the cover term that is equal with the product of the two 
residual implicants, and in the second method it resolved a Boolean equation system. The authors observed that in the 
second method the digital hazard can be earlier detected. If the Boolean equation system is incompatible (doesn’t have 
solutions), the considered logical function doesn’t have the static 1 hazard regarding the coupled variable. Using the lo- 
gical computations, this method permits to determine the needed transitions to eliminate the digital hazard. 
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1. Introduction 

Under certain conditions, on the output of the logical 
signals may occur unwanted transitions. These transitions 
are known as glitches. The logic glitch is a kind of un-
wanted noise presenting inthe output signal that can ini-
tiate an uncontrollable process. In the next level there is 
an input signal [2]. 

We can distinguish three types of noise that is intro-
duced in CLC (Combinational Logic Circuits), called ha- 
zards (Static, Dynamic and Function Hazards). 

In the following we consider only the static hazard pro- 
blem in combinational logic systems, called static hazard 
“0”. 
 Static 1 hazard, also called SOP (Sum of Products) 

hazard—a glitch that occurs in otherwise steady-state 
1 output signal from SOP logic; 

 Static 0 hazard, also called POS (Product of Sums) 
hazard—a glitch that occurs in otherwise steady-state 
0 output signal from POS logic. 

Static Hazards in Two-Level Combinational Logic 
Circuits (Consensus Method [2]). 

We will initially define: 
 Coupled variable; a variable input is complemented 

within a term of function and uncomplemented in an-
other term of the same function. 

 Coupled term; one of two terms containing only one 
coupled variable. 

 Residue; the part of a coupled term that remains after 
removing the coupled variable. 

 Hazard cover (or consensus term). 
The RPI (Redundant Prime Implicant) required to eli- 

minate the static hazards: 
AND the residues of coupled p-term to obtain the SOP 

hazard cover, 
OR the residues of coupled s-term to obtain the POS 

hazard cover. 
POS example: any logic function can be described as: 

  0 1i iy e x e x    

where 

 
 

0 1 2 1 1

1 1 2 1 1

, , , ,0, , ,

, , , ,1, , ,

n n i i

n n i i

e y x x x x x

e y x x x x x

   

   





 

 

0

0

      (1) 

Sometimes, the same function can be describes as: 

  i iy a x b x c           (2) 

Using the (1) form, we can say: 

0

1

e ac

e bc




            (2.1) 
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Using the algorithm described in [3], if , the 
expression from (2), (2.1) doesn’t present static hazard in 
relation with the 

c a b 

ix  input, and if a = b = 0, then results 
c = 0. 

The condition to have static hazard in relation with the 

ix  input, is when a = b = 0 and c = 1. 
The consensus method [4] consists of determination of 

coupled terms, then by removing the coupled variables 
we obtain residual values.  

That meaning the (2) equation can be written like: 

   i iy a x b x c a b           (3) 

It can be observed that the expression of the function is 
multiplied by the sum of residual values, the new expres- 
sion presents static hazard in relation with the ix  input. 

We proposed as example the 4 inputs logic function: 

 
 


4 3 2 1 0

0

, , , ,

1,3,6,7,9,11,14,17,19, 20,25,27,28

0,5,10,16,23, 24,29,31

y y x x x x x

R

R





 
 (4) 

Using the Quine-McCluskey minimization method we 
obtain the equation from (5) and also the residual values 
determined by 0x  input: 

   
 

4 3 2 1 4 1 0 2 0

4 2 1 0

y x x x x x x x x x

x x x x

      

    
 

  4 1 4 2 1 0

2

2 4 2 4 1 0 4 1 2 1 2 4

a x x x x x x

b x

a b x x x x x x x x x x x x x

   



         1

 (5) 

The expression of no static hazard in relation with 0x  
input: 

   
  

4 3 2 1 4 1 0 2 0

4 2 1 0 4 2 1

y x x x x x x x x x

x x x x x x x

      

      
  (6) 

2. Method of Resolving of Boolean Equations 
[5] 

In this paragraph we apply the consensus method [5] and 
the method of solving some specific Boolean equations. 

If   i iy a x b x   c , by resolving the next system 
equations it can be determined the vectors input values 
which presents static hazard. 

0

0

1

a

b

c





            (7) 

If the (7) system has no solution, the function doesn’t 
presents static hazard in relation with ix . 

Therefore, the expression of the function becomes: 

  4 1 4 2 1 0

2

4 3 2 1

0

0

1

a x x x x x x

b x

c x x x x

     

 

    

         (8) 

Therefore, 2 0x   imposes the reduction of the sys- 
tem to: 4 1 0x x   or 4 1 1x x   

So, the solution is:  

4

3

2

1

1

0

0

x

x

x

x


 




             (8.1) 

So, the function will have hazard at commutation 

 
 

4 3 2 1 0

1 0 0 0 0 1 0 0 0 1 16 17

11 0 0 0 11 0 01 24 25

x x x x x

 

 

 

So, in the POS relation will be added the multiplied 
prime implicant 4 2x 1x x .  

The function will have the same expression like in (7). 

3. Static Hazards in Two-Level  
Combinational Logic Circuits 

We will consider two analytical methods to detect and 
eliminate this type of hazard: 

(A) Consensus method [1] 
We will initially define: 

 Coupled variable; a variable input is complemented 
within a term of function and uncomplemented in an-
other term of the same function. 

 Coupled term; one of two terms containing only one 
coupled variable. 

 Residue; the part of a coupled term that remains after 
removing the coupled variable. 

 Hazard cover (or consensus term). 
The RPI (Redundant Prime Implicant) required to 

eliminate the static hazards: 
 AND the residues of coupled p-term to obtain the 

SOP hazard cover, 
 OR the residues of coupled s-term to obtain the POS 

hazard cover. 
Example 1. Lets consider the logic function 
   2 1 0 1 2,3,5,7f x x x R . 
a) SOP example: will be determined the prime impli-

cants using Veitch-Karnaugh or Quine-McCluskey me- 
thods, as: 

 

 

2 1

1 0

2 0

2,3

3,7

5,7

A x x

B x x

C x x

 

 

 

         (9) 

One of the minimal equations is: 
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2 1 2 0y A C x x x x           (10) 

where we have: 
 coupled variable: 2x  
 coupled terms: 2 1 2 0,x x x x   
 residues: ,1 0x x  
 consensus term: 1 0x x  

Therefore, the logic expression that has no static haz-
ard in relation to 2x  variable is: 

2 1 2 0 1 0y x x x x x x            (11) 

b) POS example: will be determined the prime impli-
cants using Veitch-Karnaugh or Quine-Mc Cluskey me- 
thods, as: 

 
 
 

2 1

1 0

2 0

0,1

0, 4

4,6

a x x

b x x

c x x

 

 

 

       (12) 

One of the minimal equations is: 

    2 1 2 0 1 0y x x x x x x          (13) 

where we have: 
 coupled variable: 2x  
 coupled terms: 2 0 2, 1x x x x   
 residues: ,1 0x x  
 consensus term: 1 0x x  

The equation (13) shows no static 0 hazard. 
Example 2. Let’s consider the function of four varia- 

bles .    3 2 1 0 1 0,1,2,5,6,7,8,9,10,14y f x x x x R 
SOP hazard: will be determined the prime implicants 

using Quine-McCluskey method, as: 

 
 
 
 

 
 
 
 

3 1 0

3 1 0

3 2 0

3 2 1

3 1 0

2 1

2 0

1 0

1,5

2,6

5,7

6,7

10,14

0,1,8,9

0,2,8,10

2,6,10,14

A x x x

B x x x

C x x x

D x x x

E x x x

F x x

G x x

H x x

  

  

  

  

  

 

 

 

      (14) 

Applying the Patrick method [6], going from prime 
implicants table will be determined all SOP solutions. 

Let’s consider the logical  variables attached to the 
prime implicants as follows: 0 , if 0 , the A 
prime implicant is present in the logical function expres-
sion, otherwise 0  (A prime implicant is not pre-
sent in the logical function expression), etc. 

ip
p A 1p 

0p 

Therefore, considering the correspondence 1p B , 
, 3 , 4 , 5 , 62p C p D p E p F p G , 
, in the table illustrated in Table 1 is shown the  7p  H

Table 1. The SOP coverage table. 

 dec. equiv. 0 1 2 5 6 7 8 9 10 14

pi         

p0  1 1       

p1  1  1      

p2  1  1     

p3   1 1     

p4       1 1 

p5  1 1    1 1   

p6  1 1    1  1  

p7  1  1    1 1 

 
Patrick coverage: 

It writes the coverage equation: 

     
     
     

5 6 0 5 1 6 7

0 2 1 3 7 2 3

5 6 5 4 6 7 4 7 1

p p p p p p p

p p p p p p p

p p p p p p p p

     

      

        

 (15) 

Simplifications are made by using the laws of Boolean 
algebra: the redundance law, the identity law and the dis- 
tributive law. 

   
     

  
 
 

 
 
 

5 1 6 7 1 3 7

4 7 2 0 2 3

5 7 1 3 6 7 4

2 0 3

5 7 1 4 3 4 6

2 0 3

5 7 1 4 5 3 4 5 6

2 0 3

1

or   

1

or   

1

or  

1

p p p p p p p

p p p p p p

p p p p p p p

p p p

p p p p p p p

p p p

p p p p p p p p p

p p p

     

      

     

   

     

   

       

   



(16) 

A version of the optimal solution corresponds to 

5 7 2p p p   triplet, i.e. 

 3 2 1 0

2 1 1 0 3 2 0

, , ,y f x x x x F H C

x x x x x x x

   

      
 (17) 

The cost of this function in SOP implementation is: 

       2 1 1 0 3 2 0 3 10C y C x x C x x C x x x          

(It was considered the variables ,i ix x , available at 
input). 

It can verify that any other coverage has a higher cost. 
For example, the coverage  which cor- 
responds to 

5 7 0 3p p p p  

2 1 1 0 3 1 0 3 2 1

y F H A D

x x x x x x x x x x

   

         
 (18)  

Open Access                                                                                              CS 



M. G. TIMIS  ET  AL. 469

has the cost .  1 14C y 

4. The Static Hazard Elimination 

(B) The consensus method 
We apply the same method as in [7], only that it has a 

strong computing nature. Any logic function can be 
written as: 

0 1i iy e x e x     (11),  

where 

 0 1 2 1 1, , , ,0, , ,n n i ie y x x x x x      0

0

, 

 1 1 2 1 1, , , ,1, , ,n n i ie y x x x x x      . 

Obviously, if i iy a x b x c    
e b c 

e e

 (12), then 
, . 0e a  c 1

If we add the term  to relation (11), the function 
presents no hazard towards 

0 1

ix . 
In terms of the consensus method, the term that covers 

the static 1 hazard is 

   0 1e e a c b c c a b         (19),  

therefore for the form (11) will be , and for the 
form (12), . 

0 1e e
a b

Considering the second example, we will have: 
hazard in relation to the input 0x : 

2 1 1 0 3 2 0y F H C x x x x x x x            (20), 

where 

   

0 1 2 1 1 2

1 3 2 2 1 3 2 2 1

0 1 1 2 3 2 2 1

3 2 1 2 1

,

,

e x x x x x

e x x x x x x x x

e e x x x x x x

x x x x x F D

    

       

      

      

   (21) 

By adding F D  term to relation (14), it obtains: 

 
2 1 1 0 3 2 0 3 2 1

y F H C F D

x x x x x x x x x x

    

         
  (22) 

hazard in relation to the input 1x : 

   

0 2 3 2 0 2 3 0

1 0 3 2 3 2 0 0 3 2

0 1 2 3 0 0 3 2 2 0

e x x x x x x x

e x x x x x x x x x

e e x x x x x x x x G

      

        

         

(23) 

Therefore, the expression of the function becomes: 

2 1 1 0 3 2 0

3 2 1 2 0

y F H C D G

x x x x x x x

x x x x x

    

      

    

       (24) 

hazard in relation to the input 2x : 

0 1 0 1 0 1

1 3 0 3 1 1 0

 e x x x x x x

e x x x x x x

0     

     
 

Therefore,  

   0 1 1 0 3 0 3 1 1 0

3 1 0 3 1 0 1 0

1 0 3 1 0

e e x x x x x x x x

x x x x x x x x

x x x x x H A

        

       

      

  (25)  

The expression of the function becomes: 

2 1 1 0 3 2 0

3 2 1 2 0 3 1 0

3 2 0 3 2 1 1 0

y F H C D G A

x x x x x x x

x x x x x x x x

x x x x x x x x t

     

      

       

        

   (26) 

hazard in relation to the input 3x : 

0 2 0 2 1 1 0e x x x x x x t       , 

where 

2 1 1 0 2 0 3 1 0t x x x x x x x x x          

1e t  

 0 1 2 0 2 1 1 0e e x x x x x x t t t           (27) 

so that remains the same expression (20), which has no 
hazards in relation to 3x . 

From the relation (20), it sees that the expression of 
the function without SOP hazards contains all prime im- 
plicants without B and E. 

(C) The method of solving of some Boolean equations 
[8] 

A logic function can be written as: 

i iy a x b x c               (28) 

where 

 
 

1 2 1 1 0

1 2 1 1 0

, , , ,0, , ,

, , , ,1, , , .

n n i i

n n i i

a c f x x x x x

b c f x x x x x

   

   

, 

 

 

 
 

According to a theorem from [8], a logic function ex- 
pressed as SOP, presents a static hazard in the situation 

1i ix x  , a situation deducted by solving the following 
system of logical equations: 

1

1

0

a

b

c





                (29) 

We return to the same function, (14): 

2 1 1 0 3 2 0y F H C x x x x x x x          . 

hazard in relation to the input 0x : 

   1 0 3 2 0 2 1y x x x x x x x        (30) 
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The function will present SOP hazard, if 

1

3 2

2 1

1

1

0

x

x x

x x



 

 

          (31) 

Therefore, 3 , , , which imposes a 
hazard at commutation 

0x  2 1x  1 1x 

3 2 1 0

0 11 0 0 111,

x x x x


 

which imposes the adding of the prime implicant 
 to function. 6,7D  

The function becomes  

2 1 1 0 3 2 0 3 2 1

y F H C D

x x x x x x x x x x

   

         
  (32) 

hazard in relation to the input 1x : 

2

2

0 3 2

0

3 2 0

3

1

0

1

or  0

0

a x

x

b x x x

x

c x x x

x 

 


   


   



        (33) 

Therefore, we will have hazards in the following 
cases: 

 
 

3 2 1 0

0 0 0 0 0 0 1 0 0, 2

1 0 0 0 1 0 1 0 8,10

x x x x





 

The previous commutations are equivalent to the 
implicant .  0,2,8,10G 

The function becomes 

 2 1 1 0 3 2 0

3 2 1 2 0

y F H C D G

x x x x x x x

x x x x x

    

      

    

        (34) 

hazard in relation to the input 2x : 

1 0

3

3 0 3 1

1 0 0 1

1

0

1

and  0, 1

a x x

x

b x x x x

c x x x x

  


    

     

     (35) 

We will have the solution: 

3

1

0

0

0

1

x

x

x






           (35.1) 

The corresponding commutation is: 

 
3 2 1 0

0 0 01 0 1 0 1 1,5

x x x x


. 

Therefore, the term  is added to the func- 
tion. 

 1,5A 

And therefore:  

y F H C D G A        (36) 

hazard in relation to the input 3x : 

2 1 1 0 3 2 0

3 2 1 2 0 3 1 0

y x x x x x x x

x x x x x x x x

      

       
          (37) 

2 0 2 1 1 0

2 1 1 0 2 0

1

0

0

a x x x x x x

b

c x x x x x x

      



      

          (38) 

Because one of the terms  is zero, we have no 
hazards in relation to that variable. 

 ,a b

5. Conclusions 

The contribution of the authors consists in that by 
analysis of two methods of detection/elimination of the 
static hazard, insisting of the POS method for the logic 
function which wasn’t analyzed in [1]. 

The boolean equation [2,3], presents some advantages 
instead the consensus methods, the most important to 
determine the transactions which causes static hazard. 

It concludes that the classical method of the 70s, the 
method of solving some specific Boolean equations [4], 
presents some advantages compared to consensus 
method [5], which has a strong heuristic nature. 

In the first method it used the consensus theorem to 
determine the cover term that is equal with the product of 
the two residual implicants [6], and in the second method 
it resolved a Boolean equation system [7]. The authors 
observed that in the second method the digital hazard can 
be earlier detected. If the Boolean equation system is 
incompatible (doesn’t have solutions), the considered lo- 
gical function doesn’t have the static 1 hazard regarding 
the coupled variable. Using the logical computations, this 
method permits to determine the needed transitions to 
eliminate the digital hazard.  

From the both methods, we can observe that static 1 
hazard can be removed by adding the prime implicants 
step by step. 

The same method with the same conclusions was ap-
plied to the static 0 hazard (POS), using the duality theo-
rem [8,9]. 

The authors observed that in the second method the 
digital hazard can be earlier detected. If the Boolean equa- 
tion system is incompatible (doesn’t have solutions), the 
considered logical function doesn’t have the static 1 haz-
ard regarding the coupled variable. Using the logical com- 
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putations, this method permits to determine the needed 
transitions to eliminate the digital hazard. 
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