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ABSTRACT 

This paper brings attention on the hybrid synchronization of the Chen hyper-chaotic system by using some simple con- 
trollers. We give the sufficient conditions for achieving the goal by using the Lyapunov stability theory, and we verify 
our conclusion by numerical simulations. 
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1. Introduction 

Since Li and Yoke first put up the concept of chaos [1] in 
1975, chaos has attracted many researchers’ attention. 
Recently, chaos synchronization has received much more 
attention due to its broad application prospects in brain 
disorder, secure communication, and information proc- 
essing, etc. [2-4]. The original synchronization technique 
is developed by Pecorra and Carrol in studying complete 
synchronization [5]. Now the concept of synchronization 
has been extended to a broader scope, such as anti-syn- 
chronization, lag synchronization, phase synchronization, 
etc. [6-9]. 

Although hybrid synchronization (both anti-synchroni- 
zation and synchronization co-exist) has an important 
application in information processing [10], only a few 
researchers study about it. G. Li used a single variable to 
control the hybrid synchronization of coupled Chen sys- 
tem [11]. Zhang used a linear feedback control method 
and an adaptive feedback control method to guarantee 
the hybrid synchronization in general Lorenz system 
[12]. 

It is believed that the chaotic systems with higher-di- 
mensional attractor like hyper-chaotic systems have 
much wider applications. In fact, the presence of more 
than one positive Lyapunov exponents clearly improves 
the security by generating more complex dynamics. Thus 
hyper-chaos synchronization has become a new subject 
of active research [13]. But there are few publications 
studying about it. Sudheer used active controls to ac- 
complish the hybrid synchronization of Lü hyper-cha- 

otic system [13]. 
In this paper, we study the hybrid synchronization of a 

Chen hyper-chaotic system by using a simple control 
method. We design two linear feedback controllers so 
that some parts of the system are synchronized and others 
are anti-synchronized. We will find our method seems 
simpler compared to Sudheer’s method [13]. 

2. Problem Formulation 

We consider an autonomous chaotic system described by 

  x f x t                  (1) 

where nx R  is a n-dimensional state vector of the 
system, and : n nf R R  defines a vector field in 
n-dimensional space, it can be a linear or nonlinear func- 
tion. If   f x t  is a nonlinear function, we can also 
decompose it into a linear part and nonlinear part.  

We often use the drive-response system method to 
study the synchronization of chaotic system. Thus can be 
described by 

  1 1 s t f s t               (2) 

and: 

        2 2 1 2, s t f s t u s t s t         (3) 

where     1 2,u s t s t  is a controller to be designed 
which can be linear, linear or other form. (2) is called the 
drive system and (3) is called the response system. 

Definition 1. The chaotic system (2) and (3) are called 



G. M. XU, S. H. CHEN 14 

to achieve hybrid synchronization, if the following situa- 
tions are satisfied: 

   1 2lim 0, 1,2, , ,i i
t

s t s t i m


           (4) 

   1 2lim 0, 1, , .i i
t

s t s t i m n


           (5) 

where 1 2i i   ,s t s t  are the component of the state vec- 
tors. If only (4) is satisfied, then we call the two system 
-achieve anti-synchronization. If only (5) is satisfied, 
then we call the two system achieves synchronization. 

3. Main Result 

The differential equations of Chen hyper-chaotic system 
[14] is described by: 

 x a y x w

y dx xz cy

z xy bz

w yz rw

  

  
 
 






             (6) 

where x, y, z, and w are state variables, and  
are positive parameters. When , , 

, , , ,a b c d r
3 12c35a  b   , 

. , system (6) is chaotic, when 
, , , . , sys- 

tem (6) is hyper-chaotic, when , , 

7d 
35a 

0 0.085r 
3b  12c  7d  0.085

35a 
0.798
3 12c

r 
b   , 

. , system (6) is periodic. 7d  0.798 0.9r 
In order to observe the hybrid synchronization behav- 

ior of Chen hyper-chaotic system, assume that we have 
two Chen hyper-chaotic systems where the drive system 
with four state variables denoted by the subscript 1 and 
the response system with identical equations denoted by 
the subscript 2. Obviously, the initial condition on the 
drive system is different from that of response system. 
For the system (6), the drive and response systems are 
defined below, respectively: 

 1 1 1

1 1 1 1

1 1 1

1 1 1 1

1

1

x a y x w

y dx x z cy

z x y bz

w y z rw

  

  
 
 






            (7) 

and 

 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

2

x a y x w

y dx x z cy

z x y bz

w y z rw

  

  
 
 






           (8) 

where 1 2 3 4  are four control functions to be de- 
signed. In order to study the hybrid synchronization of 
the two systems (7) and (8), we defined an error variable 
as 

, , ,u u u u

   T T

1 2 3 4 1 2 1 2 1 2 1 2, , , , , ,e e e e e x x y y z z w w    

Lemma 1. (Schur’s formula) Let P be a square matrix 
partitioned as [15] 

A B

C D

 
 
 

. 

If A is nonsingular, then: 

     det det detP A P A , 

where 

  1 .P A D CA B   

Then we will discuss the hybrid synchronization of a 
Chen hyper-chaotic system below. 

Based on the error vector e, we can derive the error 
dynamical system: 

 1 2 1 4 1

2 1 2 2 2 1 1

3 3 2 2 1 1 3

4 4 2 2 1 1 4

e a e e e u

e de ce x z x z u

e be x y x y u

e re y z y z u

   

2    
    

   





       (9) 

Obviously, from the viewpoint of control theory, if the 
error vector e converge to zero as time t goes to infinity, 
i.e. asymptotical stability. As system (6) is hyper-chaotic, 
thus y and z are all bounded. We suppose that N and M 
are the upper bounds of the absolute values of y and z. 
Then we can conclude that hybrid synchronization exists 
between system (7) and (8). 

Theorem 1. The hybrid synchronization existent in 
system (7) and (8) if we choose 1 , 2 1 20u  u k e  , 

3 0u  , 4 2u k 4e   as the control functions, where  

 2

1 24

ap d M b
k

apb N

 



c 2k and  satisfies  and  2k r

 T 1det * * 0C B A B   where 

2 0

2

N
ap

A
N

b

 
 

  
  
 

, 2 2

0
2

ap d M p

B
N

    
  
  
 

, 

1

2

2

2

M
k c

C
M

k r

   
  
   
 

. 

Proof: The control function   T1 2 3 4, , ,U u u u u

1

2 1

3

4 2

0

0

u

u k e

u

u k


 


 

1

2e

                 (10) 

 . This leads to 
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 1 2 1 4

2 1 2 2 2 1 1 1

3 3 2 2 1 1

4 4 2 2 1 1 2 4

e a e e e

e de ce x z x z k e

e be x y x y

e re y z y z k e

  

    
   

   





2      (11) 

Now we define the Lyapunov function for the system 
(11) as 

   2 2 2 2
1 2 3 4

1

2
V t pe e e e    . 

Its time derivative along the trajectories system (11) is 

 
   

   
   

 
 

1 1 2 2 3 3 4 4

1 2 1 4 2 1 1 2 1 1 2 3

3 1 1 2 2 3 4 2 1 2 3 4 4

2 2 2 2
1 1 2 3 2 4 1 1 3

1 1 2 1 4 1 2 4 2 3 4

2 2 2
1 1 2 3

V t pe e e e e e e e

pe a e e e e de c k e e z x e

e e y x e be e e z y e r k e

pae c k e be r k e y e e

ap d z e e pe e z e e y e e

pae c k e be r

   

           
      
       

     

     

    

 




 

   

2
2 4 1 3

1 2 1 4 2 4 3 4

T

1 3 2 4 1 3 2 4, , , , , ,

k e M e e

ap d M e e p e e M e e N e e

e e e e Q e e e e

 

     



(12) 

where 

T

A B
Q

B C

 
 
 

               (13) 

Obviously, from the conditions of the theorem we 
have , 22 , , and base on 
Lemma1, we know that 

0ap  det 0Q  33det 0Q 
  0Q det . 22 33  denote 

the 2th and 3th order principal minor of Q , that is, Q is 
positive definite. Thus the error system (9) is asymptoti- 
cal stability at . Thus the theorem is proved. 

,Q Q

0e 
We can easily find out that Sudheer used some com- 

plex controllers to achieve their goal, and it seems not so 
useful in practical application. 

4. Numerical Simulations 

In the numerical simulations, we use the fourth-order 
Runge-Kutta method to solve the systems. Assume that 
the initial conditions of the drive and response system are 

          1 1 1 10 , 0 , 0 , 0 0.1,0.5,2,0.8x y z w 
        

, 
 2 2 2 20 , 0 , 0 , 0 1,2.5,5,0.2x y z w 

        

. Hence the 
initial values of error system are  

 1 2 3 40 , 0 , 0 , 0 1.1,3, 3,1e e e e  
35a  3b  12c  7d  0.5r 

1 250k

. We choose 
, , , , , thus through 

theorem1 we can take  , , 2 25k  0 5p  , 
, . Thus  40M  30N 

175 15
0

15 3
A

 
   

  
111 2.5

0 15
B

  
  
 

238 20

20 249.5
C

 
    

 

Thus it’s easy to verify that these matrixes are satisfied  

the conditions. And T 0
A B

Q
B C

 
  
 

. 

From Figures 1-4, we can easily see that  

1 1 2 0e x x   , 2 1 2 0e y y   , 3 1 ,2 0e z z  
4 1 2 0e w w    as time t tends to infinite. 

5. Conclusion 

In this paper, we study the problem of chaos hybrid syn- 
chronization of Chen hyper-chaotic system, i.e., some 
parts of states are anti-synchronization; other parts of 
states are synchronization. We can use active control 
theory to synchronize and anti-synchronize hyper-chaotic 
systems. Numerical simulations are used to verify the 
effectiveness of the proposed control method. 
 

 
(a) 

 
(b) 

Figure 1. (a) Shows the behavior of trajectory ; (b) 

Shows the behavior of the trajectory  and . 

e1

x1 x2
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(a)                                                        (b) 

Figure 2. (a) Shows the behavior of trajectory ; (b) Shows the behavior of the trajectory e2 y1  and y2 . 

 

     
(a)                                                      (b) 

Figure 3. (a) Shows the behavior of trajectory ; (b) Shows the behavior of the trajectory  and . e3 z1 z2

 

     
(a)                                                      (b) 

Figure 4. (a) Shows the behavior of trajectory ; (b) Shows the behavior of the trajectory  and . 4e 1w 2w
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